\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 84, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/84\hfil Stabilized quasi-reversibility method] {Stabilized quasi-reversibility method for \\ a class of nonlinear ill-posed problems} \author[D. D. Trong, N. H. Tuan\hfil EJDE-2008/84\hfilneg] {Dang Duc Trong, Nguyen Huy Tuan} % in alphabetical order \address{Dang Duc Trong \newline Department of Mathematics and Informatics, Hochiminh City National University, 227 Nguyen Van Cu, Q. 5, Hochiminh City, Vietnam} \email{ddtrong@mathdep.hcmuns.edu.vn} \address{Nguyen Huy Tuan \newline Department of Mathematics and Informatics, Ton Duc Thang University, 98 Ngo Tat To street , Binh Thanh district Hochiminh City, Vietnam} \email{tuanhuy\_bs@yahoo.com} \thanks{Submitted April 28, 2008. Published June 8, 2008.} \subjclass[2000]{35K05, 35K99, 47J06, 47H10} \keywords{Ill-posed problem; nonlinear parabolic equation;\hfill\break\indent quasi-reversibility methods; stabilized quasi-reversibility methods} \begin{abstract} In this paper, we study a final value problem for the nonlinear parabolic equation \begin{gather*} u_t+Au =h(u(t),t),\quad 00 $ satisfies $\beta(\epsilon) \to 0 $ when $\epsilon \to 0 $, and $| f_\epsilon(\alpha) |\leq -\frac{1}{T} \ln (\beta(\epsilon)) $ for all $\alpha \in [0,\infty) $. 1. $f$ is said to satisfy Condition (A) if \[ \|(-A+f_\epsilon(A))u\| \leq \beta(\epsilon)\|e^{TA}u\| \] for all $u\in \mathop{\rm Dom}(e^{TA})=\{u\in H: \|e^{TA}u\| =\sqrt{ \sum_{n = 1}^{\infty } e^{2T\lambda_n} u^2_{n} }<\infty \}$. Yongzhong Huang \cite[p.759]{h4} gave the approximate operator $$ A_\epsilon = -\frac{1}{pT}\ln (\epsilon+e^{-pT\epsilon}) $$ In the case $p=1$, we have $f_\epsilon(x)= -\frac{1}{T}\ln(\epsilon +e^{-Tx})$, where $x\in (0,\infty)$. Then, it is easy to see that $ | f_\epsilon(\alpha) |\leq -\frac{1}{T} \ln (\epsilon) $. Also we have \begin{align*} \|(-A+f_\epsilon(A))u\|^2 &=\sum_{n = 1}^{\infty } (-\lambda_n -\frac{1}{T}\ln(\epsilon +e^{-T\lambda_n}))^2 u^2_n \\ &\leq \sum_{n = 1}^{\infty } \frac{1}{T^2} \ln^2 (1+\epsilon e^{T\lambda_n}) u^2_n\\ &\leq \sum_{n = 1}^{\infty } \frac{\epsilon^2}{T^2} e^{2T\lambda_n}u^2_n =\frac{\epsilon^2}{T^2} \|e^{TA}u\|^2 \end{align*} Hence, $f_\epsilon $ satisfies condition (A). 2. Let $ 0\le s\le t\le T $ and $u \in H$. Then we define the operator $$ e^{(s-t)f_\epsilon(A)}u = \sum_{n = 1}^{\infty }e^{(s-t) f_\epsilon(\lambda_n)}u_n \phi_n $$ \begin{lemma} \label{lem1} Let $\epsilon>0 $ be such that $0<\beta(\epsilon)<1$ and $ u \in H $ has the eigen-function expansion $u=\sum_{n = 1}^{\infty }u_n \phi_n $ where $u_n= $. Then $$ \|f_\epsilon(A)u\| \le -\frac{1}{T} \ln (\beta(\epsilon)) \|u\| $$ \end{lemma} \begin{proof} Suppose that $ u \in H $ has the eigen-function expansion $u=\sum_{n = 1}^{\infty }u_n \phi_n $ where $u_n= \langle u,\phi_n\rangle$. Then, using the expansion of $f_\epsilon(A)u$, and that $f_\epsilon$ is bounded, we obtain \[ \|f_\epsilon(A)u\|^2=\sum_{n = 1}^{\infty } f^2_\epsilon(\lambda_n)u^2_n \le \frac{1}{T^2} \ln^2 \frac{1}{(\beta(\epsilon))} \sum_{n = 1}^{\infty }u^2_n=\ln^2 \frac{1}{(\beta(\epsilon))}\|u\|^2 \] This completes the proof. \end{proof} \begin{lemma} \label{lem2} Let $\epsilon,s,t$ be as in Lemma \ref{lem1}. Then for $ u \in H $, we have $$ \|e^{(s-t)f_\epsilon(A)}u\| \le (\beta(\epsilon))^\frac{t-s}{T} \|u\| $$ \end{lemma} \begin{proof} Using that $f_\epsilon$ is bounded, we have \[ \|e^{(s-t)f_\epsilon(A)}u\|^2 =\sum_{n = 1}^{\infty } e^{2(s-t)f_\epsilon(\lambda_n)}u^2_n \le \exp(\frac{s-t}{T} \ln \frac{1}{(\beta(\epsilon))}) \sum_{n = 1}^{\infty }u^2_n= (\beta(\epsilon))^\frac{t-s}{T} \|u\|^2 \] \end{proof} \begin{theorem} \label{thm1} Let $\epsilon$ be as in Lemma \ref{lem1}, $\varphi \in H $ and let $ h:H \times \mathbb{R} \to H $ be a continuous operator satisfying $ \|h(w(t),t)-h(v(t),t)\| \le k\|w-v\|$ for a $k >0$ independent of $w(t),v(t) \in H$, $t\in \mathbb{R}$ and $f_\epsilon$ satisfies Condition (A). Then the approximate problem \eqref{e6}-\eqref{e7} has a unique solution $u^{\epsilon}\in C([0,T];H)$. \end{theorem} First, we consider two following propositions which are useful to the proof of Theorem \ref{thm1}. \begin{proposition} \label{prop2} The integral equation \begin{equation} u^\epsilon(t)=e^{(T-t)f_\epsilon(A)}\varphi -\int_t^T e^{(s-t)f_\epsilon(A)}h(u^\epsilon(s),s)ds \label{e9} \end{equation} has a unique solution and this solution satisfies the approximate problem \eqref{e6}-\eqref{e7}. \end{proposition} \begin{proof} We put \[ F(w)(t)=e^{(T-t)f_\epsilon(A)}\varphi -\int_t^T e^{(s-t)f_\epsilon(A)}h(w(s),s)ds \] We claim that, for every $ w,v \in C([0,T];H) $ we have \begin{equation} \|F^m (w)(.,t)-F^m(v)(.,t)\| \leq \Big(\frac{k(T-t)}{\beta(\epsilon)}\Big)^{m}|||w -v||| \label{e10} \end{equation} where $C = \max \{T,1\}$ and $|||\cdot|||$ is sup norm in $C([0,T];H)$. We shall prove the latter inequality by induction. For $m =1$, we have \begin{align*} \|F(w)(.,t)-F(v)(.,t)\| &= \|\int_t^T e^{(s-t)f_\epsilon(A)}(h(w(s),s)-h(v(s),s))ds\| \\ &\leq \int_t^T \|e^{(s-t)f_\epsilon(A)}\| \|h(w(s),s)-h(v(s),s)\|ds \\ &\leq \int_t^T \frac{k}{\beta(\epsilon)^{\frac{s-t}{T}}} \|w(s)-v(s)\|ds \\ &\leq \frac{k}{\beta(\epsilon)}\int_t^T \|w(s)-v(s)\|ds \\ &\leq \frac{k}{\beta(\epsilon)}(T-t) |||w-v|||| \end{align*} (We can choose $\epsilon$ such that $0<\beta(\epsilon)<1$) Suppose that \eqref{e10} holds for $m =j$. We prove that \eqref{e10} holds for $m = j + 1$. We have \begin{align*} \|F^{j+1}(w)(.,t) - F^{j+1}(v)(.,t)\| & = \|\int_t^T e^{(s-t)f_\epsilon(A)}(h(F^{j}w)(s)-h(F^{j}v)(s))ds\|\\ &\leq \int_t^T \|e^{(s-t)f_\epsilon(A)}\| \|h(F^{j}w)(s)-h(F^{j}v)(s)\|ds\\ &\leq \int_t^T \frac{k(T-t)}{\beta(\epsilon)^{\frac{s-t}{T}}}\|h(F^{j}w)(s) -h(F^{j}v)(s)\|ds\\ &\leq \frac{k(T-t)}{\beta(\epsilon)}\int_t^T k\|(F^{j}w)(s)-(F^{j}v)(s)\|ds\\ &\leq \frac{1}{\beta(\epsilon)} (T - t)k \int_t^T \|G^j(w)(.,s) - G^j (v)(.,s)\|^2 ds \\ &\leq \frac{1}{\beta(\epsilon)} (T - t)k \int_t^T \frac{k^j}{\beta(\epsilon)^j}(T-s)^j ds|||w-v|||\\ &\leq \big(\frac{k}{\beta(\epsilon)}\big)^{(j+1)}(T-t)^{j+1} |||w-v|||. \end{align*} Therefore, by the induction principle, we have \eqref{e10}. We consider $F: C([0,T];H)\to C([0,T];H)$. Since $\lim_{m \to \infty} \left(\frac{kT}{\beta(\epsilon)}\right)^m =0$, there exists a positive integer number $m_0$ such that $F^{m_0}$ is a contraction. It follows that the equation $F^{m_0} (w) = w$ has a unique solution $u_\epsilon \in C([0,T];H)$. We claim that $F(u^\epsilon) = u^\epsilon$. In fact, one has $F(F^{m_0} (u^\epsilon)) = F(u^\epsilon)$. Hence $F^{m_0} (F(u^\epsilon)) = F(u^\epsilon)$. By the uniqueness of the fixed point of $F^{m_0}$, one has $F(u^\epsilon) = u^\epsilon$, i.e., the equation $F(w) = w$ has a unique solution $u^\epsilon \in C([0,T];H)$. Finally, we prove the unique solution of \eqref{e9} satisfies t \eqref{e6}-\eqref{e7}. In fact, one has in view from \eqref{e9}, we have \[ u^\epsilon(t)=e^{(T-t)f_\epsilon(A)}\varphi -\int_t^T e^{(s-t)f_\epsilon(A)}h(u^\epsilon(s),s)ds \] This also follows that $u(T)= \varphi$, hence the condition \eqref{e7} is satisfied. The expansion formula of $u^\epsilon(t)$ \[ u^\epsilon(t)=\sum_{n = 1}^{\infty } \Big(e^{(T-t)f_\epsilon(\lambda_n)}\varphi_n -\int_t^T e^{(s-t)f_\epsilon(\lambda_n)}h_n(u^\epsilon)(s)ds \Big)\phi_n \] Differentiating $u(t)$ with respect to $t$, we get \begin{align*} u_t^\epsilon(t) &=-f_\epsilon(A)e^{(T-t)f_\epsilon(A)}\varphi +f_\epsilon(A)\int_t^T e^{(s-t)f_\epsilon(A)}h(u^\epsilon(s),s)ds +h(u^\epsilon(t),t)\\ &= -f_\epsilon(A)u^\epsilon+h(u^\epsilon(t),t). \end{align*} This completes the proof of Proposition \ref{prop2} \end{proof} \begin{proposition} \label{prop3} Assume that $f_\epsilon $ satisfies condition A then Problem \eqref{e6}-\eqref{e7} has at most one solution in $ C([0,T];H)$. \end{proposition} \begin{proof} Suppose $ u(t) $ and $ v(t)$ are solution in $ C([0,T];H)$ of the approximate problem \eqref{e6}-\eqref{e7}. Putting $w(t) = e^{ m(t - T)} (u(t) - v(t))$ ($ m> 0 $), then replacing in the equation \eqref{e6} and by direct computation, we obtain \begin{equation} \label{e11} w_t^{} +f_\epsilon (A)w(t) - mw(t) = e^{m(t - T)} h(e^{ - m(t - T)} u(t),t) - h(e^{ - m(t - T)} v(t),t) \end{equation} Multiplying two side of \eqref{e11} with $w$ and using global Lipchitz properties of function $h$ we get \[ \frac{d}{2dt}\|w(t)\|^2+ \langle f_\epsilon(A)w,w\rangle -m\|w\|^2+k\|w\|^2 \geq 0 \] Using the boundedness of function $ f_\epsilon $ in Lemma \ref{lem2}, we have \[ |\langle f_\epsilon(A)w,w\rangle | \leq \|f_\epsilon(A)w\| \|w\| \leq \frac{1}{T}\ln(\frac{1}{\beta(\epsilon)})\|w\|^2 \] It follows that \begin{equation} \label{e12} \frac{d}{2ds}\|w(s)\|^2 \geq m\|w\|^2-k\|w\|^2 -\frac{1}{T}\ln(\frac{1}{\beta(\epsilon)})\|w\|^2 \end{equation} Putting the integral with $s$ from $t$ to $T$ in \eqref{e12}, then choosing $m=k+\frac{1}{T}\ln(\frac{1}{\beta(\epsilon)})$, it can be rewritten as \begin{equation} \label{e13} \|w(T)\|^2-\|w(t)\|^2 \geq 2(m-k-\frac{1}{T} \ln(\frac{1}{\beta(\epsilon)})\int_t^T \|w(s)\|^2 ds=0 \end{equation} Using the equality $w(T)=u(T)-v(T)=0$, one has $w(t)=0$. This completes the proof \end{proof} \begin{theorem} \label{thm2} The solution of \eqref{e6}-\eqref{e7} depends continuously on $\varphi$ \end{theorem} \begin{proof} Let $ u $ and $ v $ be two solution of \eqref{e6}-\eqref{e7} corresponding with two final values $\varphi $ and $ \omega $. By setting $w(t) = e^{ m(t - T)} (u(t) - v(t))$ (with $ m> 0 $), we have $w(T)=\varphi-\omega$. In view of inequality \eqref{e11} in Proposition \ref{prop2}, we get \begin{equation} \label{e14} \|w(T)\|^2-\|w(t)\|^2 \geq 2(m-k-\frac{1}{T} \ln(\frac{1}{\beta(\epsilon)})\int_t^T \|w(s)\|^2 ds=0. \end{equation} choosing $m=k+\frac{1}{T}\ln(\frac{1}{\beta(\epsilon)})$, we have \[ \| \varphi-\omega \| \geq \|w(t)\| = e^{ m(t - T)}\|u(t) - v(t)\| \] This implies \[ \|u(t) - v(t)\| \leq e^{ m( T-t)}\|\varphi-\omega \| =e^{k(T-t)}\beta(\epsilon)^{\frac{t}{T}-1}\|\varphi-\omega\| \] whihc proves continuity and that the stability of the solution is of order $E \beta(\epsilon)^{\frac{t}{T}-1}$. \end{proof} \section{Regularization of Problem \eqref{e1}-\eqref{e2}} \begin{theorem} \label{thm3} Let $\epsilon$ be as in Lemma \ref{lem1}. Suppose problem \eqref{e1}-\eqref{e2} has a unique solution $ u(t)\in (C[0,T];H)$ which satisfies $ u(t) \in \mathop{\rm Dom}(e^{TA})$. Then for $00$, $\lim_{t \to 0}h(t)=-\infty$, $h'(t)>0$ ($0 -\frac{1}{t}$ gives $ t_\epsilon < \sqrt{ \frac{T}{\ln \frac{1}{\epsilon}}}$. We have $ u(t_\epsilon)-u(0)=\int_0^{t_\epsilon} u'(t)dt$. Hence $\|u(0)-u(t_\epsilon)\| \le t_\epsilon \sup_{t \in [0,T]} \| u'(t)\| $. On the other hand, one has \begin{align*} \|u'(t)\| &\le \|Au(t)\|+\|f(u(t),t)\|\\ &\le\Big({\sum_{n = 1}^\infty \lambda _n^2 u_n^2(t) }\Big)^{1/2} +k\|u(t)\|+\|f(0,t)\|\\ &\le \frac{1}{T}\Big(\sum_{n = 1}^\infty { e^{2T\lambda _n } u_n^2(t) }\Big)^{1/2} +k\|u(t)\|+\|f(0,t)\|\\ &\le (\frac{1}{T}+k)M+\|f(0,t)\| \le C. \end{align*} It follows that $\|u(0)-u(t_\epsilon)\| \le Ct_\epsilon$. By the definition of $t_\epsilon$, we get \begin{align*} \|u(0)-u^\epsilon(t_\epsilon)\| &\le \|u(0)-u(t_\epsilon)\|+\|u(t_\epsilon)-u^\epsilon(t_\epsilon)\|\\ &\le 2 C t_\epsilon \le 2C \Big(\frac{T}{\ln (\frac{1}{\beta(\epsilon)})} \Big)^{1/2}. \end{align*} which completes the proof. \end{proof} \section{Example and applications} First, we consider the model problem \begin{gather*} u_t+Au(t)=h(u(t),t) \\ u(T)=\varphi \end{gather*} that is compared with the following well-posed problem. Taking function $f_\epsilon(x)= -\frac{1}{T}\ln(\epsilon +e^{-Tx})$ for $x\in (0,\infty)$, we have the first approximate problem \begin{gather} u^\epsilon_t-\frac{1}{T}\ln(\epsilon +e^{-TA})u^\epsilon=h(u^\epsilon(t),t) \label{e18} \\ u^\epsilon(T)=\varphi\,. \label{e19} \end{gather} It is easy to check that $|f(x)| \leq \frac{1}{T}\ln (\frac{1}{\epsilon}) $. Then $f$ satisfies Condition (A) with $ \beta(\epsilon)=\epsilon$. In the Hilbert space, let $H=L^2(0,\pi)$ and let $A=-\Delta$ is the Laplace operator. We take $\lambda_n=n^2$, $\phi_n=\sqrt{\frac{2}{\pi}} \sin (nx)$ are eigenvalues and orthonormal eigenfunctions, which form a basis for $H$. Let us consider the nonlinear backward heat problem \begin{gather} -u_{xx} +u_t = f(u) +g(x,t),\quad (x,t)\in (0,\pi)\times (0,1) \label{e20}\\ u(0,t)=u(\pi,t)=0, \quad t \in[0,1], \label{e21}\\ u(x,1)=\varphi(x),\quad x\in[0,\pi] \label{e22} \end{gather} where \begin{gather*} f(u) = \begin{cases} u^2 & u \in [ - e^{10} ,e^{10} ] \\ - \frac{{e^{10} }}{{e - 1}}u + \frac{{e^{21} }}{{e - 1}} & u \in (e^{10} ,e^{11} ] \\ \frac{{e^{10} }}{{e - 1}}u + \frac{{e^{21} }}{{e - 1}} & u \in ( - e^{11} , - e^{10} ] \\ 0 & |u| > e^{11} \end{cases} \\ g(x,t) = 2e^t \sin x - e^{2t} \sin^2 x,\\ u(x,1) = \varphi_0 (x) \equiv e\sin x. \end{gather*} The exact solution of the above equation is $u(x,t) = e^t \sin x$. In particular, \[ u\big(x,\frac{999}{100}\big)\equiv u(x) = \exp \big(\frac{999}{1000}\big)\sin x \approx 2.715564905 \sin x. \] Let $\varphi_\epsilon(x) \equiv \varphi(x) = (\epsilon + 1)e\sin x$. Then \[ \|\varphi_\epsilon -\varphi\|_2 = \Big(\int_0^{\pi}\epsilon^2e^2 \sin^2 x dx \Big)^{1/2} = \epsilon e \sqrt{\pi/2}. \] Applying the method introduced in this paper, we find the regularized solution $u_\epsilon\left(x,\frac{999}{1000}\right) \equiv u_\epsilon (x)$ having the form \[ u_\epsilon(x) = v_m(x) = w_{1,m}\sin x + w_{6,m} \sin 6x\,, \] where $v_1(x) = (\epsilon + 1)e \sin x$, $w_{1,1} = (\epsilon + 1)e$, $w_{6,1} = 0$, and $a = \frac{1}{{5000}}$, $t_m = 1 - am$ for $m = 1,2,\dots,5$, and \begin{align*} w_{i,m + 1} &=({{\epsilon + e^{ - t_{m} i^2 } }) ^ {\frac{t_{m+1}-t_{m}} {t_{m}}}} w_{i,m}\\ &\quad - \frac{2}{\pi }\int_{t_{m + 1} }^{t_m } {{e^{ (s - t_{m+1 }) i^2 }}} \Big( {\int_0^\pi {\left( {v_m^2 (x) + g(x,s)} \right)\sin (ix)dx} } ds\Big), \end{align*} for $i = 1,6$. Table \ref{table1} shows the approximation error in this case. \begin{table}[ht] \caption{Error between regularized and exact solution} \label{table1} \begin{center} \begin{tabular}{|c|c|c|} \hline $\epsilon$& $u_\epsilon$ & $\|u_\epsilon - u\|$ \\ \hline $\epsilon_1 = 10^{-3}$ & $2.718118645\sin(x)-0.005612885749\sin(6x)$ & 0.002585244486\\ \hline $\epsilon_2 = 10^{-4}$ & $2.715807105\sin(x) -0.005488275207 \sin(6 x)$ & 0.0002723211648\\ \hline $\epsilon_3 = 10^{-11}$ & $2.715552177\sin(x)-0.005518178192\sin(6x)$ & 0.00004317829056\\ \hline \end{tabular} \end{center} \end{table} By applying the method in \cite{l2}, we have the approximate solution \[ u_\epsilon(x,\frac{999}{1000}) = v_m(x) = w_{1,m}\sin x + w_{3,m} \sin 3x, \] where $v_1(x) = (\epsilon + 1)e \sin x$, $w_{1,1} = (\epsilon + 1)e$, $w_{3,1} = 0$, $a = \frac{1}{{5000}}$, $t_m = 1 - am$ for $m = 1,2,\dots,5$ and \begin{align*} w_{i,m + 1} &={ e^{ (t_{m}-t_{m+1}) \frac {i^2}{1+\epsilon i^2} } } w_{i,m}\\ &\quad - \frac{2}{\pi }\int_{t_{m + 1} }^{t_m } {{e^{ s - t_{m+1 } - \frac{ (t_{m}-t_{m+1})\epsilon i^2 }{1+\epsilon i^2} } }} \Big( {\int_0^\pi {\left( {v_m^2 (x) + g(x,s)} \right)\sin (ix)dx} } \Big)ds, \end{align*} for $i = 1,3$. Table \ref{table2} shows the approximation error in this case. \begin{table}[ht] \caption{Error between regularized and exact solution} \label{table2} \begin{center} \begin{tabular}{|c|c|c|} \hline $\epsilon$& $u_\epsilon$ & $\|u_\epsilon - u\|$ \\ \hline $\epsilon_1 = 10^{-3}$ & $2.718267378\sin(x)-0.005479540370\sin(3x)$ & 0.006109723643\\ \hline $\epsilon_2 = 10^{-4}$ & $2.715832209\sin(x)-0.005468363690\sin(3x)$ & 0.005474892956\\ \hline $\epsilon_3 = 10^{-11}$ & $2.715561633\sin(x)-0.005467119519\sin(3x)$ & 0.005467120499\\ \hline \end{tabular} \end{center} \end{table} From the two tables, we see that the error in Table \ref{table1} is smaller and increases slower than the error in Table \ref{table2}. This indicates that in this example, our our approach has a nice regularizing effect and give a better approximation that the method in \cite{l2}. \subsection*{Acknowledgments} The authors would like to thank Professor Julio G. Dix for his valuable help in the presentation of this paper. The authors are also grateful to the anonymous referees for their valuable comments leading to the improvement of our paper. \begin{thebibliography}{00} \bibitem {a3} S. M. Alekseeva, N. I. Yurchuk; {\it The quasi-reversibility method for the problem of the control of an initial condition for the heat equation with an integral boundary condition}, Differential Equations {\bf 34}, no. 4,493-500, 1998. \bibitem{a1} K. A. Ames, L. E. Payne; \emph{Continuous dependence on modeling for some well-posed perturbations of the backward heat equation}, J. Inequal. Appl., Vol. \textbf{3} (1999), 51-64. \bibitem{a2} K. A. Ames, R. J. Hughes; \emph{Structural Stability for Ill-Posed Problems in Banach Space}, Semigroup Forum, Vol. \textbf{70} (2005), N0 1, 127-145. \bibitem{b1} H. Brezis; \emph{Analyse fonctionelle, Th\'eorie et application}, Masson (1993). \bibitem{c1} G. W. Clark, S. F. Oppenheimer; \emph{Quasireversibility methods for non-well posed problems}, Elect. J. Diff. Eqns., \textbf{1994} (1994) no. 8, 1-9. \bibitem {d1} M. Denche, K. Bessila; {\it Quasi-boundary value method for non-well posed problem for a parabolic equation with integral boundary condition}, Math. Probl. Eng. {\bf 7}, no. 2, 129-145, 2001. \bibitem{d2} M. Denche, K. Bessila; \emph {A modified quasi-boundary value method for ill-posed problems}, J. Math. Anal. Appl, Vol. {\bf 301}, 2005, pp. 419-426. \bibitem{e1} R. E. Ewing; \emph{The approximation of certain parabolic equations backward in time by Sobolev equations}, SIAM J. Math. Anal., Vol. \textbf{6} (1975), No. 2, 283-294. \bibitem{g1} H. Gajewski, K. Zaccharias; \emph{Zur regularisierung einer klass nichtkorrekter probleme bei evolutiongleichungen}, J. Math. Anal. Appl., Vol. \textbf{38} (1972), 784-789. \bibitem{h1}A. Hassanov, J.L. Mueller; \emph{A numerical method for backward parabolic problems with non-selfadjoint elliptic operator}, Applied Numerical Mathematics, \textbf{37} (2001), 55-78. \bibitem{h2} Beth M. Campbell Hetrick and Rhonda J. Hughes \emph{Continuous dependence results for inhomogeneous ill-posed problems in Banach space}, Journal of Mathematical Analysis and Applications, Volume 331, Issue 1, 1 July 2007, Pages 342-357 \bibitem{h3}Y. Huang, Q. Zhneg; \emph{Regularization for ill-posed Cauchy problems associated with generators of analytic semigroups}, J. Differential Equations, Vol. \textbf{203} (2004), No. 1, 38-54. \bibitem{h4} Y. Huang; \emph{Modified quasi-reversibility method for final value problems in Banach spaces }, J. Math. Anal. Appl. 340 (2008) 757–769. \bibitem{i1} V. K. Ivanov, I. V. Mel'nikova, and F. M. Filinkov; \emph{Differential-Operator Equations and Ill-Posed problems}, Nauka, Moscow, 1995 (Russian). \bibitem{j1} F. John; \emph{Continuous dependence on data for solutions of partial differential equations with a prescribed bound}, Comm. Pure Appl. Math, \textbf{13} (1960), 551-585. \bibitem{k1} V. A. Kozlov, V. G. Maz'ya; \emph{On the iterative method for solving ill-posed boundary value problems that preserve differential equations}, Leningrad Math. J., \textbf{1} (1990), No. 5, 1207-1228. \bibitem{l1} R. Latt\`{e}s, J.-L. Lions; \emph{M\'ethode de Quasi-r\'eversibilit\'e et Applications}, Dunod, Paris, 1967. \bibitem{l2} N. T. Long, A. P. Ngoc. Ding; \emph{Approximation of a parabolic non-linear evolution equation backwards in time}, Inv. Problems, \textbf{10} (1994), 905-914. \bibitem{m1} I. V. Mel'nikova, Q. Zheng and J. Zheng; \emph{Regularization of weakly ill-posed Cauchy problem}, J. Inv. Ill-posed Problems, Vol. \textbf{10} (2002), No. 5, 385-393. \bibitem{m2} I. V. Mel'nikova, S. V. Bochkareva; \emph{C-semigroups and regularization of an ill-posed Cauchy problem}, Dok. Akad. Nauk., \textbf{329} (1993), 270-273. \bibitem{m3} I. V. Mel'nikova, A. I. Filinkov; \emph{The Cauchy problem. Three approaches}, Monograph and Surveys in Pure and Applied Mathematics, \textbf{120}, London-New York: Chapman \& Hall, 2001. \bibitem{m4} K. Miller; \emph{Stabilized quasi-reversibility and other nearly-best-possible methods for non-well posed problems}, Symposium on Non-Well Posed Problems and Logarithmic Convexity, Lecture Notes in Mathematics, \textbf{316} (1973), Springer-Verlag, Berlin , 161-176. \bibitem{p1} L. E. Payne; \emph{Some general remarks on improperly posed problems for partial differential equations}, Symposium on Non-Well Posed Problems and Logarithmic Convexity, Lecture Notes in Mathematics, \textbf{316} (1973), Springer-Verlag, Berlin, 1-30. \bibitem{p2} L. E. Payne; \emph{Imprperely Posed Problems in Partial Differential Equations}, SIAM, Philadelphia, PA, 1975. \bibitem{p3} A. Pazy; \emph{Semigroups of linear operators and application to partial differential equations}, Springer-Verlag, 1983. \bibitem{p4} S. Piskarev; \emph{Estimates for the rate of convergence in the solution of ill-posed problems for evolution equations}, Izv. Akad. Nauk SSSR Ser. Mat., \textbf{51} (1987), 676-687. \bibitem{q1} P. H. Quan, D. D. Trong, D. D., \emph{A nonlinearly backward heat problem: uniqueness, regularization and error estimate}, Applicable Analysis, Vol. 85, Nos. 6-7, June-July 2006, pp. 641-657. \bibitem{r1} M. Renardy, W. J. Hursa, J. A. Nohel; \emph{Mathematical Problems in Viscoelasticity}, Wiley, New York, 1987. \bibitem{s1} R. E. Showalter; \emph{The final value problem for evolution equations}, J. Math. Anal. Appl, \textbf{47} (1974), 563-572. \bibitem{s2} R. E. Showalter; \emph{Cauchy problem for hyper-parabolic partial differential equations}, in Trends in the Theory and Practice of Non-Linear Analysis, Elsevier 1983. \bibitem{s3} R. E. Showalter, {\it Quasi-reversibility of first and second order parabolic evolution equations}, Improperly posed boundary value problems (Conf., Univ. New Mexico, Albuquerque, N. M., 1974), pp. 76-84. Res. Notes in Math., no. 1, Pitman, London, 1975. \bibitem {t1} D. D. Trong, N. H. Tuan; \emph{Regularization and error estimates for nonhomogeneous backward heat problems}, Electron. J. Diff. Eqns., Vol. 2006, No. 04, 2006, pp. 1-10. \bibitem {t2} D. D. Trong, P. H. Quan, T. V. Khanh, N. H. Tuan; {\it A nonlinear case of the 1-D backward heat problem: Regularization and error estimate}, Zeitschrift Analysis und ihre Anwendungen, Volume 26, Issue 2, 2007, pp. 231-245. \end{thebibliography} \end{document}