\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 87, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/87\hfil Positive solutions] {Positive solutions to nonlinear second-order three-point boundary-value problems for difference equation with change of sign} \author[C. Wang, X. Han, C. Li\hfil EJDE-2008/87\hfilneg] {Chunli Wang, Xiaoshuang Han, Chunhong Li} \address{Chunli Wang \newline Institute of Information Technology \\ University of Electronic Technology\\ Guilin, Guangxi 541004, China \newline Department of Mathematics \\ Huaiyin Teachers College\\ Huaian, Jiangsu 223001, China} \email{wangchunliwcl821222@sina.com} \address{Xiaoshuang Han \newline Yanbian University of Science and Technology\\ Yanji, Jilin 133000, China} \email{petty\_hxs@hotmail.com} \address{Chunhong Li \newline Department of Mathematics\\ Yanbian University \\ Yanji, Jilin 133000, China \newline Department of Mathematics \\ Huaiyin Teachers College\\ Huaian, Jiangsu 223001, China} \email{abbccc2007@163.com} \thanks{Submitted March 6, 2008. Published June 11, 2008.} \subjclass[2000]{39A05, 39A10} \keywords{Boundary value problem; positive solution; difference equation; \hfill\break\indent fixed point; changing sign coefficients} \begin{abstract} In this paper we investigate the existence of positive solution to the discrete second-order three-point boundary-value problem \begin{gather*} \Delta^2 x_{k-1}+ h(k) f(x_k)=0, \quad k \in [1, n], \\ x_0 =0, \quad a x_l = x_{n+1}, \end{gather*} where $n \in [2, \infty)$, $l \in [1, n]$, $0 < a < 1$, $(1-a)l \geq 2$, $(1+a)l\leq n+1$, $f \in C(\mathbb{R}^+,\mathbb{R}^+)$ and $h(t)$ is a function that may change sign on $[1, n]$. Using the fixed-point index theory, we prove the existence of positive solution for the above boundary-value problem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Recently, some authors considered the existence of positive solutions to discrete boundary-value problems and obtained some existence results; see for example,\cite{a1,a2,c1,m1,y1}. Motivated by the papers \cite{l1,z1}, we consider the existence of positive solution for the nonlinear discrete three-point boundary-value problem \begin{equation} \begin{gathered} \Delta^2 x_{k-1} + h(k) f(x_k)=0, \quad k \in [1, n], \\ x_0=0, \quad a x_l = x_{n+1}, \end{gathered} \label{e1.1} \end{equation} where $n \in \{2, 3, \dots\}$, $l \in [1, n] = \{1, 2, \dots , n\}$, $0 < a < 1$, $(1-a)l \geq 2$, $(1+a)l\leq n+1$, $f \in C(\mathbb{R}^+,\mathbb{R}^+)$ and $h \in C(\mathbb{R}^+, \mathbb{R})$. When $h(k) \equiv 1$, Equation \eqref{e1.1} reduces to the nonlinear discrete three-point boundary-value problem studied by Zhang and Medina \cite{z1}. Using the same approach as in \cite{z1}, we obtain the the existence of positive solutions to \eqref{e1.1} when $h \in C(\mathbb{R}^+, \mathbb{R}^+)$. To the author's knowledge, no one has studied the existence of positive solution for \eqref{e1.1} when $h$ is allowed to change sign on $[1,n]$. Hence, the aim of the present paper is to establish simple criteria for the existence of at least one positive solution of the \eqref{e1.1}. Our main tool is the fixed-point index theory \cite{g1}. \begin{theorem}[\cite{g1}]\label{thm1.1} Suppose $E$ is a real Banach space, $K \subset E$ is a cone, and $\Omega_r = \{u \in K :\|u\| \leq r\}$. Let the operator $T : \Omega_r \to K$ be completely continuous and satisfy $T x \neq x$, for all $x \in \partial \Omega_r$. Then \begin{itemize} \item[(i)] If $\|T x\| \leq \|x\|$, for all $x \in \partial \Omega_r$, then $i(T, \Omega_r, K) = 1$; \item[(ii)] If $\|T x\| \geq \|x\|$, for all $x \in \partial \Omega_r$, then $i(T, \Omega_r, K) = 0$. \end{itemize} \end{theorem} In this paper, by a positive solution $x$ of \eqref{e1.1}, we mean a solution of the \eqref{e1.1} satisfying $x_k > 0$, $k \in [1, n+1]$. We will use the following notation: $\mathbb{Z}=\{0,\pm 1,\pm 2,\dots\}$; $\mathbb{N}=\{0,1,2,\dots\}$; $[m,n]=\{m,m+1,m+2,\dots,n\} \subset \mathbb{Z}$; $[x]$ is the integer value function; $\Delta y_k = y_{k+1}-y_k$, $ \Delta^n y_k = \Delta(\Delta^{n-1}y_k)$, $n \geq 2$, $k\in \mathbb{N}$. Moreover, we shall use the following assumptions: \begin{itemize} \item[(H1)] $f \in C(\mathbb{R}^+,\mathbb{R}^+)$ is continuous and nondecreasing. \item[(H2)] $h:[1,n] \to (-\infty,+\infty)$ such that $h(k) \geq 0$, $k \in [1, l]; h(k) \leq 0$, $k \in [l, n]$. Moreover, $h(k)$ does not vanish identically on any subinterval of $[1,n]$. \item[((H3)] There exist nonnegative constants in the extended reals, $f_0$, $f_\infty$, such that $$ f_0 = \lim _{u\to 0^+}\frac{f(u)}{u}, \quad f_\infty = \lim _{u\to +\infty}\frac{f(u)}{u}. $$ \end{itemize} This paper is organized as follows: In section 2, preliminary lemmas are given. In section 3, we prove the existence of positive solutions for \eqref{e1.1}. In section an example is provided. \section{Preliminaries} In this section, we give some lemmas that will be used to prove our main results. \begin{lemma}[\cite{z1}] \label{lem2.1} Let $a l \neq n+1$. For $\{y_k\}_{k=0}^{n+1}$, the problem \begin{equation} \begin{gathered} \Delta^2 x_{k-1}+ y_k=0, \quad k \in [1,n], \\ x_0 =0, \quad a x_l = x_{n+1}\,. \end{gathered}\label{e2.1} \end{equation} has a unique solution $$ x_k = \frac{k}{n+1-al} \Big(\sum_{i=0}^n \sum_{j=0}^i y_j - a \sum_{i=0}^{l-1}\sum_{j=0}^i y_j \Big) - \sum_{i=0}^{k-1}\sum_{j=0}^i y_j, \quad k \in [0,n+1]. $$ \end{lemma} Using the above lemma, for $0 < a < 1$, it is easy to prove the following result. \begin{lemma}\label{lem2.2} The Green's function for \eqref{e2.1} is \begin{equation} G(k, j)= \begin{cases} \dfrac{((a-1)k + n+1-al)j}{n+1-al}, & j < k, \; j < l,\\[3pt] \dfrac{((a-1)j + n+1 - al)k}{n+1- a l}, & k \leq j < l,\\[3pt] \dfrac{a l(k-j)+(n+1-k)j}{n+1 - a l}, & l < j \leq k,\\[3pt] \dfrac{(n+1-j)k}{n+1 - a l}, & j \geq k, \; j \geq l, \end{cases} \label{e2.2} \end{equation} \end{lemma} We want to point that this Green's function is new. \begin{remark} \label{rmk2.1} \rm Note that $G(k, j) \geq 0$ for $(k, j) \in [0,n+1] \times [1, n]$. \end{remark} \begin{lemma}\label{lem2.3} Let $(1-a)l \geq 2$. For all $j_1 \in [\tau, l]$ and $j_2 \in [l, n]$, we have \begin{equation} G(k, j_1) \geq M G(k, j_2), \quad k \in [0, n+1],\label{e2.3} \end{equation} where $\tau \in [[al] + 1, l - 1]$ and $M = a^2 l/n$. \end{lemma} \begin{proof} It is easy to check that $(1-a)l \geq 2$ implies $[[al] + 1, l - 1]$. We divide the proof into two cases. \noindent\textbf{Case 1:} $k \leq l$. By \eqref{e2.2}, \begin{align*} \frac{G(k, j_1)}{G(k, j_2)} &= \begin{cases} \dfrac{[(a-1)k+n+1-al]j_1}{(n+1-j_2)k}, & j_1 \leq k, \\[3pt] \dfrac{[(a-1)j_1+n+1-al]k}{(n+1-j_2)k}, & k < j_1 \end{cases} \\ &\geq \begin{cases} \dfrac{(n+1-l)\tau}{(n+1-l)k}, & j_1 \leq k, \\[3pt] \dfrac{(n+1-l)k}{(n+1-l)k}, & k < j_1 \end{cases} \\ &\geq \min \{\frac{\tau}{l}, 1\} \\ &= \frac{\tau}{l} \\ &\geq a > M. \end{align*} \noindent\textbf{Case 2:} $k \geq l$. For $j_2 \in [l, n]$ and $(1+a)l\leq n+1$, it is easy to check that \begin{equation} \begin{aligned} (n+1-k-al)j_2 + alk &=(n+1-al)j_2+(al-j_2)k \\ &\leq(n+1-al)j_2+(al-j_2)l \\ &=(n+1-al-l)j_2+al^2 \\ &\leq(n+1-al-l)n+al^2\\ &= (n - al)(n+1-l) + al, \end{aligned} \label{e2.4} \end{equation} and \begin{equation} (a-1)k+n+1-al \geq (a-1)(n+1) + n+1-al = a(n+1-l), \label{e2.5} \end{equation} From (\ref{e2.2}), (\ref{e2.4}) and (\ref{e2.5}), we obtain \begin{align*} \frac{G(k, j_1)}{G(k, j_2)} &= \begin{cases} \dfrac{[(a-1)k+n+1-al]j_1}{(n+1-k-al)j_2 + alk}, & j_2 \leq k, \\[3pt] \dfrac{[(a-1)k+n+1-al]j_1}{(n+1-j_2)k}, & k < j_2 \end{cases} \\ &\geq \begin{cases} \dfrac{a(n+1-l)\tau}{(n-al)(n+1-l) + al}, & j_2 \leq k, \\ \dfrac{a(n+1-l) \tau}{(n+1-l)n}, & k < j_2 \end{cases} \\ &\geq \min \big\{ \frac{a^2 l(n+1-l) }{(n-al)(n+1-l) + al}, \frac{a^2 l}{n} \big\} \\ &= \frac{a^2 l}{n} = M. \end{align*} Hence, $G(t, j_1) \geq M G(t, j_2)$ holds. \end{proof} Let $C[0,n+1]$ be the Banach space with the norm $\|x\|=\sup_{k \in [0,n+1]}|x_k|$. Denote \begin{gather*} C_0^+[0,n+1]=\{x \in C[0,n+1]: \min_{k \in [0,n+1]} x_k \geq 0 \text{ and } x_0=0,\; x_{n+1} = a x_l\}, \\ P=\{x \in C_0^+[0,n+1]: x_k \text{ is concave on $[0,l]$ and convex on $[l,n+1]$}\}. \end{gather*} It is obvious that $P$ is a cone in $C[0,n+1]$. \begin{lemma}\label{lem2.4} If $x \in P$, then $$ x_k \geq A(k) x_l, \quad k \in [0,l];\quad x_k \leq A(k) x_l, \quad k \in [l,n+1]. $$ where $$ A(k) = \begin{cases} k/l, & k \in [0, l],\\ \frac{n+1-al+(a-1)k}{n+1-l}, & k \in [l+1, n+1], \end{cases} $$ \end{lemma} \begin{proof} Since $x \in P$, we have $x_k$ is concave on $[0,l]$, convex on $[l,n+1]$, $x_0=0$, and $x_{n+1} = a x_l$. Thus, $$ x_k \geq x_0 +\frac{x_l-x_0}{l}k=\frac{k}{l} x_l, \quad \text{for } k \in[0,l], $$ and $$ x_k \leq x_{n+1} + \frac{x_{n+1}-x_l}{n+1-l}(k-1-n) =\frac{n+1-al+(a-1)k}{n+1-l} x_l, \quad\text{for } k \in [l,n+1]. $$ Hence, we have $$ x_k \geq A(k) x_l, \quad k \in[0,l]; \quad x_k \leq A(k) x_l, \quad k \in [l,n+1]. $$ \end{proof} \begin{lemma}\label{lem2.5} Assume that $(1-a)l \geq 2$. Let $x \in P$, then $$ x_k \geq \mu \|x\|, \quad k \in [[al]+1, \tau], $$ where $\mu = \min \{a,1-\frac{\tau}{l}\}$, $\tau \in [[al]+1, l-1]$. \end{lemma} \begin{proof} Let $x \in P$, then $x$ is concave on $[0,l]$, and convex on $[l,n+1]$. Since $0 < a < 1$, $x_{n+1} = a x_l < x_l$, then $ \|x\| = \sup_{k \in [0,n+1]}|x_k| = \sup_{k \in[0,l]}|x_k|$. Set $r = \inf\{r \in [0,l]: \sup_{k \in [0,l]}x_k = x_r\}$. We now consider the following two cases: \noindent\textbf{Case (i):} $k \in [0, r]$. By the concavity of $x_k$, we have $$ x_k \geq x_0 + \frac{x_r - x_0}{r}k = \frac{k}{r} x_r \geq \frac{k}{l} x_r = \frac{k}{l}\|x\|. $$ \noindent\textbf{Case(ii):} $k \in [r,l]$. Similarly, we obtain \begin{align*} x_k &\geq x_r + \frac{x_r -x_l}{r-l}(k-r)\\ &= \frac{l-k}{l-r} x_r + \frac{k-r}{l-r} x_l\\ & \geq \frac{l-k}{l-r} x_r \geq \frac{l-k}{l} x_r \\ &= \big[1- \frac{k}{l}\big] \|x\|. \end{align*} Thus, we have $$ x_k \geq \min \big\{\frac{k}{l}, 1-\frac{k}{l}\big\}\|x\|, \quad k \in [0,l], $$ which yields $$ \min _{k \in [[al]+1, \tau]} x_k \geq \min \{a, 1-\frac{\tau}{l}\} \|x\| = \mu\|x\|. $$ The proof is completed. \end{proof} \begin{lemma}\label{lem2.6} Assume that $(1-a)l \geq 2$. If conditions {\rm (H1), (H2), (H4)} hold $\forall k \in [0,n-l]$, then there exists a constant $\tau \in [[al]+1, l-2]$ such that \begin{equation} { B(k) = h^+(l- [\delta k]) - \frac{1}{M} h^-(l+k) \geq 0 }, \label{e2.6} \end{equation} where $h^+(k) = \max\{h(k),0\}, h^-(k) = - \min\{h(k),0\}$, $\delta = \frac{l-\tau-1}{n-l+1}$, and $M = a^2 l/n$. Then for all $q \in [0,\infty)$, we have \begin{equation} {\sum _{j=\tau+1}^n G(k,j) h(j) f(q A(j)) \geq 0. } \label{e2.7} \end{equation} \end{lemma} \begin{proof} By the definition of $A(k)$, it is easy to check that \begin{equation} { A(l-[\delta r]) = \frac{1}{l} \Big(l-\big[\frac{l-\tau-1}{n-l+1}r\big]\Big) =1- \frac{1}{l} \big[\frac{l-\tau-1}{n-l+1}r\big], \quad r \in [0, n-l+1], } \label{e2.8} \end{equation} and \begin{equation} {A(l+r)=1-\frac{r}{n-l+1}(1-a), \quad r \in [0, n-l]. } \label{e2.9} \end{equation} Set $j=l- [\delta r]$, $r \in [0,n-l+1]$ ($\delta$ as in (H4)). For all $q \in [0,\infty)$, by view of Lemma \ref{lem2.3}, Remark \ref{rmk2.1}, (\ref{e2.6}), (\ref{e2.8}), (\ref{e2.9}), (H4), and that $f$ is nondecreasing, we have \begin{equation} \begin{aligned} &\sum_{j=\tau+1}^l G(k,j) h^+(j) f(q A(j))\\ &=\sum_{r=0}^{n-l+1} G(k, l-[\delta r]) h^+(l- [\delta r]) f(q A(l-[\delta r])) \\ & = \sum _{r=0}^{n-l+1} G(k, l-[\delta r]) h^+(l-[\delta r]) f \Big(q \big(1- \frac{1}{l} \big[\frac{l-\tau-1}{n-l+1}r\big] \big)\Big) \\ &{\geq \sum _{r=0}^{n-l+1} G(k, l-[\delta r]) h^+(l-[\delta r]) f \Big(q \big(1-\frac{r}{n-l+1}\big(1-\frac{\tau+1}{l}\big)\big)\Big)}\\ & \geq M \sum _{r=0}^{n-l} G(k, l+r) h^+(l - [\delta r])f \Big(q \big(1-\frac{r}{n-l+1}\big(1-\frac{\tau+1}{l}\big)\big)\Big)\\ &\geq \sum _{r=0}^{n-l} G(k, l+r) h^-(l+r) f \Big(q \big(1-\frac{r}{n-l+1}(1-a)\big)\Big). \end{aligned}\label{e2.10} \end{equation} Again, setting $j=l+r$, $r \in[0,n-l]$, for $q \in [0,\infty)$, we obtain \begin{equation} { \sum _{j=l+1}^n G(k,j)h^-(j)f(q A(j)) = \sum _{r=1}^{n-l} G(k, l+r) h^-(l+r) f \Big(q \big(1-\frac{r}{n-l+1}(1-a)\big)\Big). } \label{e2.11} \end{equation} Thus, by (\ref{e2.10}) and (\ref{e2.11}), we get \begin{align*} &\sum _{j=\tau+1}^n G(k,j) h(j) f(q A(j))\\ & = \sum _{j=\tau+1}^l G(k,j) h^+(j) f(q A(j)) - \sum _{j=l+1}^n G(k,j) h^-(j) f(q A(j)) \geq 0. \end{align*} The proof is completed. \end{proof} We define the operator $T : C[0, n+1] \to C[0, n+1]$ by \begin{equation} {(Tx)_k = \sum _{j=1}^n G(k,j) h(j) f(x_j), \quad (k,j) \in [0,n+1] \times [1,n]. } \label{e2.12} \end{equation} where $G(k, j)$ as in (\ref{e2.2}). From Lemma \ref{lem2.3}, we easily know that $x(t)$ is a solution of the \eqref{e1.1} if and only if $x(t)$ is a fixed point of the operator $T$. \begin{lemma}\label{lem2.7} Let $(1-a)l \geq 2$. Assume that conditions {\rm (H1), (H2),(H4)} are satisfied. Then $T$ maps $P$ into $P$. \end{lemma} \begin{proof} For $x \in P$, by Lemmas \ref{lem2.4}, \ref{lem2.6}, and $f$ is nondecreasing, we have \begin{equation} \begin{aligned} &\sum _{j=\tau+1}^n G(k,j) h(j)f(x_j) \\ &= \sum _{j=\tau}^l G(k,j) h^+(j) f(x_j) - \sum_{j=l+1}^n G(k,j) h^-(j) f(x_j) \\ & \geq \sum _{j=\tau+1}^l G(k,j) h^+(j) f(A(j) x_l) - \sum _{j=l+1}^n G(k,j) h^-(j)f(A(j)x_l) \\ &= \sum _{j=\tau+1}^n G(k,j) h(j) f(x_l A(j)) \geq 0, \end{aligned} \label{e2.13} \end{equation} which implies \begin{align*} (Tx)_k &= \sum _{j=1}^n G(k,j) h(j) f(x_j)\\ & = \sum _{j=1}^\tau G(k,j) h^+(j) f(x_j)+ \sum _{j=\tau+1}^n G(k,j) h(j) f(x_j)\\ &\geq \sum _{j=1}^\tau G(k,j) h^+(j) f(x_j)\geq 0, \end{align*} again $(Tx)_0=0$, $(Tx)_{n+1} = a(Tx)_l$, it follows that $T: P \to C_0^+[0,n+1]$. On the other hand, \begin{gather*} \Delta^2(Tx)_k = - h^+(j) f(x_j) \leq 0, \quad j \in [0,l],\\ \Delta^2(Tx)_k = h^-(j) f(x_j) \geq 0, \quad j \in [l,n+1]. \end{gather*} Thus, $T$ maps $P$ into $P$. \end{proof} \begin{lemma} \label{lem2.8} Let $(1-a)l \geq 2$. Assume that conditions {\rm (H1), (H2), (H4)} are satisfied. If $z \in P$ is a fixed point of $T$ and $\|z\|>0$, then $z$ is a positive solution of the \eqref{e1.1}. \end{lemma} \begin{proof} At first, we claim that $z_l>0$. Otherwise, $z_l=0$ implies $z_{n+1} = a z_l = 0$. By the convexity and the nonnegativity of $z$ on $[l,n+1]$, we have $$ z_k \equiv 0, \quad k \in [l,n+1], $$ this implies $\Delta z_l = z_{l+1}-z_l=0$. Since $z = Tz$, we have $\Delta^2 z_k = - h^+(k) f(z_k) \leq 0$, $k \in [0,l]$. Then $$ \Delta z_k \geq \Delta z_l = 0, \quad k \in [0,l-1]. $$ Thus, $z_k \leq z_l=0$, $k \in [0,l]$. By the nonnegativity of $z$, we get $$ z_k \equiv 0, \quad k \in [0,l], $$ which yields a contradiction with $\|z\|>0$. \end{proof} Next, in view of Lemma \ref{lem2.1}, for $z \in P$, we have \begin{equation} z_k \geq \frac{k}{l} z_l > 0, \quad k \in [1, l]. \label{e2.14} \end{equation} Note that $h(k)$ does not vanish identically on any subinterval of $k \in [1,l]$, for any $k \in [1, n]$. By (\ref{e2.13}) we have \begin{align*} z_k &= (Tz)_k \\ &= \sum_{j=1}^n G(k,j) h(j) f(z_j) \\ &= \sum _{j=1}^\tau G(k,j) h^+(j) f(z_j) + \sum_{j=\tau}^n G(k,j) h(j) f(z_j) \\ &\geq \sum _{j=1}^{\tau} G(k,j) h^+(j) f(z_j)>0. \end{align*} Thus, we assert that $z$ is a positive solution of \eqref{e1.1}. \section {Existence of solutions} For convenience, we set \begin{gather*} M = \Big(\mu \max _{k \in [0,n+1]} \sum _{j=[al]+1}^\tau G(k,j)h^+(j)\Big)^{-1},\\ m = \Big(\max _{k \in [0,n+1]} \sum _{j=1}^l G(k,j) h^+(j)\Big)^{-1} \end{gather*} where $\mu$ as in Lemma \ref{lem2.5}. \begin{theorem}\label{thm3.1} Let $(1-a)l \geq 2$. Assume that conditions {\rm (H1)--(H4)} are satisfied. If {\rm (H5)}, $0 \leq f_0 < m$, and $M < f_{\infty} \leq + \infty$ hold, then \eqref{e1.1} has at least one positive solution. \end{theorem} \begin{proof} By Lemma \ref{lem2.7}, $T: P \to P$. Moreover, it is easy to check by Arzela-Ascoli theorem that $T$ is completely continuous. By (H5), we have $f_0 < m$. There exist $\rho_1> 0$ and $\varepsilon_1 > 0$ such that \begin{equation} f(u) \leq (m - \varepsilon_1) u, \quad for \quad 0 < u \leq \rho_1. \label{e3.1} \end{equation} Let $\Omega_1 = \{x \in P: \|x\| < \rho_1\}$. For $x \in \partial\Omega_1$, by (\ref{e3.1}), we have \begin{align*} (Tx)_k &= \sum _{j=1}^n G(k,j) h(j) f(x_j) \\ &= \sum _{j=1}^l G(k,j) h^+(j) f(x_j) - \sum_{k=l+1}^n G(k,j) h^-(j) f(x_j) \\ & \leq \sum _{j=1}^l G(k,j) h^+(j) f(x_j)\\ &\leq \rho_1 (m - \varepsilon_1) \max _{k \in [0, n+1]} \sum_{j=1}^l G(k,j) h^+(j) \\ &= \rho_1 (m-\varepsilon_1) \frac{1}{m} \\ &< \rho_1 = \|x\|, \end{align*} which yields $\|Tx\| < \|x\|$ for $x \in \partial \Omega_1$. Then by Theorem \ref{thm3.1}, we have \begin{equation} i(T, \Omega_1, P) = 1. \label{e3.2} \end{equation} On the other hand, from (H5), we have $f_{\infty} > M$. There exist $\rho_2 > \rho_1 > 0$ and $\varepsilon_2$ such that \begin{equation} f(u) \geq (M + \varepsilon_2) u, \quad {\rm for} \quad u \geq \mu \rho_2. \label{e3.3} \end{equation} Set $\Omega_2 = \{x \in P: \|x\| < \rho_2\}$. For any $x \in \partial\Omega_2$, from Lemma \ref{lem2.5}, we have $x_k \geq \mu \|x\| = \mu \rho_2$, for $k \in [[al]+1, \tau]$. Then from (\ref{e2.7}) and (\ref{e3.3}), we obtain \begin{align*} \|Tx\| &= \max _{k \in [0,n+1]} \Big[\sum_{j=1}^{\tau} G(k,j) h^+(j)f(x_j) + \sum_{j=\tau+1}^n G(k,j) h(j)f(x_j)\Big] \\ &\geq \max _{k \in [0,n+1]} \sum_{j=1}^\tau G(k,j) h^+(j)f(x_j)\\ &\geq \max_{k \in [0,n+1]}\sum_{j=[al]+1}^\tau G(k,j) h^+(j)f(x_j) \\ &\geq \mu (M + \varepsilon_2) \rho_2 \max_{k\in[0,n+1]} \sum_{j=[al]+1}^\tau G(k,j) h^+(j) \\ &= \frac{1}{M} (M + \varepsilon_2) \rho_2 > \rho_2 = \|x\|; \end{align*} this is, $\|Tx\| > \|x\|$, for $ x \in \partial \Omega_2$. Then, by Theorem \ref{thm3.1}, \begin{equation} i(T, \Omega_2, P) = 0. \label{e3.4} \end{equation} Therefore, by (\ref{e3.2}), (\ref{e3.4}), and $\rho_1 < \rho_2$, we have $$ i(T, \Omega_2 \setminus \bar{\Omega}_1, P)= -1. $$ Then operator $T$ has a fixed point in $\Omega_2 \setminus \bar{\Omega}_1$. So, \eqref{e1.1} has at least one positive solution. \end{proof} \begin{theorem}\label{thm3.2} Let $(1-a)l \geq 2$. Assume that {\rm (H1)--(H4)} are satisfied. If {\rm (H6)}, $M < f_0 \leq + \infty$, and $0 \leq f_{\infty} < m$ hold, then \eqref{e1.1} has at least one positive solution. \end{theorem} \begin{proof} At first, by (H6), we get $f_0 > M$, there exist $\rho_3$ and $\varepsilon_3$ such that \begin{equation} f(u) \geq (M + \varepsilon_3)u,\quad \text{for } 0 < u < \rho_3. \label{e3.5} \end{equation} Set $\Omega_3 = \{x \in P : \|x\| < \rho_3\}$. For any $x \in \partial \Omega_3$, by Lemma \ref{lem2.5}, we get $x_k \geq \mu \|x\| = \mu \rho_3$, for $k \in [[al]+1, \tau]$, then by (\ref{e2.7}) and (\ref{e3.5}), we have \begin{align*} \|Tx\|& = \max_{k \in [0,n+1]} \Big[\sum_{k=1}^\tau G(k,j) h^+(j) f(x_j) + \sum_{j=\tau+1}^n G(k,j) h(j) f(x_j)\Big] \\ & \geq \max_{k \in [0,n+1]} \sum_{j=1}^\tau G(k,j) h^+(j) f(x_j) \\ &\geq \max_{k \in [0,n+1]} \sum_{j=[al]+1}^\tau G(k,j) h^+(j) f(x_j) \\ &\geq \mu (M+\varepsilon_3) \rho_3 \max_{k \in [0,n+1]} \sum_{j=[al]+1}^\tau G(k,j) h^+(j) \\ &= \frac{1}{M} (M+\varepsilon_3) \rho_3 > \rho_3 = \|x\|; \end{align*} this is, $\|Tx\| > \|x\|$, for $x \in \partial \Omega_3$. Thus, by Theorem \ref{thm1.1}, \begin{equation} i(T, \Omega_3, P) = 0. \label{e3.6} \end{equation} Next, from (H6), we have $f_{\infty} < m$. There exist $\rho_4> 0$ and $0 < \varepsilon_4 < \rho_4$ such that $$ f(u) \leq (m-\varepsilon_4)u, \quad \text{for } u \geq \rho_4. $$ Set $L = \max_{0 \leq u \leq \rho_4} f(u)$. Then \begin{equation} f(u) \leq L + (m-\varepsilon_4)u, \quad \text{for } \quad u \geq 0. \label{e3.7} \end{equation} Choose $\rho_5 > \max \{\rho_4, L/\varepsilon_4\}$. Let $\Omega_4 = \{x \in P : \|x\| < \rho_5\}$. Then for $x \in \partial \Omega_4$, by (\ref{e2.7}) and (\ref{e3.7}), we have \begin{align*} (Tx)_k &= \sum _{j=1}^n G(k,j) h(j) f(x_j)\\ &= \sum _{j=1}^l G(k,j) h^+(j) f(x_j) - \sum_{j=l+1}^n G(k,j) h^-(j)f(x_j) \\ &\leq \sum _{j=1}^l G(k,j) h^+(j) f(x_j) \\ &\leq (L + (m-\varepsilon_4) \rho_5) \frac{1}{m} \\ &= \rho_5 -(\varepsilon_4 \rho_5 -L)\frac{1}{m}\\ &< \rho_5 = \|x\|. \end{align*} Thus, by Theorem \ref{thm3.1}, \begin{equation} i(T, \Omega_4, P) = 1. \label{e3.8} \end{equation} Therefore, by (\ref{e3.6}), (\ref{e3.8}), and $\rho_3 < \rho_5$, we have $$ i(T, \Omega_4 \setminus \bar{\Omega}_3, P)= 1. $$ Then operator $T$ has a fixed point in $\Omega_4 \setminus \bar{\Omega}_3$. So, \eqref{e1.1} has at least one positive solution. \end{proof} \section{Example} In this section, we illustrates our main results. Consider the boundary-value problem \begin{equation} \begin{gathered} \Delta^2 x_{k-1}+ h(k) x_k^{\alpha} = 0, \quad k \in [1,11], \\ x_0 =0, \quad \frac{1}{3} x_6 = x_{12}, \end{gathered} \label{e4.1} \end{equation} where $0 < \alpha < 1$, and \[ h(k)= \begin{cases} 3(k-8)^2, & k \in [1, 8],\\ \frac{8}{99}(8-k)^3, & k \in [8, 11].\\ \end{cases} \] Let $n=11$, $l=8$, $a = 1/3$, then we have $M =8/99$. Now taking $\tau=3$, then $\tau \in [[al] + 1, l -2] = [3, 6]$, $\delta = 1$, and for all $k \in [0, n - l]=[0, 3]$, we have $$ B(k) = h^+(l - [\delta k]) - \frac{1}{M} h^-(l + k) = k^2(3-k) \geq 0. $$ Hence, Condition (H2) and (H4) hold. Set $f(u) = u^{\alpha}$, it is easy to see that $$ f_0 = \infty, \quad f_{\infty} = 0, $$ that is, (H6) holds. Thus, by Theorem \ref{thm3.2}, \eqref{e4.1} has at least one positive solution. \begin{thebibliography}{00} \bibitem{a1} D. Anderson, R. Avery and A. Peterson; \emph{Three positive solutions to a discrete focal boundary-value problem}, J. Computational and Applied Math. 88(1998), 103-118. \bibitem{a2} R. P. Agarwal and P. J. Wong; \emph{Advanced Topics in Difference Equations}, Kluwer Academic Publishers. 1997. \bibitem{c1} W. Cheung, J. Ren, P. J. Y. Wong and D. Zhao; \emph{Multiple positive solutions for discrete nonlocal boundary-value problems}, J. Math. Anal. Appl. 330(2007), 900-915. \bibitem{g1} D. Guo and V. Lakshmikantham; \emph{Nonlinear propblems in Abstract cone}, Academic press, Sandiego. 1988. \bibitem{l1} B. Liu; \emph{Positive solutions of second-order three-point boundary-value problems with change of sign}, Computers Math. Applic. 47(2004), 1351-1361. \bibitem{m1} F. Merdivenci; \emph{Two positive solutions of a boundary-value problem for difference equations}, J. Difference Equations Appl. 1(1995), 263-270. \bibitem{y1} C. Yang and P. Weng; \emph{Green functions and positive solutions for boundary-value problems of third-order difference equations}, Comput. Math. Appl. 54(2007), 567-578. \bibitem{z1} G. Zhang and R. Medina; \emph{Three-point boundary-value problems for difference equations}, Computers Math. Applic. 48(2004), 1791-1799. \end{thebibliography} \end{document}