\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 92, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/92\hfil Existence of positive solutions] {Existence of positive solutions for $p$-Laplacian three-point boundary-value problems \\ on time scales} \author[H.-R. Sun, Y.-H. Wang\hfil EJDE-2008/92\hfilneg] {Hong-Rui Sun, Ying-Hai Wang} % in alphabetical order \address{Hong-Rui Sun \newline School of Mathematics and Statistics, Lanzhou University\\ Lanzhou, Gansu 730000, China} \email{hrsun@lzu.edu.cn} \address{Ying-Hai Wang \newline School of Physical Science and Technology, Lanzhou University\\ Lanzhou, Gansu 730000, China} \email{yhwang@lzu.edu.cn} \thanks{Submitted January 26, 2007. Published July 2, 2008.} \thanks{Supported by grants 10571078 from the NNSF of China, 10726049 from Tianyuan Youth \hfill\break\indent Grant of China, Lzu05003 from Fundamental Research Fund for Physics and Mathematics \hfill\break\indent of Lanzhou University, and 2005038486 from China Postdoctoral Science Foundation} \subjclass[2000]{34B15, 39A10} \keywords{Time scales; p-Laplacian; positive solution; cone; fixed point} \begin{abstract} This article shows the existence of positive solutions for a class of $p$-Laplacian three-point boundary-value problem on time scales. By using several fixed point theorems in cones, we establish conditions for the existence of at least one, two or three positive solutions for the boundary-value problems. Our results are new even for the corresponding differential ($\mathbb{T}=\mathbb{R})$ and difference equation ($\mathbb{T}=\mathbb{Z})$, and for the general time scales setting. An example is also given to illustrate our results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} %\allowdisplaybreaks \section{Introduction} Dynamic equations on time scales not only unify differential and difference equations \cite{Hilger}, but also exhibit much more complicated dynamics \cite{ABL, BP1, BP2}. The study of dynamic equations on time scales has led to important applications in the study of insect population models, biology, heat transfer, stock market, wound healing, and epidemic models \cite{Jon, Spedding, TVY}. Before introducing the problems of interest for this paper, we present some basic definitions which can be found in \cite {a6,BP1, BP2, Hilger}. Another source on dynamic equations on time scales is \cite{LSK}. A time scale $\mathbb{T}$ is a nonempty closed subset of $\mathbb{R}$ with the topology inherited from $\mathbb{R}$. For notation, we shall use the convention that, for each interval $J$ of $\mathbb{R}$, $J_{\mathbb{T}}=J\cap \mathbb{T}$. The jump operators $\sigma ,\rho :\mathbb{T}\to \mathbb{T}$ defined by \[ \sigma (t)=\inf \{ \tau \in \mathbb{T}:\tau >t\} \quad \text{and}\quad \rho (t)=\sup \{ \tau \in \mathbb{T}:\tau t$, respectively. If $\mathbb{T}$ has a right-scattered minimum $m$, define $\mathbb{T}_\kappa =\mathbb{T}-\{m\}$; otherwise, set $\mathbb{T}_\kappa =\mathbb{T}$. If $\mathbb{T}$ has a left-scattered maximum $M$, define $\mathbb{T}^\kappa =\mathbb{T}-\{M\}$; otherwise, set $\mathbb{T}^\kappa =\mathbb{T}$. The forward graininess is $\mu (t):=\sigma (t)-t$. Similarly, the backward graininess is $\upsilon (t):=t-\rho (t)$. For $f:\mathbb{T}\to \mathbb{R}$ and $t\in \mathbb{T}^\kappa $, the $\Delta$-derivative of $f$ at $t$, denoted by $f^\Delta (t)$, is the number (provided it exists) with the property that given any $\epsilon >0$, there is a neighborhood $U\subset \mathbb{T}$ of $t$ such that \[ |f(\sigma (t))-f(s)-f^\Delta (t)[\sigma (t)-s]|\leq \epsilon |\sigma (t)-s|, \] for all $s\in U$. For $f:\mathbb{T}\to \mathbb{R}$ and $t\in \mathbb{T}_\kappa $, the $\nabla$-derivative \cite{a6} of $f$ at $t$, denoted by $f^\nabla (t)$, is the number (provided it exists) with the property that given any $\epsilon >0$, there is a neighborhood $U$ of $t$ such that \[ |f(\rho (t))-f(s)-f^\nabla (t)[\rho (t)-s]|\leq \epsilon | \rho (t)-s|, \] for all $s\in U$. A function $f:\mathbb{T\to R}$ is ld-continuous provided it is continuous at left dense points in $\mathbb{T}$ and its right sided limit exists (finite) at right dense points in $\mathbb{T}$. If $\mathbb{T}=\mathbb{R}$, then $f$ is ld-continuous if and only if $f$ is continuous. If $\mathbb{T}=\mathbb{ Z}$, then any function is ld-continuous. It is known \cite{a6} that if $f$ is ld-continuous, then there is a function $F(t)$ such that $F^\nabla (t)=f(t)$. In this case, we define \[ \int_a^bf(\tau )\nabla \tau =F(b)-F(a). \] For recent results on positive solutions for second order three point boundary value problems on time scales the reader is referred to \cite{a5, Anderson2, AT, DDS, SunLi4, k1, SunLi1}. Our results have been motivated by those of Anderson, Avery and Henderson \cite{Anderson3}, and Sun, Tang and Wang \cite{SunTangWang}. For convenience, throughout this paper we denote $\varphi _p(u)=|u|^{p-2}u$ for $p>1$ with $(\varphi _p)^{-1}=\varphi _q$, where $1/p+1/q=1$. Anderson, Avery and Henderson \cite{Anderson3} considered the problem \begin{gather*} (\varphi _p(u^\Delta (t)))^\nabla +c(t)f(u(t))=0, \quad t\in (a,b)_{\mathbb{T}}, \\ u(a)-B_0(u^\Delta (\nu ))=0,\quad u^\Delta (b)=0, \end{gather*} where $\nu \in (a,b)_{\mathbb{T}}$, $f\in C_{ld}([0,\infty ),[0,\infty ))$, $c\in C_{ld}((a,b)_{\mathbb{T}},[0,\infty ))$ and $K_mx\leq B_0(x)\leq K_Mx$ for some positive constants $K_m$, $K_M$. They established the existence result of at least one positive solution by a fixed point theorem of cone expansion and compression of functional type. In \cite{SunTangWang}, the authors considered the eigenvalue problem for the $p$-Laplacian three-point boundary value problem \begin{gather*} (\varphi _p(u^\Delta (t)))^\nabla +\lambda h(t)f(u(t))=0,\quad t\in (0,T)_{\mathbb{T}},\\ u(0)-\beta u^{\Delta }(0)=\gamma u^{\Delta}(\eta ),u^{\Delta}(T)=0. \end{gather*} The main tool used in \cite{SunLi3} is Krasnoselskii's fixed point theorem. In this paper we study the existence of solutions for the one-dimensional $p$-Laplacian three-point boundary value problem on time scales \begin{gather} (\varphi _p(u^\Delta (t)))^\nabla +h(t)f(t,u(t))=0,\quad t\in (0,T)_{\mathbb{T}}, \label{1.1} \\ u(0)-\beta u^\Delta (0)=\gamma u^\Delta (\eta ),\quad u^\Delta (T)=0. \label{1.2} \end{gather} We establish sufficient conditions for the existence of at least one, two or three positive solutions for the boundary value problem. An example is also given to illustrate the main results. The results are new even for the special cases of difference equations and differential equations. The rest of the paper is organized as follows. In Section 2, we first give four lemmas which are needed throughout this paper and then state several fixed point results: Krasnosel'skii's fixed point theorem in a cone, a new fixed point theorem due to Avery and Henderson and the Leggett-Williams fixed point theorem. In Section 3 we use Krasnosel'skii's fixed point theorem to obtain the existence of at least one positive solutions of problem \eqref{1.1}-\eqref{1.2}. Section 4 will discuss the existence of twin positive solutions of problem \eqref{1.1}-\eqref{1.2}. Two new results and some corollaries will be presented by using a new fixed point theorem due to Avery and Henderson. In Section 5 we develop criteria for the existence of (at least) three positive and arbitrary odd positive solutions of problem \eqref{1.1} and \eqref{1.2}. In particular, our results in this section are new when $\mathbb{T}=\mathbb{R}$ (the continuous case) and $\mathbb{T}=\mathbb{Z}$ (the discrete case). Finally, in section 6, we give an example to illustrate our main results. For the sake of convenience, we have the following hypotheses: \begin{itemize} \item[(i)] $\mathbb{T}$ is a time scale, with $0,T\in \mathbb{T}$, $\beta$, $\gamma $ are nonnegative constants, $\eta \in (0,\rho (T))_{\mathbb{T}}$. \item[(ii)] $h\in C_{ld}((0,T)_{\mathbb{T}},[0,\infty ))$ such that $0<\int_0^Th(s)\nabla s<\infty $, and $f$ is in the space $C([0,\infty ),(0,\infty))$. \end{itemize} \section{Preliminaries} Let the Banach space $B=C_{ld}([0,T]_{\mathbb{T}})$ (see \cite{a5}) be endowed with the norm $\| u\| =\sup_{t\in [0,T]_{\mathbb{T}}}|u(t)|$, and choose the cone $P\subset B$ defined by \begin{align*} P=\{&u\in B:u(t)\geq 0\text{ for }t\in [0,T]_{\mathbb{T}}\text{ and} \\ &u^{\Delta \nabla }(t)\leq 0\text{ for }t\in (0,T)_{\mathbb{T}},\; u^\Delta (T)=0\}. \end{align*} Clearly, $\| u\| =u(T)$ for $u\in P$. Define the operator $A:P\to B$ by \begin{equation} \begin{aligned} Au(t) &=\int_0^t\varphi _q\Big(\int_s^Th(\tau )f(\tau ,u(\tau ))\nabla \tau \Big)\Delta s \label{2.3} \\ &\quad+\beta \varphi _q\big(\int_0^Th(s)f(s,u(s))\nabla s\Big) +\gamma\varphi _q\Big(\int_\eta ^Th(s)f(s,u(s))\nabla s\Big) \end{aligned} \end{equation} for $ t\in [0, T]_{\mathbb{T}}$. \begin{lemma}[{\cite[Lemma 2.6]{SunLi3}}]\label{Lma2.1} Assume $g: \mathbb{R} \to \mathbb{R} $ is continuous, $g:\mathbb{T} \to \mathbb{R} $ is delta differentiable on $\mathbb{T_{\kappa}}$, and $f:\mathbb{R} \to \mathbb{R} $ is continuous differentiable. Then there exists $c$ in the interval $[\rho(t),t] $ with \[ (f\circ g)^{\nabla} (t)=f'(g(c))g^\nabla (t). \] \end{lemma} From the definition of $A$, the monotonicity of $\varphi _q(x)$ and Lemma 2.1, it is easy to see that for each $u\in P$, $Au\in P$ and satisfies \eqref{1.2}. In addition, since $(\varphi _p(u^\Delta (t))) ^\nabla =-h(t)f(u(t))<0$, and $u^\Delta (T)=0$, then $Au(T)$ is the maximum value of $Au(t)$. \begin{lemma}[{\cite[Lemma 2.2]{SunTangWang}}]\label{lma2.2} $A:P\to P$ is completely continuous. \end{lemma} \begin{lemma}[{\cite[Lemma 2.3]{SunTangWang}}]\label{lma2.3} If $u\in P$, then $u(t)\geq \frac tT\| u\| $ for $t\in [0,T]$. \end{lemma} From the two lemmas above, we see that each fixed point of the operator $A$ in $P$ is a positive solution of \eqref{1.1}, \eqref{1.2}. \begin{lemma}[\cite{2,5}]\label{lma2.4} Let $P$ be a cone in a Banach space $B$. Assume $\Omega _1,\Omega _2$ are open subsets of $X$ with $0\in \Omega _1, \overline{\Omega }_1\subset \Omega _2$. If $A:P\cap (\overline{\Omega }_2\backslash \Omega _1)\to P$ is a completely continuous operator such that either \begin{itemize} \item[(i)] $\| Ax\| \leq \| x\|$ for all $x\in P\cap \partial \Omega _1$ and $\| Ax\| \geq \| x\|$ for all $x\in P\cap \partial \Omega _2$, or \item[(ii)] $\| Ax\| \geq \| x\|$ for all $x\in P\cap \partial \Omega _1$ and $\| Ax\| \leq \| x\|$ for all $x\in P\cap \partial \Omega _2$. \end{itemize} Then $A$ has a fixed point in $P\cap (\overline{\Omega _2}\backslash \Omega_1)$. \end{lemma} In the rest of this section, we provide some background material from the theory of cones in Banach spaces, and we then state several fixed point theorems which we needed later. Let $B$ be a Banach space and $P$ be a cone in $B$. A map $\psi :P\to [0,+\infty )$ is said to be a nonnegative, continuous and increasing functional provided $\psi $ is nonnegative, continuous and satisfies $\psi (x)\leq \psi (y)$ for all $x,y\in P$ and $x\leq y$. Given a nonnegative continuous functional $\psi $ on a cone $P$ of a real Banach space $B$, we define, for each $d>0$, the set \[ P(\psi ,d)=\{ x\in P:\psi (x)0$ and $H>0$, \[ \psi (x)\leq \theta (x)\leq \alpha (x)\quad{and}\quad \|x\| \leq H\psi (x) \] for all $x\in \overline{P(\psi ,c)}$. Suppose there exist a completely continuous operator $A:\overline{P(\psi ,c)}\to P$ and $0c$ for all $x\in \partial P(\psi ,c)$; \item[(ii)] $\theta (Ax)a$ for $x\in \partial P(\alpha ,a)$. \end{itemize} Then, $A$ has at least two fixed points, $x_1$ and $x_2$ belonging to $\overline{P(\psi ,c)}$ satisfying $a<\alpha (x_1)$ with $\theta (x_1)a\} \neq \emptyset $ and $\alpha (Ax)>a$ for $x\in P(\alpha ,a,b)$; \item[(ii)] $\| Ax\| a$ for $x\in P(\alpha ,a,c)$ with $\| Ax\| >b$. \end{itemize} Then $A$ has at least three fixed points $x_1,x_2,x_3$ satisfying $\| x_1\| d$, and $\alpha (x_3)0$ such that $f(t,u)\leq \varphi _p(aC_1)$ for $t\in [0,T]_{\mathbb{T}}$ and $0\leq u \leq a$; \item[(H2)] There is $b>0$ such that $f(t,u)\geq \varphi _p(bC_2)$ for $t\in [\eta,T]_{\mathbb{T}}$ and $\frac \eta T b\leq u \leq b$. \end{itemize} Then \eqref{1.1}--\eqref{1.2} has at least one positive solution $u$ such that $\|u\| $ lies between $a$ and $b$. \end{theorem} \begin{proof} Without loss of generality, we may suppose that $0\varphi_p\left(\frac {TC_2}{\eta}\right)$ for $t\in [\eta,T]_{\mathbb{T}} $ or \item[(H4)] $f_0(t)>\varphi_p\left(\frac {TC_2}{\eta}\right)$ for $t\in [\eta,T]_{\mathbb{T}}$ and $f^{\infty} (t)<\varphi_p(C_1)$ for $t\in [0,T]_{\mathbb{T}}$, \end{itemize} where $C_1, C_2, f_0, f_{\infty}, f^0, f^{\infty}$ are as in (\ref{2.4}), (\ref{2.41}), (\ref{2.51}), (\ref{2.52}), respectively. In particular, if $f$ is superlinear in $\varphi_p(u)$ ($f^0(t)=0$ and $f_\infty(t)=\infty $) or sublinear in $\varphi_p(u)$ ($f_0(t)=\infty$ and $f^\infty(t)=0) $, then \eqref{1.1}, \eqref{1.2} has at least one positive solution. \end{corollary} \begin{proof} First suppose (H3) holds. Then, there are sufficiently small $a>0$ and sufficiently large $b>0$ such that \begin{gather*} \frac {f(t,u)}{\varphi_p(u)} \leq \varphi_p(C_1) \text{ for } t\in[0,T]_{\mathbb{T}}, u\in (0,a], \\ \frac {f(t,u)}{\varphi_p(u)} \geq \varphi_p\big(\frac {TC_2}{\eta}\big)\quad \text{for } t\in[\eta,T]_{\mathbb{T}}, u\in [\frac {\eta b} T,+\infty). \end{gather*} Then \begin{gather*} f(t,u)\leq \varphi_p(uC_1) \leq \varphi_p(aC_1), \quad t\in[0,T]_{\mathbb{T}}, u\in [0,a], \\ f(t,u)\geq \varphi_p\big(\frac{TC_2u}{\eta})\geq \varphi_p(C_2b) , \quad t\in[\eta,T]_{\mathbb{T}},\; u\in [\frac {\eta b} T,b]. \end{gather*} In particular, both (H1) and (H2) hold, so that by Theorem \ref{thm3.1}, \eqref{1.1}, \eqref{1.2} has at least one positive solution. Next assume (H4) holds. Then there exist $00$ such that $f(t,u)\leq C$ for $t\in[0,T]_{\mathbb{T}} $ and $u\in [0,\infty)$. By (\ref{3.67}), there is $r\geq \max \{b, \frac {\varphi_q(C)}{C_1}\} $ such that $f(t,u)\leq C\leq \varphi_p(C_1 r)$ for $t\in [0, T]_\mathbb{T}, u\in [0, r]$. Thus (H1) is satisfied with respect to $r$. Case 2: If $f$ is unbounded, there exist $t_0\in [0,T]_{\mathbb{T}}$ and $r' \geq b$ such that \[ f(t,u)\leq f(t_0,r') \leq \varphi_p(C_1 r') \quad \text{for } t\in [0,T]_{\mathbb{T}} \text { and } u\in [0,r']. \] and (H1) is satisfied with respect to $r'$. Thus in both cases condition (H1) hold and Theorem \ref{thm3.1} yields the conclusion. \end{proof} \section{Twin Solutions} In this section, we fix $c\in \mathbb{T}$ such that $\eta \varphi _p(c'C_2)$, $(t,u) \in [ \eta,T]_{\mathbb{T}} \times [ c',\frac T\eta c'] $, \item[(ii)] $f(t,u)<\varphi _p(b'C_1)$, $(t,u)\in [ 0,T]_{\mathbb{T}} \times [ 0,\frac T\eta b'] $, \item[(iii)] $f(t,u)>\varphi _p(a'C_3)$, $(t,u)\in [ c,T]_{\mathbb{T}} \times [ a',\frac Tca'] $. \end{itemize} Then \eqref{1.1}-\eqref{1.2} has at least two positive solutions $u_1$ and $u_2$ such that \begin{gather*} a'<\max_{t\in [0,c]_{\mathbb{T}}}u_1(t)\quad \text{with }\max_{t\in [0,\eta ]_{\mathbb{T}}}u_1(t)c'$. Indeed, if $u\in \partial P(\psi ,c')$, then $\psi (u)=\min_{t\in [\eta ,c]_{\mathbb{T}}}u(t)=u(\eta )=c'$. Since $u\in P$, $\| u\| \leq \frac T\eta \psi (u)=\frac T\eta c'$, we have $c'\leq u(t)\leq \frac T\eta c',t\in [\eta ,T]_{\mathbb{T}}$. As a consequence of (i), $f(t,u(t))>\varphi _p(c'C_2),\quad t\in [\eta ,T]_{\mathbb{T}}$. Also, $Au\in P$ implies \begin{align*} \psi (Au) &= Au(\eta )\\ &= \int_0^\eta \varphi _q\Big(\int_s ^Th(\tau )f(\tau ,u(\tau ))\nabla \tau \Big)\Delta s \\ &\quad +\beta \varphi _q\Big(\int_0^Th(s)f(s,u(s))\nabla s\Big) +\gamma \varphi _q\Big(\int_\eta ^Th(s)f(s,u(s))\nabla s\Big)\\ &\geq (\eta +\beta +\gamma )\varphi _q\Big(\int_\eta ^Th(s)f(s,u(s))\nabla s\Big)\\ &> (\eta +\beta +\gamma )\frac{\eta c'C_2}{T}\varphi _q\Big( \int_\eta ^Th(s)\nabla s\Big)=c'. \end{align*} Next, we verify that $\theta (Au)a'$ for all $u\in \partial P(\alpha ,a')$. In fact, the constant function $\frac{a'}2\in P(\alpha ,a')$. Moreover, for $u\in \partial P(\alpha ,a')$, we have $\alpha (u)=\max_{t\in [0,c]_{\mathbb{T}}}u(t)=u(c)=a'$. This implies $a'\leq u(t)\leq \frac Tca',\quad t\in [c,T]_{\mathbb{T}}$. Using assumption (iii), $f(t,u(t))>\varphi _p(a'C_3),\quad t\in [c,T]_{\mathbb{T}}$. As before $Au\in P$, we obtain \begin{align*} \alpha (Au) &= (Au)(c)\\ &=\int_0^c\varphi _q\big(\int_s ^Th(\tau )f(\tau ,u(\tau ))\nabla \tau \Big)\Delta s \\ &\quad +\beta \varphi _q\Big(\int_0^Th(s)f(s,u(s))\nabla s\Big) +\gamma \varphi _q\Big(\int_\eta ^Th(s)f(s,u(s))\nabla s\Big)\\ &\geq (c+\beta +\gamma )\varphi _q\Big(\int_c^Th(s)f(s,u(s))\nabla s\Big)\\ &> (c+\beta +\gamma )\frac{a'}{L}\varphi _q\Big( \int_c^Th(s)\nabla s\Big)=a'. \end{align*} Thus, by Lemma \ref{lma2.7}, there exist at least two fixed points of $A$ which are positive solutions $u_1$ and $u_2$, belonging to $\overline{P(\psi ,c')}$, of \eqref{1.1}-\eqref{1.2} such that \[ a'<\alpha (u_1)\quad \text{with }\theta (u_1)\varphi _p(b'C_2)$ for $(t,u)\in [\eta ,T]_{\mathbb{T}}\times [b',\frac T\eta b']$, \item[(iii)] $f(t,u)<\varphi _p(a'C_1)$ for $(t,u)\in [c,T]_{\mathbb{T}}\times [0,\frac Tca']$. \end{itemize} Then \eqref{1.1}-\eqref{1.2} has at least two positive solutions $u_1$ and $u_2$ such that \begin{gather*} a'<\max_{t\in [0,c]_{\mathbb{T}}}u_1(t)\quad \text{with }\max_{t\in [0,\eta ]_{\mathbb{T}}}u_1(t)\varphi _p(C_2)$, $t\in [\eta ,T]_{\mathbb{T}}$ and $f_\infty (t)=\liminf_{u\to \infty }\frac{f(t,u)}{\varphi _p(u)}>\varphi _p(C_3)$, $t\in [c,T]_\mathbb{T}$; \item[(ii)] there exists $a'>0$ such that $f(t,u)<\varphi _p(a'C_1)$ for $(t,u)\in [0,T]_{\mathbb{T}} \times [0,\frac T \eta a']$. \end{itemize} Then \eqref{1.1}-\eqref{1.2} has at least two positive solutions. \end{corollary} \begin{corollary}\label{cry4.4} Suppose that $f$ satisfies conditions \begin{itemize} \item[(i)] $f_0(t)<\varphi _p(\frac \eta {T}C_1)$, $t\in [0,T]_{\mathbb{T}}$ and $f_\infty (t)<\varphi _p(\frac c{T}C_1)$, $t\in [c,T]_{\mathbb{T}}$; \item[(ii)] there exists $b'>0$ such that $f(t,u)>\varphi _p(b'C_2)$, for $(t,u)\in [ \eta,T]_{\mathbb{T}} \times [ b',\frac T\eta b']$. \end{itemize} Then \eqref{1.1}-\eqref{1.2} has at least two positive solutions. \end{corollary} By applying Theorems \ref{thm4.1} and \ref{thm4.2}, it is easy to prove that Corollaries \ref{cry4.3} and \ref{cry4.4} hold, respectively. \section{Existence of three solutions} Let the nonnegative continuous concave functional $\Psi :P\to [0,\infty )$ be defined by \[ \Psi (u)=\min_{t\in [\eta ,T]_\mathbb{T}}u(t)=u(\eta ),\quad u\in P. \] Note that for $u\in P$, $\Psi (u)\leq \| u\| $. \begin{theorem}\label{thm5.1} Suppose that there exist constants $0\frac T\eta a'$ such that $f(t,u)<\varphi _p(c'C_1)$ for $(t,u)\in [0,T]_{\mathbb{T}}\times [0,c']$. \end{itemize} Then \eqref{1.1}-\eqref{1.2} has at least three positive solutions. \end{theorem} \begin{proof} By the definition of operator $A$ and its properties, it suffices to show that the conditions of Lemma \ref{lma2.9} hold with respect to $A$. We first show that if (D1) holds, then there exists a number $l'>\frac T\eta a'$ such that $A:\overline{P}_{l'}\to P_{l'}$. Suppose that \[ \limsup_{u\to \infty }\max_{t\in [0,T]_\mathbb{T}} \frac{f(t,u)}{\varphi _p(u)}<\varphi _p(C_1) \] holds, then there are $\tau >0$ and $\delta \tau , $ then \[ \max_{t\in [0,T]_\mathbb{T}}\frac{f(t,u)}{\varphi _p(u)}\leq \varphi _p(\delta ). \] That is to say, \[ f(t,u)\leq \varphi _p(\delta u),\quad (t,u)\in [0,T]_\mathbb{T}\times [\tau ,\infty ). \] Set $\lambda =\max \{ f(t,u):(t,u)\in [0,T]_\mathbb{T}\times [0,\tau ]\} $, then \begin{equation} f(t,u)\leq \lambda +\varphi _p(\delta u),\quad (t,u)\in [0,T]_\mathbb{T}\times [0,\infty ). \label{5.1} \end{equation} Take \begin{equation} l'>\max \{ \frac T\eta a',\varphi _q(\frac{ \lambda }{\varphi _p(C_1)-\varphi _p(\delta )})\} . \label{5.2} \end{equation} If $u\in \overline{P}_{l'}$, then by (\ref{2.4}), (\ref{5.1}) and (\ref{5.2}), we obtain \begin{align*} \| Au\| &= Au(T) \\ &= \int_0^T\varphi _q(\int_s^Th(\tau )f(\tau ,u(\tau ))\nabla \tau )\Delta s+\beta \varphi _q( \int_0^Th(s)f(s,u(s))\nabla s)\\ &\quad +\gamma \varphi _q(\int_\eta ^Th(s)f(s,u(s))\nabla s)\\ &\leq (T+\beta +\gamma )\varphi _q(\int_0^Th(s)f(s,u(s))\nabla s)\\ &\leq (T+\beta +\gamma )\varphi _q( \int_0^Th(s)(\lambda+\varphi _p(\delta u(s))\nabla s)\\ &\leq (T+\beta +\gamma )\varphi_q(\lambda+\varphi_p(\delta l'))\varphi _q(\int_0^Th(s)\nabla s)\\ &=\varphi_q (\lambda+\varphi_p(\delta l'))\frac 1 {C_1}\frac T\eta a'$ such that $A:$ $\overline{P}_{c'}\to $ $P_{c'}$. It is also note from (i) that $A:$ $\overline{P}_{d'}\to $ $P_{d'}$. Now, we show that $\{ u\in P(\Psi ,a',\frac T\eta a'):\Psi (u)>a'\} \neq \emptyset $ and $\Psi (Au)>a'$ for all $u\in P(\Psi ,a',\frac T\eta a')$. In fact, \[ u=\frac{(\eta +T)a'}{2\eta }\in \{ u\in P(\Psi ,a',\frac T\eta a'):\Psi (u)>a'\} . \] For $u\in P(\Psi ,a',\frac T\eta a')$, we have \[ a'\leq \min_{t\in [\eta ,T]_\mathbb{T}}u(t)=u(\eta )\leq u(t)\leq \frac T\eta a', \] for all $t\in [\eta ,T]_\mathbb{T}$. Then, in view of (ii), we know that \begin{align*} \Psi (Au) &= \min_{t\in [\eta ,T]_\mathbb{T}}Au(t)=Au(\eta )\\ &= \int_0^\eta \varphi _q\Big(\int_\tau ^Th(\tau )f(\tau ,u(\tau ))\nabla \tau \Big)\Delta s+\beta \varphi _q( \int_0^Th(s)f(s,u(s))\nabla s)\\ &\quad +\gamma \varphi _q\Big(\int_\eta ^Th(s)f(s,u(s))\nabla s\Big) \\ &\geq (\eta +\beta +\gamma )\varphi _q\Big(\int_\eta ^Th(s)f(s,u(s))\nabla s\Big)\\ &\geq (\eta +\beta +\gamma )a'C_2\varphi _q\Big(\int_\eta ^Th(s)\nabla s\Big)=a'. \end{align*} Finally, we assert that if $u\in P(\Psi ,a',c')$ and $\| Au\| >\frac T\eta a'$, then $\Psi (Au)>a'$. Suppose $u\in P(\Psi ,a',c')$ and $\| Au\| >\frac T\eta a'$. Then \begin{align*} \Psi (Au) &= \min_{t\in [\eta ,T]_\mathbb{T}}Au(t)=Au(\eta )\\ &\geq \frac \eta TAu(T) = \frac \eta T\| Au\| >a'. \end{align*} To sum up, the hypotheses of Lemma \ref{lma2.9} are satisfied, hence \eqref{1.1}--\eqref{1.2} has at least three positive solutions $u_1,u_2,u_3$ such that \[ \| u_1\| d'\text{ with }\min_{t\in \eta ,T]_\mathbb{T}}u_3(t)a_1'\quad{and}\quad \| u_3\| >d_1' \text{ with }\min_{t\in [\eta ,T]_{\mathbb{T}}}u_3(t) \varphi_p(b'C_1)\approx 0.683. \] So all the assumptions of Corollary \ref{cry4.4} are satisfied. Therefore by Corollary \ref{cry4.4} the boundary value problem \eqref{5.1}--\eqref{5.2} has at lest two solutions $u_1$ and $u_2$ with $0<\|u_1\| \leq 0.7< \|u_2\|$. \begin{thebibliography}{00} \bibitem{ABL} R. P. Agarwal, M. Bohner, W.T. Li; \emph{Nonoscillation and Oscillation Theory for Functional Differential Equations}, Pure and Applied Mathematics Series, Vol. 267, Marcel Dekker, 2004. \bibitem{a5} D. R. Anderson; \emph{Solutions to second-order three-point problems on time scales}, J. Differ. Equations Appl. 8(2002) 673-688. \bibitem{Anderson2} D. R. Anderson; \emph{Nonlinear triple point problems on time scales}, Electron. J. Differential Equations 47(2004) 1-12. \bibitem{Anderson3} D. R. Anderson, R. Avery, J. Henderson; \emph{Existence of solutions for a one-dimensional p-laplacian on time scales}, J. Differ. Equations Appl. 10(2004) 889-896. \bibitem{a6} F. M. Atici, G. Sh. Guseinov; \emph{On Green's functions and positive solutions for boundary value problems on time scales}, J. Comput. Appl. Math. 141(2002) 75-99. \bibitem{AT} F. M. Atici, S. G. Topal; \emph{The generalized quasilinearization method and three point boundary value problems on time scales}, Appl. Math. Lett. 18(2005) 577-585. \bibitem{a7} R. I. Avery, J. Henderson; \emph{Two positive fixed points of nonlinear operator on ordered Banach spaces}, Comm. Appl. Nonlinear Anal., 8(2001), 27-36. \bibitem{BP1} M. Bohner, A. Peterson; \emph{Dynamic Equation On Time Scales: an Introduction with Applications}. Boston: Birkhauser., 2001. \bibitem{BP2} M. Bohner, A. Peterson; \emph{Advances in Dynamic Equations on Time Scales}, Birkhauser Boston, 2003. \bibitem{DDS} J. J. DaCunha, J. M. Davis, P. K. Singh; \emph{Existence results for singular three point boundary value problems on time scales}, J. Math. Anal. Appl, 295(2004), 378-391. \bibitem{2} D. Guo, V. Lakshmikantham; \emph{Nonlinear Problems in Abstract Cones}, Academic press, San Diego, 1988. \bibitem{HeZ} Z. He; \emph{Double positive solutions of three-point boundary value problems for $p$-Laplacian dynamic equations on time scales}, J. Comput. Appl. Math. 182(2005) 304-315. \bibitem{Hilger} S. Hilger; \emph{Analysis on measure chains-a unified approach to continuous and discrete calculus}, Results Math. 18(1990) 18-56. \bibitem{Jon} M. A. Jones, B. Song, D. M. Thomas; \emph{Controlling wound healing through debridement}, Math. Comput. Modelling 40 (2004) 1057-1064. \bibitem{SunLi4} W. T. Li, H. R. Sun; \emph{Positive solutions for second order m-point boundary value problems on time scales}, Acta. Math. Sinica. 22(6)(2006) 1797-1804. \bibitem{5} M. Krasnoselskii; \emph{Positive Solutions of Operator Equations}, Noordhoff Groningen, 1964. \bibitem{LSK} V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan; \emph{Dynamic Systems on Measure Chains}, Kluwer Academic Publishers, Boston, 1996. \bibitem{k1} E. R. Kaufmann; \emph{Positive solutions of a three-point boundary value problem on a time scale}, Electron. J. Differential Equations 2003(2003), No. 82, 1-11. \bibitem{l2} R. Leggett, L. Williams; \emph{Multiple positive fixed points of nonlinear operators on ordered Banach spaces}, Indiana Univ. Math. J., 28(1979), 673-688. \bibitem{Spedding} V. Spedding; \emph{Taming Nature's Numbers}, New Scientist, July (2003) 28-32. \bibitem{TVY} D. M. Thomas, L. Vandemuelebroeke, K. Yamaguchi; \emph{A mathematical evolution model for phytoremediation of metals}, Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 411-422. \bibitem{SunLi1} H. R. Sun, W. T. Li; \emph{Existence of positive solutions for nonlinear three-point boundary value problems on time scales}, J. Math. Anal. Appl. 299(2004) 508-524. \bibitem{SunLi2} H. R. Sun, W. T. Li; \emph{Positive solutions for $p$-Laplacian $m$ -point boundary value problems on time scales}, Tainwanese J. Math. 12(2008), 93-115. \bibitem{SunLi3} H. R. Sun, W. T. Li; \emph{Multiple positive solutions for p-Laplacian m-point boundary value problems on time scales}, Appl. Math. Comput. 182(2006), 478-491. \bibitem{SunTangWang} H. R. Sun, L.T. Tang, Y. H. Wang; \emph{Eigenvalue problem for $p$-Laplacian three-point boundary value problems on time scales}, J. Math. Anal. Appl. 331(2007), 248-262. \end{thebibliography} \end{document}