\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 02, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/02\hfil Nonexistence results for semilinear systems] {Nonexistence results for semilinear systems in unbounded domains} \author[B. Khodja, A. Moussaoui \hfil EJDE-2009/02\hfilneg] {Brahim Khodja, Abdelkrim Moussaoui} % in alphabetical order \address{Brahim Khodja \newline Department of mathematics, Badji Mokhtar University, B.P. 12 Annaba, Algeria} \email{bmkhodja@yahoo.fr} \address{Abdelkrim Moussaoui \newline Department of mathematics, Bejaia University, Targa Ouzemour Bejaia, Algeria} \email{remdz@yahoo.fr} \thanks{Submitted April 10, 2008. Published January 2, 2009.} \subjclass[2000]{35J45, 35J55} \keywords{Semi linear systems; Pohozaev identity; trivial solution; \hfill\break\indent Robin boundary condition} \begin{abstract} This paper concerns the non-existence of nontrivial solutions for the semi-linear system of gradient type \begin{equation*} \lambda \frac{\partial ^{2}u_{k}}{\partial t^{2}} -\sum_{i=1}^n \frac{\partial }{\partial x_{i}}(p_{i}(x)\frac{ \partial u_{k}}{\partial x_{i}})+f_{k}(x,u_{1},\dots ,u_{m}) =0\quad \text{in }\Omega ,\; k=1,\dots ,m \end{equation*} with Dirichlet, Neumann or Robin boundary conditions. The functions $f_{k}: \mathcal{D}\times \mathbb{R}^{m}\to \mathbb{R}$ $(k=1,\dots ,m)$ are locally Lipschitz continuous and satisfy \begin{equation*} 2H(x,u_{1},\dots ,u_{m})-\sum_{k=1}^m u_{k}f_{k}(x,u_{1},\dots ,u_{m})\geq 0\quad (\text{resp.}\leq 0) \end{equation*} for $\lambda >0$ (resp. $\lambda <0$). We establish the non-existence of nontrivial solutions using Pohozaev-type identities. Here $u_{1},\dots ,u_{m}$ are in $H^{2}(\Omega )\cap L^{\infty }(\Omega )$, $\Omega =\mathbb{R}\times \mathcal{D}$ with $\mathcal{D}=\prod_{i=1}^n (\alpha _{i},\beta _{i})$ and $H\in \mathcal{C}^{1}( \overline{\mathcal{D}}\times \mathbb{R}^{m})$ such that $\frac{\partial H}{\partial u_{k}}=f_{k}$, $k=1,\dots ,m $. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this paper we study the semi-linear system \begin{equation} \begin{gathered} \lambda \frac{\partial ^{2}u_{1}}{\partial t^{2}}-\underset{i=1}{\overset{n}{ \sum }}\frac{\partial }{\partial x_{i}}(p_{i}(x)\frac{ \partial u_{1}}{\partial x_{i}})+f_{1}(x,u_{1},\dots ,u_{m}) =0\quad\text{in }\Omega , \\ \lambda \frac{\partial ^{2}u_{2}}{\partial t^{2}}-\underset{i=1}{\overset{n}{ \sum }}\frac{\partial }{\partial x_{i}}(p_{i}(x)\frac{ \partial u_{2}}{\partial x_{i}})+f_{2}(x,u_{1},\dots ,u_{m}) =0\quad\text{in }\Omega , \\ \dots \\ \lambda \frac{\partial ^{2}u_{m}}{\partial t^{2}}-\underset{i=1}{\overset{n}{ \sum }}\frac{\partial }{\partial x_{i}}(p_{i}(x)\frac{ \partial u_{m}}{\partial x_{i}})+f_{m}(x,u_{1},\dots ,u_{m}) =0\quad\text{in }\Omega , \end{gathered} \label{ep1} \end{equation} under Dirichlet, Neumann or Robin boundary conditions. Here $\Omega =\mathbb{R}\times \mathcal{D}$ where $\mathcal{D}=\prod_{i=1}^n (\alpha _{i},\beta _{i})$, $\lambda $ is a real parameter, $f_{k}:\mathcal{D}\times \mathbb{R}^{m}\to \mathbb{R}$ $(k=1,\dots ,m)$ are locally Lipschitz continuous functions such that \begin{equation*} f_{k}(x,0,\dots ,0)=0\quad \text{in }\mathcal{D}, \end{equation*} so that $(u_{1},\dots ,u_{m})=0$ is a solution of \eqref{ep1} and $p_{i}:\overline{\mathcal{D}}\to \mathbb{R}$ $(i=1,\dots ,n)$ are continuous functions satisfying \begin{equation*} p_{i}(x)>0\text{ or }p_{i}(x)<0\quad \text{in }\mathcal{D}. \end{equation*} We assume that system \eqref{ep1} is of the gradient type; that is, there is a real-valued differentiable function $H(x,u_{1},\dots ,u_{m})$ such that \begin{equation*} \frac{\partial H}{\partial u_{k}}=f_{k},\quad H(x,0,\dots ,0) =0\quad \text{for }x\in \mathcal{D}. \end{equation*} For $k=1,\dots ,m$, $u_{k}$ are in $H^{2}(\Omega )\cap L^{\infty}(\Omega )$ and satisfy \begin{equation} \label{ed} u_{k}(t,s)=0,\quad (t,s)\in \mathbb{R} \times \partial \mathcal{D} \end{equation} (Dirichlet boundary condition), or \begin{equation} \label{en} \frac{\partial u_{k}(t,s)}{\partial n}=0,\quad (t,s)\in \mathbb{R} \times \partial \mathcal{D} \end{equation} (Neumann boundary condition), or \begin{equation} \label{er} (u_{k}+\varepsilon \frac{\partial u_{k}}{\partial n})( t,s)=0,\quad (t,s)\in \mathbb{R} \times \partial \mathcal{D} \end{equation} (Robin boundary condition), where $\varepsilon $ is a positive real number. Throughout this paper we denote the boundary of $\Omega $ by \begin{equation*} \partial \Omega =\mathbb{R}\times \partial \mathcal{D} =\Gamma _{\alpha _{1}}\cup \Gamma _{\beta_{1}}\cup \Gamma _{\alpha _{2}} \cup \Gamma _{\beta _{2}}\dots \cup \Gamma _{\alpha _{n}}\cup \Gamma _{\beta _{n}}, \end{equation*} where \[ \Gamma _{\mu _{s}}=\left\{ (t,x_{1},\dots ,x_{s-1},\mu _{s},x_{s+1},\dots x_{n}),\; t\in \mathbb{R},\quad 1\leq s\leq n\right\}, \] $(t,x)=(t,x_{1},\dots ,x_{n})$, and $$ n(t,s)=(0,n_{1}(t,s),n_{2}(t,s) ,\dots ,n_{n}(t,s)) $$ is the outward normal to $\partial \Omega $ at the point $(t,s)$. If $x\in \prod_{i=1}^n (\alpha _{i},\beta _{i})$, $l=1,2,\dots ,n$ and $\tau \in \left\{ \alpha _{1},\beta _{1},\alpha _{2},\beta _{2},\dots ,\alpha _{n},\beta _{n}\right\} $ one writes \begin{equation*} x_{l}^{\tau }=(x_{1},\dots ,x_{l-1},\tau ,x_{l+1},\dots ,x_{n}), \quad dx_{l}^{\ast }=dx_{1}\dots dx_{l-1}dx_{l+1}\dots dx_{n} \end{equation*} and \begin{align*} &\int_{\alpha _{1}}^{\beta _{1}}\dots \int_{\alpha _{i-1}}^{\beta _{i-1}}\int_{\alpha _{i+1}}^{\beta _{i+1}}\dots \int_{\alpha _{n}}^{\beta _{n}}f_{k}(x,r_{1},\dots ,r_{m})dx_{1}\dots dx_{i-1} dx_{i+1}\dots dx_{n} \\ &=\int_{\mathcal{D}_{i}^{\ast }}f_{k}(x,r_{1},\dots ,r_{m})dx_{i}^{\ast } \quad \text{for all }k=1,\dots ,m. \end{align*} The question of non-existence of nontrivial solutions for elliptic problems has been studied extensively in both bounded and unbounded domain (see \cite{3},\cite{4},\cite{7}-\cite{8} and their references). In particular, Amster et al. in \cite{1} showed the non-solvability of the gradient elliptic system \begin{gather*} -\Delta u_{i}=g_{i}(u)\quad\text{in }\Omega , \\ u_{i}=0\quad \text{on }\partial \Omega ,\; i=1,\dots ,n, \end{gather*} where $\Omega $ is a starshaped domain. A similar result was given for Hamiltonian systems by N. M. Chuong and T. D. Ke \cite{2} in $k$-starshaped domain and by Khodja \cite{6} in unbounded domain $\mathbb{R}^{+}\times\mathbb{R}$. In the scalar case, when $\Omega $ is an unbounded domain, Haraux and Khodja \cite{4} established that under assumptions \begin{gather*} f(0)=0, \\ 2F(u)-uf(u)\leq 0, \quad u\neq 0 \end{gather*} $(F(u)=\int_{0}^{u}f(s)ds)$, the problem \begin{gather*} -\Delta u+f(u)=0\quad \text{in }\Omega , \\ (u\text{ or }\frac{\partial u}{\partial n})=0\quad \text{on } \partial \Omega , \end{gather*} has only a trivial solution in $H^{2}(\Omega )\cap L^{\infty}(\Omega )$, where $\Omega =J\times \omega $, $J\subset\mathbb{R}$ is an unbounded interval and $\omega $ a domain in $\mathbb{R}^{N}$. The case of Robin boundary conditions was treated by Khodja \cite{5} and it was shown nonexistence results for the equation \begin{equation*} \lambda \frac{\partial ^{2}u}{\partial t^{2}} -\frac{\partial }{\partial x}\big(p(x,y)\frac{\partial u}{\partial x}\big) -\frac{ \partial }{\partial y}\big(q(x,y)\frac{\partial u}{\partial y} \big)+f(x,y,u)=0\quad\text{in }\Omega , \end{equation*} where $\Omega =\mathbb{R}\times ] \alpha _{1},\beta _{1} [ \times ] \alpha _{2},\beta_{2}[ $. In the above works, the integral identity of Pohozaev was adapted for each problem treated and applied to obtain the non-existence results. The present study extends and complements these works. We shall prove the non-solvability results to the class of semi-linear system of gradient type \eqref{ep1} under Dirichlet, Neumann or Robin boundary conditions. By using a Pohozaev-type identity, our demonstration strategy will be to show that the function \begin{equation*} \mathcal{E}(t)=\int_{\mathcal{D}} \big(\sum_{k=1}^m \vert u_{k}(t,x)\vert ^{2}\big)dx \end{equation*} is convex in $\mathbb{R}$, and then, from the Maximum Principle, we obtain that any solution $(u_{1},\dots ,u_{m})$ to the problems \eqref{ep1}-\eqref{ed}, \eqref{ep1}-\eqref{en} and \eqref{ep1}-\eqref{er} is trivial. We draw the attention of the reader to the use of the Pohozaev-type identity which, to the best of our knowledge, was not explored before in connection with gradient systems in an unbounded cylindrical-type domain. This paper is organized as follows. In the next section, we give a Pohozaev-type identity adapted to the systems with Dirichlet, Neumann and Robin boundary conditions; section $3$ gives our main results and some examples will be illustrated in section 4. \section{Integral identities} The proof of our main results which will appear in the next section use the following type of Pohozaev identity, adapted for systems. \begin{theorem} \label{thm1} Let $u_{1},\dots ,u_{m}$ in $H^{2}(\Omega )\cap L^{\infty }(\Omega )$ be a solution of problem \eqref{ep1}--\eqref{er}. Then for each $t\in\mathbb{R}$ and $\varepsilon >0$, we have \begin{equation} \begin{aligned} &\int_{\mathcal{D}}\Big[ \frac{\lambda }{2}\sum_{k=1}^m \vert \frac{\partial u_{k}}{\partial t}\vert ^{2} +\sum_{i=1}^n \frac{p_{i}(x)}{2}\Big(\sum_{k=1}^m \vert \frac{\partial u_{k}}{\partial x_{i}} \vert ^{2}\Big)+H(x,u_{1},\dots ,u_{m})\Big] dx \\ & +\frac{1}{2\varepsilon }\sum_{i=1}^n \int_{\mathcal{D}_{i}^{\ast }} \Big[ p_{i}(x_{i}^{\beta _{i}})\big(\sum_{k=1}^m | u_{k}| ^{2}\big) (t,x_{i}^{\beta _{i}}) +p_{i}(x_{i}^{\alpha _{i}})\big(\sum_{k=1}^m | u_{k}| ^{2}\big)(t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast }=0. \end{aligned}\label{e22} \end{equation} \end{theorem} \begin{proof} For $t\in\mathbb{R}$ we consider a function \begin{equation*} \mathcal{K}(t)=\int_{\mathcal{D}}\big[ \frac{\lambda }{2} \sum_{k=1}^m | \frac{\partial u_{k}}{\partial t }| ^{2}+\sum_{i=1}^n \frac{p_{i}(x)}{2}(\sum_{k=1}^m | \frac{\partial u_{k}}{\partial x_{i}}| ^{2})+H(x,u_{1},\dots ,u_{m})\big] dx. \end{equation*} The hypothesis on $u_{k}$, $f_{k}$ ($k=1,\dots ,m$) and $p_{i}$ ($i=1,\dots ,n$) implies that $\mathcal{K}$ is absolutely continuous and thus differentiable almost everywhere on $\mathbb{R}$; we have \begin{equation} \begin{aligned} \frac{d\mathcal{K}(t)}{dt} &=\int_{\mathcal{D}}\big[ \lambda \sum_{k=1}^m \frac{\partial u_{k}}{\partial t}\frac{ \partial ^{2}u_{k}}{\partial t^{2}}+\sum_{i=1}^n p_{i}(x)\Big(\sum_{k=1}^m \frac{\partial u_{k}}{\partial x_{i}}\frac{\partial ^{2}u_{k}}{\partial t\partial x_{i}}\Big)\\ &\quad +\sum_{k=1}^m \frac{\partial u_{k}}{ \partial t}f_{k}(x,u_{1},\dots ,u_{m})\big] dx. \end{aligned}\label{e5} \end{equation} Fubini's theorem and an integration by part give \begin{align*} &\int_{\mathcal{D}}\sum_{i=1}^n p_{i}(x) \Big(\sum_{k=1}^m \frac{\partial u_{k}}{\partial x_{i} }\frac{\partial ^{2}u_{k}}{\partial t\partial x_{i}}\Big)(t,x)dx \\ &=-\int_{\mathcal{D}}\sum_{i=1}^n \big[ \underset{k=1}{ \overset{m}{\sum }}\frac{\partial }{\partial x_{i}}(p_{i}( x)\frac{\partial u_{k}}{\partial x_{i}})\frac{\partial u_{k}}{ \partial t}\big] (t,x)dx \\ &\quad +\sum_{i=1}^n \int_{\mathcal{D}_{i}^{\ast }} \big[ p_{i}(x_{i}^{\beta _{i}})(\underset{k=1}{\overset{m }{\sum }}\frac{\partial u_{k}}{\partial x_{i}}\frac{\partial u_{k}}{\partial t})(t,x_{i}^{\beta _{i}}) -p_{i}(x_{i}^{\alpha _{i}})\Big( \sum_{k=1}^m \frac{\partial u_{k}}{\partial x_{i}}\frac{ \partial u_{k}}{\partial t}\Big)(t,x_{i}^{\alpha _{i}}) \big] dx_{i}^{\ast }. \end{align*} Replacing in \eqref{e5} we find \begin{align*} &\frac{d\mathcal{K}(t)}{dt}\\ &=\sum_{k=1}^m \int_{\mathcal{D}} \Big[ \lambda \frac{\partial ^{2}u_{k}}{\partial t^{2}}- \sum_{i=1}^n \frac{\partial }{\partial x_{i}}( p_{i}(x)\frac{\partial u_{k}}{\partial x_{i}}) +f_{k}(x,u_{1},\dots ,u_{m})\Big] (t,x)\frac{ \partial u_{k}}{\partial t}dx \\ &\quad +\sum_{i=1}^n \int_{\mathcal{D}_{i}^{\ast }} \Big[ p_{i}(x_{i}^{\beta _{i}})(\underset{k=1}{\overset{m }{\sum }}\frac{\partial u_{k}}{\partial x_{i}}\frac{\partial u_{k}}{\partial t})(t,x_{i}^{\beta _{i}}) -p_{i}(x_{i}^{\alpha _{i}}) \Big(\sum_{k=1}^m \frac{\partial u_{k}}{\partial x_{i} }\frac{\partial u_{k}}{\partial t}\Big)(t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast }. \end{align*} Let us consider on $\partial \Omega $ the expression $u_{k}+\varepsilon \frac{\partial u_{k}}{\partial n}=0$. For $k=1,\dots ,m$ \begin{equation*} u_{k}+\varepsilon \frac{\partial u_{k}}{\partial n}=0\Longleftrightarrow \begin{cases} (u_{k}-\varepsilon \frac{\partial u_{k}}{\partial x}) (t,x_{i}^{\alpha _{i}})=0, \\ (u_{k}+\varepsilon \frac{\partial u_{k}}{\partial x}) (t,x_{i}^{\beta _{i}})=0, \\ t\in \mathbb{R},\alpha _{i}0$, one can write \begin{align*} &\sum_{i=1}^n \int_{\mathcal{D}_{i}^{\ast }}\Big[ p_{i}(x_{i}^{\beta _{i}})\Big(\sum_{k=1}^m \frac{\partial u_{k}}{\partial x_{i}}\frac{\partial u_{k}}{\partial t} \Big)(t,x_{i}^{\beta _{i}}) -p_{i}(x_{i}^{\alpha _{i}})\big( \sum_{k=1}^m \frac{\partial u_{k}}{\partial x_{i}}\frac{ \partial u_{k}}{\partial t}\Big)(t,x_{i}^{\alpha _{i}}) \Big] dx_{i}^{\ast } \\ &=\frac{-1}{\varepsilon }\sum_{i=1}^n \int_{\mathcal{D} _{i}^{\ast }}\Big[ p_{i}(x_{i}^{\beta _{i}})(\underset{ k=1}{\overset{m}{\sum }}u_{k}\frac{\partial u_{k}}{\partial t})( t,x_{i}^{\beta _{i}}) +p_{i}(x_{i}^{\alpha _{i}})\Big( \sum_{k=1}^m u_{k}\frac{\partial u_{k}}{\partial t} \Big)(t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast } \\ &=\frac{-1}{2\varepsilon }\frac{d}{dt}(\sum_{i=1}^n \int_{\mathcal{D}_{i}^{\ast }}\Big[ p_{i}(x_{i}^{\beta _{i}}) (\sum_{k=1}^m | u_{k}| ^{2})(t,x_{i}^{\beta _{i}}) +p_{i}(x_{i}^{\alpha _{i}}) \big(\sum_{k=1}^m | u_{k}|^{2}\big)(t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast }). \end{align*} Therefore, \begin{align*} &\frac{d}{dt}\Big(\mathcal{K}(t)+\frac{1}{2\varepsilon } \sum_{i=1}^n \int_{\mathcal{D}_{i}^{\ast }}\Big[ p_{i}(x_{i}^{\beta _{i}})(\sum_{k=1}^m | u_{k}| ^{2})(t,x_{i}^{\beta _{i}}) \\ & +p_{i}(x_{i}^{\alpha _{i}})(\sum_{k=1}^m | u_{k}| ^{2})(t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast }\Big)=0. \end{align*} Integrating with respect to $t$, we obtain \begin{align*} &\mathcal{K}(t)+\frac{1}{2\varepsilon }\underset{i=1}{\overset{n} {\sum }}\int_{\mathcal{D}_{i}^{\ast }}\Big[ p_{i}(x_{i}^{\beta _{i}})\big(\sum_{k=1}^m | u_{k}| ^{2}\big)(t,x_{i}^{\beta _{i}})\\ & +p_{i}(x_{i}^{\alpha _{i}})\big(\sum_{k=1}^m | u_{k}| ^{2}\big)(t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast }=\text{const} \end{align*} and since $(u_{1}(t,x),\dots ,u_{m}(t,x))\in (H^{2}(\Omega ) \cap L^{\infty }(\Omega ))^{m}$, one must get \begin{align*} &\int_{\mathbb{R}}(\mathcal{K}(t)+\frac{1}{2\varepsilon } \sum_{i=1}^n \int_{\mathcal{D}_{i}^{\ast }}\Big[ p_{i}( x_{i}^{\beta _{i}})(\sum_{k=1}^m | u_{k}| ^{2})(t,x_{i}^{\beta _{i}}) \\ & +p_{i}(x_{i}^{\alpha _{i}})\big(\sum_{k=1}^m | u_{k}| ^{2}\big) (t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast })dt<\infty . \end{align*} It follows that the constant must be $0$, which is the desired result. \end{proof} For the Dirichlet or Neumann boundary conditions, we have the integral identity given in the following theorem. \begin{theorem} \label{thm2} Let $u_{1},\dots ,u_{m}$ in $H^{2}(\Omega )\cap L^{\infty }(\Omega )$ be a solution of problems \eqref{ep1}-\eqref{ed} or \eqref{ep1}-\eqref{en}. Then for each $t\in\mathbb{R}$, we have \begin{equation} \int_{\mathcal{D}}\Big[ \frac{\lambda }{2}\sum_{k=1}^m | \frac{\partial u_{k}}{\partial t}| ^{2} +\sum_{i=1}^n \frac{p_{i}(x)}{2} \Big(\sum_{k=1}^m | \frac{\partial u_{k}}{\partial x_{i}} | ^{2}\Big)+H(x,u_{1},\dots ,u_{m})\Big] dx=0. \label{e100} \end{equation} \end{theorem} \begin{proof} To prove \eqref{e100} it suffices to check that the expression \begin{equation*} \sum_{i=1}^n \int_{\mathcal{D}_{i}^{\ast }} \Big[p_{i}(x_{i}^{\beta _{i}})\big(\sum_{k=1}^m | u_{k}| ^{2}\big) (t,x_{i}^{\beta _{i}}) +p_{i}(x_{i}^{\alpha _{i}}) \big(\sum_{k=1}^m | u_{k}| ^{2}\big)(t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast } \\ \end{equation*} vanishes if \begin{equation} \label{e1.2} u_{1}(t,s)=u_{2}(t,s)=\dots =u_{m}(t,s) =0,\text{ }(t,s)\in \mathbb{R}\times \partial \mathcal{D} \end{equation} or \begin{equation} \label{e1.3} \frac{\partial u_{1}(t,s)}{\partial n}=\frac{\partial u_{2}(t,s)}{\partial n}=\dots =\frac{\partial u_{m}( t,s)}{\partial n}=0,\text{ }(t,s)\in \mathbb{R} \times \partial \mathcal{D}. \end{equation} Indeed, suppose that \eqref{e1.2} holds then it is known that \[ \nabla u_{k}=\frac{\partial u_{k}}{\partial n}\cdot n,\quad k=1,\dots ,m; \] i.e., \[ \begin{bmatrix} \frac{\partial u_{k}}{\partial t}(t,s)\\ \frac{\partial u_{k}}{\partial x_{1}}(t,s)\\ \dots \\ \frac{\partial u_{k}}{\partial x_{n}}(t,s) \end{bmatrix} =\begin{bmatrix} 0 \\ n_{1}\frac{\partial u_{k}}{\partial n}(t,s)\\ \dots \\ n_{n}\frac{\partial u_{k}}{\partial n}(t,s) \end{bmatrix} ,\quad (t,s)\in \mathbb{R}\times \partial \mathcal{D},\quad k=1,\dots ,m. \] Consequently, for $k=1,\dots ,m$, \begin{equation*} \frac{\partial u_{k}}{\partial t}(t,x_{i}^{\alpha _{i}}) =\frac{ \partial u_{k}}{\partial t}(t,x_{i}^{\beta _{i}})=0,\quad i=1,\dots ,n. \end{equation*} Now if the boundary condition is \eqref{e1.3}, then for $k=1,\dots ,m$, one can write \begin{equation*} 0=\frac{\partial u_{k}}{\partial n}(t,s)=\left\langle \nabla u_{k},n\right\rangle \text{ on }\Gamma _{\alpha _{1}}\cup \Gamma _{\beta _{1}}\cup \Gamma _{\alpha _{2}}\cup \Gamma _{\beta _{2}}\dots \cup \Gamma _{\alpha _{n}}\cup \Gamma _{\beta _{n}}; \end{equation*} i.e., \begin{equation*} \frac{\partial u_{k}}{\partial x_{i}}(t,x_{i}^{\alpha _{i}})= \frac{\partial u_{k}}{\partial x_{i}}(t,x_{i}^{\beta _{i}})=0, \quad \text{for all }t\in \mathbb{R}, \quad i=1,\dots ,n,\; k=1,\dots ,m. \end{equation*} In both cases $\frac{d\mathcal{K}(t)}{dt}=0\text{ for all }t\in\mathbb{R}$ which completes the proof. \end{proof} \section{Main results} Before giving our main results, we note that the parameter $\lambda $ plays, in fact, an important part as it allows \eqref{ep1} to be dealt with in two manners based on whether its value is positive or negative. Indeed, if $\lambda $ is positive (resp. negative), the system $\eqref{ep1}$ is a hyperbolic (resp. elliptic) problem. \subsection{Semi-linear hyperbolic problems} Using identity \eqref{e22} we obtain the following first result. \begin{theorem} \label{thm3} Let $\lambda >0$ and $u_{1},\dots ,u_{m}\in H^{2}(\Omega )\cap L^{\infty }(\Omega )$. Assume $p_{i}(x)>0$ in $\mathcal{D}$ $(i=1,\dots ,n)$ and $f_{k}$ $(k=1,\dots ,m)$ satisfying \begin{equation*} H(x,u_{1},\dots ,u_{m})\geq 0. \end{equation*} Then problems \eqref{ep1}-\eqref{ed}, \eqref{ep1})-\eqref{en} and \eqref{ep1}-\eqref{er} have no nontrivial solutions. \end{theorem} \begin{proof} Applying formula \eqref{e22} (resp. \eqref{e100}) we immediately obtain \begin{equation*} \frac{\partial u_{k}}{\partial t}(t,x)=\frac{\partial u_{k}}{ \partial x_{i}}(t,x)=0\quad \text{in }\Omega ,\; i=1,\dots ,n, \; k=1,\dots ,m. \end{equation*} Thus $u_{1},\dots ,u_{m}$ are constant and since for $k=1,\dots ,m$, \begin{equation*} \int_{\Omega }| u_{k}(t,x)| ^{2}dxdt\leq 0, \end{equation*} these constants are necessarily zero. \end{proof} The next theorem gives a non-existence result if the functions $f_{k}$ ($k=1,\dots ,m$) satisfy another type of non-linearity. \begin{theorem} \label{thm4} Let $\lambda >0$ and $u_{1},\dots ,u_{m}:\Omega \to\mathbb{R}$ be a solution of problem \eqref{ep1}-\eqref{er}. Suppose that $u_{1},\dots ,u_{m}\in H^{2}(\Omega )\cap L^{\infty}(\Omega )$ and $f_{k}$ $(k=1,\dots ,m)$ verify the following condition \begin{equation} 2H(x,u_{1},\dots ,u_{m})-\sum_{k=1}^m u_{k}f_{k}(x,u_{1},\dots ,u_{m})\geq 0. \label{e50} \end{equation} Then problem \eqref{ep1}-\eqref{er} has no nontrivial solutions. \end{theorem} \begin{remark} \label{rmk1} \rm Since $u_{1},\dots ,u_{m}$ are bounded in $\Omega $, from the Maximum Principle, the function $\mathcal{E}(t)$ is convex in $\mathbb{R}$ which implies that the solution to the problem \eqref{ep1}-\eqref{er} is identically equal to zero. \end{remark} \begin{proof}[Proof of Theorem \ref{thm4}] It is easy to see that almost everywhere in $\Omega $ \begin{equation*} (u_{k}\frac{\partial ^{2}u_{k}}{\partial t^{2}})( t,x)=\Big(\frac{1}{2}\frac{\partial ^{2}(u_{k}^{2})}{ \partial t^{2}}-| \frac{\partial u_{k}}{\partial t}| ^{2}\Big)(t,x),\quad k=1,\dots ,m. \end{equation*} Let us multiply the $k$-th equation of \eqref{ep1} by $u_{k}/2$ and integrate over $\mathcal{D}$ we obtain \begin{equation} \begin{aligned} &\int_{\mathcal{D}}\Big[ \lambda \frac{\partial ^{2}u_{k}}{\partial t^{2}} \frac{u_{k}}{2}-\sum_{i=1}^n \frac{\partial }{\partial x_{i}}(p_{i}(x)\frac{\partial u_{k}}{\partial x_{i}} )\frac{u_{k}}{2}+f_{k}(x,u_{1},\dots ,u_{m})\frac{u_{k}}{2} \Big] (t,x)dx \\ & =\int_{\mathcal{D}}\big[ \frac{\lambda }{4}\frac{\partial ^{2}(u_{k}^{2})}{\partial t^{2}}-\frac{\lambda }{2}| \frac{\partial u_{k}}{\partial t}| ^{2}\big] (t,x)dx \\ &\quad +\int_{\mathcal{D}}\Big[ -\sum_{i=1}^n \frac{ \partial }{\partial x_{i}}(p_{i}(x)\frac{\partial u_{k}}{ \partial x_{i}})\frac{u_{k}}{2}+f(x,u_{1},\dots ,u_{m}) \frac{u_{k}}{2}\Big] (t,x)dx. \end{aligned} \label{e12} \end{equation} Let us transform \begin{align*} &\int_{\mathcal{D}}\Big(-\sum_{i=1}^n \frac{\partial }{ \partial x_{i}}(p_{i}(x)\frac{\partial u_{k}}{\partial x_{i}})\frac{u_{k}}{2}\Big)(t,x)dx\\ &=\int_{\mathcal{D}} \sum_{i=1}^n \frac{p_{i}(x)}{2}| \frac{\partial u_{k}(t,x)}{\partial x_{i}}| ^{2}dx \\ &\quad -\frac{1}{2}\sum_{i=1}^n \int_{\mathcal{D}_{i}^{\ast }} \Big[ p_{i}(x_{i}^{\beta _{i}})(u_{k}\frac{\partial u_{k} }{\partial x_{i}})(t,x_{i}^{\beta _{i}})-p_{i}( x_{i}^{\alpha _{i}})(u_{k}\frac{\partial u_{k}}{\partial x_{i}} )(t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast }. \end{align*} The substitution of this formula in \eqref{e12} gives \begin{equation} \begin{aligned} &\int_{\mathcal{D}}\Big[ \lambda \frac{\partial ^{2}u_{k}}{\partial t^{2}} \frac{u_{k}}{2}-\sum_{i=1}^n \frac{\partial }{\partial x_{i}}(p_{i}(x)\frac{\partial u_{k}}{\partial x_{i}} )\frac{u_{k}}{2}+f(x,u_{1},\dots ,u_{m})\frac{u_{k}}{2} \Big] (t,x)dx \\ &=\int_{\mathcal{D}}\Big(\frac{\lambda }{4}\frac{\partial ^{2}( u_{k}^{2})}{\partial t^{2}}-\frac{\lambda }{2}| \frac{ \partial u_{k}}{\partial t}| ^{2}\Big)(t,x)dx \\ &\quad +\int_{\mathcal{D}} \sum_{i}^n \frac{p_{i}(x)}{2}| \frac{\partial u_{k}(t,x)}{\partial x_{i}}| ^{2}dx +\int_{\mathcal{D}}(\frac{u_{k}}{2}f(x,u_{1},\dots ,u_{m}))(t,x)dx \\ &\quad -\frac{1}{2}\sum_{i=1}^n \int_{\mathcal{D}_{i}^{\ast }} \Big[ p_{i}(x_{i}^{\beta _{i}})(u_{k}\frac{\partial u_{k} }{\partial x_{i}})(t,x_{i}^{\beta _{i}})-p_{i}( x_{i}^{\alpha _{i}})(u_{k}\frac{\partial u_{k}}{\partial x_{i}} )(t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast } \\ &=\int_{\mathcal{D}}(\frac{\lambda }{4}\frac{\partial ^{2}( u_{k}^{2})}{\partial t^{2}}-\frac{\lambda }{2}| \frac{ \partial u_{k}}{\partial t}| ^{2})(t,x)dx \\ &\quad +\int_{\mathcal{D}}\sum_{i=1}^n \frac{p_{i}( x)}{2}| \frac{\partial u_{k}(t,x)}{\partial x_{i}}| ^{2}dx+\int_{\mathcal{D}}(\frac{u_{k}}{2}f( x,u_{1},\dots ,u_{m}))(t,x)dx \\ &\quad +\frac{1}{2\varepsilon }\sum_{i=1}^n \int_{\mathcal{D} _{i}^{\ast }}\left[ p_{i}(x_{i}^{\beta _{i}})| u_{k}(t,x_{i}^{\beta _{i}})| ^{2}+p_{i}( x_{i}^{\alpha _{i}})| u_{k}(t,x_{i}^{\alpha _{i}})| ^{2}\right] dx_{i}^{\ast }. \end{aligned} \label{e15} \end{equation} Adding these identities for $k=1,\dots ,k_{0}$, we get \begin{equation*} \begin{aligned} &\frac{\lambda }{4}\int_{\mathcal{D}}\Big(\sum_{k=1}^m \frac{\partial ^{2}(u_{k}^{2})}{\partial t^{2}}\Big)(t,x)dx -\frac{\lambda }{2}\int_{\mathcal{D}} \Big(\sum_{k=1}^m | \frac{\partial u_{k}}{\partial t}| ^{2}\Big)(t,x)dx \\ &\quad +\int_{\mathcal{D}}\sum_{i=1}^n \frac{p_{i}( x)}{2}(\sum_{k=1}^m | \frac{ \partial u_{k}}{\partial x_{i}}| ^{2})(t,x)dx+ \frac{1}{2}\int_{\mathcal{D}}(\sum_{k=1}^m u_{k}f_{k}(x,u_{1},\dots ,u_{m}))(t,x)dx \\ \\ & +\frac{1}{2\varepsilon }\sum_{i=1}^n \int_{\mathcal{D} _{i}^{\ast }}\Big[ p_{i}(x_{i}^{\beta _{i}}) \big(\sum_{k=1}^m | u_{k}| ^{2}\big)(t,x_{i}^{\beta _{i}}) +p_{i}(x_{i}^{\alpha _{i}}) \big(\sum_{k=1}^m | u_{k}| ^{2}\big)(t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast }=0, \end{aligned} \end{equation*} which combined with \eqref{e22} yields \begin{equation} \begin{aligned} \frac{\lambda }{4}\frac{d^{2}}{dt^{2}}\Big(\int_{\mathcal{D}}\big( \sum_{k=1}^m u_{k}^{2}\big)(t,x)dx\Big) &=\lambda \int_{\mathcal{D}}(\sum_{k=1}^m | \frac{\partial u_{k}}{\partial t}| ^{2})(t,x)dx +\int_{\mathcal{D}}\Big[ H(x,u_{1},\dots ,u_{m})\\ &\quad -\frac{1}{2}(\sum_{k=1}^m u_{k}f_{k}(x,u_{1}, \dots ,u_{m}))(t,x,y)\Big] dx. \end{aligned} \label{e52} \end{equation} The assumptions \eqref{e50} and $\lambda >0$ enable us to assert that \[ \frac{\lambda }{4}\frac{d^{2}}{dt^{2}} \Big(\int_{\mathcal{D}} \big(\sum_{k=1}^m u_{k}^{2}\big)(t,x)dx\Big) \geq \lambda \int_{\mathcal{D}}\Big( \sum_{k=1}^m | \frac{\partial u_{k}}{\partial t }| ^{2}\Big)(t,x)dx\geq 0, \] for all $t\in \mathbb{R}$. This completes the proof. \end{proof} \begin{theorem} \label{thm5} Let $\lambda >0$ and $f_{k}$ be as described in Theorem \ref{thm4}. Assume that $u_{1},\dots ,u_{m}\in H^{2}(\Omega )\cap L^{\infty }(\Omega)$ is a solution of \eqref{ep1}-\eqref{ed} or \eqref{ep1}-\eqref{en}. Then problems \eqref{ep1})-\eqref{ed} and \eqref{ep1}-\eqref{en} have no nontrivial solutions. \end{theorem} \begin{proof} By a similar arguments as in the proof of Theorem \ref{thm4} we obtain \begin{align*} &\frac{\lambda }{4}\int_{\mathcal{D}}\Big(\sum_{k=1}^m \frac{\partial ^{2}(u_{k}^{2})}{\partial t^{2}}\Big)(t,x)dx -\frac{\lambda }{2}\int_{\mathcal{D}} \Big(\sum_{k=1}^m | \frac{\partial u_{k}}{\partial t}|^{2}\Big)(t,x)dx \\ & +\int_{\mathcal{D}}\sum_{i=1}^n \frac{p_{i}(x)}{2} \Big(\sum_{k=1}^m | \frac{\partial u_{k}}{\partial x_{i}}| ^{2}\Big)(t,x)dx \\ & +\frac{1}{2}\int_{\mathcal{D}}\Big(\sum_{k=1}^m u_{k}f_{k}(x,u_{1},\dots ,u_{m})\Big)(t,x)dx \\ & +\frac{1}{2\varepsilon }\sum_{i=1}^n \int_{\mathcal{D} _{i}^{\ast }}\Big[ p_{i}(x_{i}^{\beta _{i}}) \big(\sum_{k=1}^m | u_{k}| ^{2}\big)(t,x_{i}^{\beta _{i}}) +p_{i}(x_{i}^{\alpha _{i}}) \big(\sum_{k=1}^m | u_{k}| ^{2}\big)(t,x_{i}^{\alpha _{i}})\Big] dx_{i}^{\ast }=0. \end{align*} If \begin{equation*} u_{1}(t,s)=\dots =u_{m}(t,s)=0,\quad (t,s)\in\mathbb{R}\times \partial \mathcal{D} \end{equation*} or \begin{equation*} \frac{\partial u_{1}(t,s)}{\partial n}=\dots =\frac{\partial u_{m}(t,s)}{\partial n}=0,\text{ }(t,s)\in \mathbb{R}\times \partial \mathcal{D}, \end{equation*} this formula reduces to \begin{align*} &\frac{\lambda }{4}\int_{\mathcal{D}}\Big(\sum_{k=1}^m \frac{\partial ^{2}(u_{k}^{2})}{\partial t^{2}}\Big)(t,x)dx -\frac{\lambda }{2}\int_{\mathcal{D}} \Big(\sum_{k=1}^m | \frac{\partial u_{k}}{\partial t}|^{2}\Big)(t,x)dx\\ &+\int_{\mathcal{D}}\sum_{i=1}^n \frac{p_{i}(x)}{2} \Big(\sum_{k=1}^m | \frac{\partial u_{k}}{\partial x_{i}}| ^{2}\Big)(t,x)dx \\ &+\frac{1}{2}\int_{\mathcal{D}}\Big( \sum_{k=1}^m u_{k}f_{k}(x,u_{1},\dots ,u_{m}) \Big)(t,x)dx=0. \end{align*} We can now employ \eqref{e100} to transform this identity into the form \begin{equation} \begin{aligned} &\frac{\lambda }{4}\int_{\mathcal{D}}\Big(\sum_{k=1}^m \frac{\partial ^{2}(u_{k}^{2})}{\partial t^{2}}\Big)(t,x)dx\\ &=\lambda \int_{\mathcal{D}} \Big(\sum_{k=1}^m | \frac{\partial u_{k}}{\partial t}| ^{2}\Big)(t,x)dx \\ &\quad +\int_{\mathcal{D}}\Big[ H(x,u_{1},\dots ,u_{m})- \frac{1}{2}\Big(\sum_{k=1}^m u_{k}f_{k}( x,u_{1},\dots ,u_{m})\Big)(t,x,y)\Big] dx\,. \end{aligned} \label{e53} \end{equation} This completes the proof. \end{proof} \subsection{Semi-linear elliptic problems} We shall prove that a dual result holds for $\lambda <0$. \begin{theorem} \label{thm6} Let $(u_{1},\dots ,u_{m})\in (H^{2}(\Omega ) \cap L^{\infty }(\Omega ))^{m}$ be a solution of \eqref{ep1})-\eqref{er}, $\lambda <0$ and $f_{k}$ $(k=1,\dots ,m)$ satisfying \begin{equation} 2H(x,u_{1},\dots ,u_{m})-\sum_{k=1}^m u_{k}f_{k}(x,u_{1},\dots ,u_{m})\leq 0. \label{e51} \end{equation} Then problem \eqref{ep1}-\eqref{er} has no nontrivial solutions. \end{theorem} \begin{proof} Formula \eqref{e52} combined with the assumption \eqref{e51} yields \begin{equation*} \frac{\lambda }{4}\frac{d^{2}}{dt^{2}} \Big(\int_{\mathcal{D}}\big(\sum_{k=1}^m u_{k}^{2}\big)(t,x)dx\Big) \leq \lambda \int_{\mathcal{D}} \Big(\sum_{k=1}^m | \frac{\partial u_{k}}{\partial t}| ^{2}\Big) (t,x)dx,\quad \text{for all }t\in\mathbb{R} \end{equation*} and $\lambda <0$ gives the desired result. \end{proof} \begin{theorem} \label{thm7} Let $\lambda <0$ and $f_{k}$ $(k=1,\dots ,m)$ be as described in Theorem \ref{thm6}. We assume that \begin{equation*} u_{1},\dots ,u_{m}\in H^{2}(\Omega )\cap L^{\infty }(\Omega) \end{equation*} is a solution of \eqref{ep1}-\eqref{ed} or \ref{ep1}-\eqref{en}. Then problems \eqref{ep1}-\eqref{ed} and \eqref{ep1}-\eqref{en} have no nontrivial solutions. \end{theorem} This theorem follows from \eqref{e53} and \eqref{e51} with $\lambda <0$. \section{Examples} In this section, we illustrate our theoretical results by giving some examples. \subsection*{Example 1} Let $\theta :\mathcal{D}\to\mathbb{R}$ be a continuous function, the exponents $\alpha _{s}>0$, $s=1,\dots ,m$ and \begin{equation*} p_{i}(x)>0\quad \text{or}\quad p_{i}(x)<0\text{ in }\mathcal{D},\quad i=1,\dots ,n. \end{equation*} Then system \eqref{ep1} with \begin{equation*} f_{k}(x,u_{1},\dots ,u_{m})=\theta (x) \Big[ \prod_{s=1,\,s\neq k}^m \frac{1}{\alpha _{s}+1} | u_{s}| ^{\alpha _{s}+1}\Big] | u_{k}| ^{\alpha _{k}-1}u_{k},\quad k=1,\dots ,m \end{equation*} subject to Dirichlet, Neumann or Robin boundary conditions, does not have nontrivial solutions. Indeed, when $\lambda >0$ and $p_{i},\theta >0$ in $\mathcal{D}$, ($i=1,\dots ,n$), we have \begin{equation*} H(x,u_{1},\dots ,u_{m})=\theta (x)\Big[ \prod_{s=1}^m \frac{1}{\alpha _{s}+1}| u_{s}|^{\alpha _{s}+1}\Big] \end{equation*} and Theorem \ref{thm3} gives the desired result. When $\lambda >0$ (resp. $\lambda <0$), $\theta (x)\leq 0$ (resp. $\theta (x)\geq 0$) in $\mathcal{D}$ and $p_{i}(x)>0$ or $p_{i}(x)<0$ in $\mathcal{D}$, $i=1,\dots ,n$, we have \begin{align*} &2H(x,u_{1},\dots ,u_{k_{0}})-\sum_{k=1}^m u_{k}f_{k}(x,u_{1},\dots ,u_{m})\\ &=\theta (x)\frac{2-\sum_{k=1}^m (\alpha _{k}+1)} {\prod_{k=1}^m (\alpha _{k}+1)} \prod_{k=1}^m | u_{k}| ^{\alpha _{k}+1}\leq 0 \quad (\text{resp. }\geq 0)\,. \end{align*} We conclude by using Theorem \ref{thm4} or Theorem \ref{thm5} (resp. Theorem \ref{thm6} or Theorem \ref{thm7}) as the system is subject to Robin, Neumann or Dirichlet boundary conditions. \subsection*{Example 2} Let us consider the system \eqref{ep1} with $m=2$ and \begin{gather*} f_{1}(x,u_{1},u_{2})=\rho (x)u_{2}( | u_{1}| ^{\alpha -1}u_{1}+\frac{1}{\beta +1}| u_{2}| ^{\beta -1}u_{2}), \\ f_{2}(x,u_{1},u_{2})=\rho (x)u_{1}(\frac{1}{ \alpha +1}| u_{1}| ^{\alpha -1}u_{1}+| u_{2}| ^{\beta -1}u_{2}), \end{gather*} where the continuous function $\rho (x)$ is positive (resp. negative) and $\alpha ,\beta $ are positive real number. Then this problem does not have nontrivial solutions.\newline It suffices to remark that \begin{equation*} H(x,u_{1},u_{2})=\rho (x)(u_{2}\frac{| u_{1}| ^{\alpha +1}}{\alpha +1} +u_{1}\frac{|u_{2}| ^{\beta +1}}{\beta +1})\\ \end{equation*} and a simple computation gives \begin{align*} & 2H(x,u_{1},u_{2})-u_{1}f_{1}(x,u_{1},u_{2}) -u_{2}f_{2}(x,u_{1},u_{2}) \\ &=\rho (x)\Big[ (\frac{1}{\alpha +1}-1) | u_{1}| ^{\alpha +1}u_{2}+(\frac{1}{\beta +1} -1)| u_{2}| ^{\beta +1}u_{1}\Big] \leq 0\quad (\text{resp. }\geq 0). \end{align*} The conclusion is the same as in the previous example. \subsection{Example3} For the scalar case ($m=1$), let $\theta _{1},\theta _{2}:\overline{\mathcal{D}}\to \mathbb{\mathbb{R}}$ be two nonnegative continuous functions, $p,q\geq 1$ and \begin{equation*} f(x,u)=\delta u+\theta _{1}(x)| u| ^{p-1}u+\theta _{2}(x)| u| ^{q-1}u, \end{equation*} where $\delta $ is a real constant. Then the problem \begin{gather*} -\frac{\partial ^{2}u}{\partial t^{2}}-\sum_{i=1}^{n}\frac{\partial }{ \partial x_{i}}(p_{i}(x)\frac{\partial u}{\partial y_{i}})+f(x,u)=0\quad \text{in }\Omega , \\ u+\varepsilon \frac{\partial u}{\partial n}=0\quad \text{on }\partial \Omega , \end{gather*} %\label{e4.2} does not have nontrivial solutions. A simple computation gives \begin{equation*} 2H(x,u)-uf(x,u) =\theta _{1}(x)(\frac{2}{p+1}-1)| u| ^{p+1}+\theta _{2}(x)(\frac{2}{q+1}-1)| u| ^{q+1}\leq 0, \end{equation*} and an application of Theorem \ref{thm6} gives the desired result. \begin{thebibliography}{0} \bibitem{1} P. Amster, P. De Napoli and M. C. Mariani; Existence of solutions for elliptic systems with critical Sobolev exponent, \textit{ Elect. Journal of Diff. Eqts} \textbf{2002}, no. 49 (2002), 1-13. \bibitem{2} N. M. Chuong and T. D. Ke; Existence of solutions for a nonlinear degenerate elliptic system, \textit{Elect. Journal of Diff. Eqts} \textbf{2004}, no. 93 (2004), 1-15. \bibitem{3} M. J. Esteban and P. L. Lions; Existence and nonexistence results for semilinear elliptic problems in unbounded domains, \textit{ Proceeding of Royal Society of Edinburgh,} Section A \textbf{93} (1982-1983). \bibitem{4} A. Haraux and B. Khodja; Caract\`{e}re trivial de la solution de certaines \'{e}quations aux d\'{e}riv\'{e}es partielles non lin\'{e}aires dans des ouverts cylindriques de $\mathbb{R}^{N}$, \textit{Portugaliae Mathematica} \textbf{42} (1982), 209-219. \bibitem{5} B. Khodja; A nonexistence result for a nonlinear PDE with Robin condition, \textit{International Journal of Math. and math. Sciences } (2006), 1-12. \bibitem{6} B. Khodja; Nonexistence of solutions for semilinear equations and systems in cylindrical domains, \textit{Comm. on Applied Nonlinear Analysis} \textbf{7} (2000), 19-30. \bibitem{7} J. S. McGough; Nonexistence and uniqueness in semilinear elliptic systems, \textit{Diff. Eqts and Dynamical Syst}. \textbf{4} (1996), 157-176. \bibitem{11} Y. Naito; Nonexistence results of positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$, \textit{Journal Math. Society Japan }\textbf{52 }(2000), 637-644. \bibitem{8} S. I. Pohozaev; Eingenfunctions of the equation $\Delta u+\lambda u=0$, \textit{Soviet Mathematics Doklady}, \textbf{6}(1965), 1408-1411. \end{thebibliography} \end{document}