\documentclass[reqno]{amsart} \usepackage{mathrsfs} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 09, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/09\hfil Exponential attractors] {Exponential attractors for a nonclassical diffusion equation} \author[Y.-F. Liu, Q. Ma\hfil EJDE-2009/09\hfilneg] {Yong-Feng Liu, Qiaozhen Ma} % in alphabetical order \address{Yong-Feng Liu \newline College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, China} \email{liuyongfeng1982@126.com} \address{Qiaozhen Ma \newline College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, China} \email{maqzh@nwnu.edu.cn} \thanks{Submitted October 22, 2008. Published January 9, 2009.} \thanks{Supported by grants: 3ZS061-A25-016 from the Natural Sciences Foundation of Gansu \hfill\break\indent Province, 0801-02 from the Education Department Foundation of Gansu Province, \hfill\break\indent and NWNU-KJCXGC-03-40} \subjclass[2000]{35B41, 35Q35} \keywords{Nonclassical diffusion equation; exponential attractors} \begin{abstract} In this article, we prove the existence of exponential attractors for a nonclassical diffusion equation in ${H^{2}(\Omega)}\cap{H}^{1}_{0}(\Omega)$ when the space dimension is less than 4. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} Let $\Omega$ be an open bounded set of $\mathbb{R}^3$ with smooth boundary $\partial\Omega$. We consider the equation \begin{gather} u_{t}-\Delta {u_t}-\Delta {u}+f(u)=g(x), \quad \text{in } \Omega\times \mathbb{R}_{+},\label{e1.1}\\ u=0, \quad \text{on } \partial\Omega,\label{e1.2}\\ u(x,0)=u_{0},\quad x\in\Omega. \label{e1.3} \end{gather} This equation is a special form of the nonclassical diffusion equation used in fluid mechanics, solid mechanics and heat conduction theory \cite{a1,l1}. Existence of the global attractors for problem \eqref{e1.1}-\eqref{e1.3} was studied originally by Kalantarov in \cite{k1} in the Hilbert space ${H}^{1}_{0}(\Omega)$. In recent years, many authors have proved the existence of global attractors under different assumptions, \cite{k1,s1,t1,x1} in the Hilbert space ${H}^{1}_{0}(\Omega)$, and \cite{m1,w1} in the Hilbert space ${H^{2}(\Omega)}\cap{H}^{1}_{0}(\Omega)$. In this paper, we study the existence of exponential attractors in the Hilbert space ${H^{2}(\Omega)}\cap{H}^{1}_{0}(\Omega)$. In this article the nonlinear function satisfies the following conditions: \begin{itemize} \item[(G1)] There exists $l>0$ such that $ f'(s)\geq-l$ for all $s\in \mathbb{R}$; \item[(G2)] there exists $\kappa_1>0$ such that $f'(s)\leq \kappa_1(1+|s|^2)$ for all $s\in \mathbb{R}$; \item[(G3)] $\liminf_{|s| \to\infty} F(s)/s^2\geq0$, where $$ F(s)=\int_0^sf(r)\,dr;$$ \item[(G4)] there exists $\kappa_2>0$ such that $$ \liminf_{|s| \to\infty}{\frac{sf(s)-\kappa_2F(s)}{s^2}}\geq0. $$ \end{itemize} The main results of this paper will be stated as Theorem \ref{thm3.10} below. \section{Preliminaries} Let $H=L^{2}(\Omega)$, $V_1=H^{1}_0(\Omega)$ , $V_2=H^{2}(\Omega)\cap H^{1}_0(\Omega)$. We denote by $(\cdot,\cdot)$ denote the scalar product, and $\|\cdot\|$ the norm of $H$. The scalar product in $V_1$ and $V_2$ are denoted by \begin{gather*} ((u,v))=\int_\Omega \nabla u \nabla v \,dx,\quad\forall u,v\in V_1 ,\\ [u,v]=\int_\Omega \Delta u \Delta v \,dx,\quad\forall u,v\in V_2 . \end{gather*} The corresponding norms are denoted by ${\|\cdot\|}_1$, ${\|\cdot\|}_2$. It is well known that the norm ${\|\cdot\|}_s$ is equivalent to the usual norm of $V_s$ for $s=1,2$. Let $X$ be a separable Hilbert space and $\mathscr{B}$ be a compact subset of $X$, $ \{S(t)\}_{t\geq0}$ be a nonlinear continuous semigroup that leaves the set $\mathscr{B}$ invariant and $\mathscr{A}=\cap_{t>0}S(t)\mathscr{B}$, that is, $\mathscr{A}$ is a global attractor for $ \{S(t)\}_{t\geq0}$ on $\mathscr{B}$. \begin{definition}[\cite{e1}] \label{def2.1}\rm A compact set $\mathscr{A}\subseteq\mathscr{M}\subseteq\mathscr{B}$ is called an exponential attractor for $(S(t),\mathscr{B})$ if: \begin{enumerate} \item $\mathscr{M}$ has finite fractal dimension; \item $\mathscr{M}$ is a positive invariant set of $S(t):S(t)\mathscr{M}\subseteq\mathscr{M}$, for all $t>0$; \item $\mathscr{M}$ is an exponentially attracting set for the semigroup $ \{S(t)\}_{t\geq0}$; i.e. there exist universal constants $\alpha$,$\beta>0$ such that $$ \mathop{\rm dist}{}_X(S(t)u,\mathscr{M})\leq\alpha e^{-\beta t},\quad\forall u\in\mathscr{B},\; t>0, $$ where dist denotes the nonsymmetric Hausdorff distance between sets. \end{enumerate} \end{definition} A sufficient condition for the existence of an exponential attractor depends on a dichotomy principle called the squeezing property; we recall this property as follows. \begin{definition}[\cite{e1}] \label{def2.2} \rm A continuous semigroup of operators $\{S(t)\}_{t\geq0}$ is said to satisfy the squeezing property on $\mathscr{B}$ if there exists $t_\ast>0$ such that $S_\ast=S(t_\ast)$ satisfies that there exists an orthogonal projection operator $P$ of rank $N_0$ such that, for every $u$ and $v$ in $\mathscr{B}$, either \begin{gather*} \|(I-P)(S(t_\ast)u_1-S(t_\ast)u_2)\|_X\leq \| P(S(t_\ast)u_1-S(t_\ast)u_2)\|_X,\quad\text{or}\\ \| S(t_\ast)u_1-S(t_\ast)u_2\|_X\leq\frac{1}{8}\| u_1-u_2\|_X. \end{gather*} \end{definition} \begin{definition}[\cite{e1}] \label{def.2.3} \rm For every $u$, $v$ in the compact set $\mathscr{B}$, if there exists a local bounded function $l(t)$ such that $$ \|S(t)u-S(t)v\|_X\leq l(t)|u-v\|_X, $$ then $S(t)$ is Lipschitz continuous in $\mathscr{B}$. Here $l(t)$ does not depend on $u$ or $v$. \end{definition} \section{Exponential Attractor in $V_2$} \begin{lemma}[\cite{w1}] \label{lem3.1} Assume that $g\in V_s^{'}$ $(s=1,2)$. Then for each $u_0\in V_s $ the problem \eqref{e1.1}-\eqref{e1.3} has a unique solution $u=u(t)=u(t;u_0)$ with $u\in C^1([0,\tau),V_s)$ on some interval $[0,\tau)$. Also for each $t$ fixed, $u$ is continuous in $u_0$. \end{lemma} \begin{lemma}[\cite{k1}] \label{lem3.2} Assume that $g\in H$, then for any $R>0$, there exist positive constants $E_1(R)$, $\rho_1$ and $t_1(R)$ such that for every solution $u$ of problem \eqref{e1.1}-\eqref{e1.3}, \begin{gather*} \|u\|_1\leq E_1(R),\quad t\geq 0,\\ \|u\|_1\leq \rho_1,\quad t\geq t_1(R), \end{gather*} provided $\| u_0\| _1 \leq R$. \end{lemma} \begin{lemma}[\cite{w1}] \label{lem3.3} Assume $g\in V_1$, then for any $R>0$, there exist positive constants $E_2(R)$, $\rho_2$ and $t_2(R)$ such that for every solution $u$ of problem \eqref{e1.1}-\eqref{e1.3}, \begin{gather*} \|u\|_2\leq E_2(R),\quad t\geq 0,\\ \|u\|_2\leq \rho_2,\quad t\geq t_2(R), \end{gather*} provided $\| u_0\| _2 \leq R$. \end{lemma} \begin{remark} \label{rmk3.4} \rm From the proof of Lemma \ref{lem3.3} \cite[Theorem 3.2]{w1}, we obtain $$ \int_t^{t+1}(\|u_t\|_1^2+\| u_t\|_2^2)\leq m, $$ where $m$ is a positive constant. \end{remark} According to Lemmas \ref{lem3.2} and \ref{lem3.3}, we have \begin{equation} \mathscr{B}_0=\{u\in V_2: \|\nabla u \|\leq \rho_1, \|\Delta u \|\leq \rho_2\}\label{e3.1} \end{equation} is a compact absorbing set of a semigroup of operators $ \{S(t)\}_{t\geq0}$ generated by \eqref{e1.1}-\eqref{e1.3}. Namely, for any given $u_0\in V_2$, there exists $T=T(u_0)>0$ such that\ $\| S(t)u_0\| \leq\rho,$ for all $t\geq T$. Hence $$ \mathscr{B}=\overline{\cup_{0\leq t\leq T}S(t)\mathscr{B}_0} $$ is a compact positive invariant set in $V_2$ under $S(t)$. \begin{lemma}[\cite{w1}] \label{lem3.5} Assume that $f\in C^2(\mathbb{R};\mathbb{R})$ and satisfies {\rm (G1)--(G4)} with $f(0)=0$, $g\in V_1$. Then the semigroup $S(t)$ generated by \eqref{e1.1}--\eqref{e1.3} possesses a global attractor $\mathscr{A}$ in $V_2$. \end{lemma} \begin{lemma} \label{lem3.6} Assume that $f$ satisfies {\rm (G1)--(G4)}, $u(t),v(t)$ are two solutions of \eqref{e1.1}--\eqref{e1.3} with initial values $u_{0},v_{0}\in \mathscr{B}$, then \begin{equation} \|u(t)-v(t)\|_2\leq e^{c_1t}\|u(0)-v(0)\|_2\label{e3.2} \end{equation} \end{lemma} \begin{proof} Setting $w(t)=u(t)-v(t)$, we see that $w(t)$ satisfies \begin{equation} w_t-\Delta w_t-\Delta w+f(u)-f(v)=0.\label{e3.3} \end{equation} Taking the inner product with $-\Delta w$ of \eqref{e3.3}, we obtain \begin{equation} \frac{1}{2}\frac{d}{dt}(\|\Delta w\|^{2}+\|\nabla w\|^2)+\|\Delta w\|^{2}+(f(u)-f(v),-\Delta w)=0.\label{e3.4} \end{equation} Using $H_0^1(\Omega)\subset L^6(\Omega)$ and (G2), it follows that \begin{equation} \label{e3.5} \begin{aligned} & \big|\int_\Omega(f(u)-f(v)) \Delta w \,dx\big|\\ & \leq \int_\Omega |f'(\theta u+(1-\theta)v)||w||\Delta w|\,dx \quad (0<\theta<1) \\ & \leq c\int_\Omega (1+|u|^2+|v|^2)|w||\Delta w|\,dx \\ & \leq c\int_\Omega |w||\Delta w|dx+c\int_\Omega |u|^2|w||\Delta w|dx+c\int_\Omega |v|^2|w||\Delta w|\,dx \\ & \leq c\|w\|\|\Delta w\|+c\|u\|_6^2\|w\|_6\|\Delta w\| +c\|v\|_6^2\|w\|_6\|\Delta w\|. \end{aligned} \end{equation} Since $\mathscr{B}$ is a bounded absorbing set given by \eqref{e3.1}, $u_{0},v_{0}\in \mathscr{B}$, from \eqref{e3.5} we get \begin{equation} |\int_\Omega (f(u)-f(v))\Delta w\,dx|\leq c\|\nabla w\|\|\Delta w\|\leq\frac{\|\Delta w\|^2}{2}+\frac{c_1}{2}\|\nabla w\|^2,\label{e3.6} \end{equation} where $ c_1 $ is dependent on $\rho_1$ and $\rho_2$. Combining \eqref{e3.4} with \eqref{e3.6}, we deduce that \begin{equation} \frac{d}{dt}(\|\Delta w\|^{2}+\|\nabla w\|^2)+\|\Delta w\|^{2} \leq c_1\|\nabla w\|^2. \label{e3.7} \end{equation} This yields \begin{equation} \frac{d}{dt}(\|\Delta w\|^{2}+\|\nabla w\|^2)\leq c_1(\|\nabla w\|^2+\|\Delta w \|^2).\label{e3.8} \end{equation} By the Gronwall Lemma, we get $$ \|\Delta w(t)\|^{2}+\|\nabla w(t)\|^2\leq e^{c_1t}(\|\Delta w(0)\|^{2}+\|\nabla w(0)\|^2). $$ \end{proof} \begin{lemma} \label{lem3.7} Under the assumptions of Lemma \ref{lem3.5}, there exists $L>0$ such that $$ \sup_{u_0\in \mathscr{B}}\| u_t(t)\|_2\leq L,\quad \forall t\geq 0. $$ \end{lemma} \begin{proof} Differentiating \eqref{e1.1} with respect to time and denoting $v=u_t$, we have \begin{equation} v_t-\Delta v_t-\Delta v=-f'(u)v\label{e3.9} \end{equation} Multiplying the above equality by $-\Delta v$ and using (G1), \begin{equation} \frac{1}{2}\frac{d}{dt}(\| \nabla v\|^{2}+\|\Delta v\|^2)+\|\Delta v\|^2\leq l\|\nabla v\|^2.\label{e3.10} \end{equation} This inequality and Remark \ref{rmk3.4}, by the uniform Gronwall lemma, complete the proof. \end{proof} \begin{lemma} \label{lem3.8} Under the assumptions of lemma \ref{lem3.5}, for every $T>0$, the mapping $(t,u)\mapsto S(t)u $ is Lipschitz continuous on $[0,T]\times\mathscr{B}$. \end{lemma} \begin{proof} For $u_1$, $u_2\in\mathscr{B}$ and $t_1$, $t_2\in[0,T]$ we have \begin{equation} \| S(t_1)u_1-S(t_2)u_2\|_2\leq\| S(t_1)u_1-S(t_1)u_2\|_2 +\| S(t_1)u_2-S(t_2)u_2\|_2 \label{e3.11} \end{equation} The fist term of the above inequality is handled by estimate \eqref{e3.2}. For the second term, we have \begin{equation} \|u(t_1)-u(t_2)\|_2\leq|\int_{t_1}^{t_2}\| u_t(y)\|_2dy|\leq L| t_1-t_2|. \label{e3.12} \end{equation} Hence \begin{equation} \| S(t_1)u_1-S(t_2)u_2\|_2\leq L[|t_1-t_2|+\| u_1-u_2\|_2].\label{e3.13} \end{equation} for some $L=L(T)\geq0$. \end{proof} \begin{lemma} \label{lem3.9} Assume that $f$ satisfies {\rm (G1)--(G4)}, $u(t),v(t)$ are two solutions of problem \eqref{e1.1}--\eqref{e1.3} with initial values $u_{0},v_{0}\in \mathscr{B}$, then the semigroup S(t) generated from \eqref{e1.1}--\eqref{e1.3} satisfies the squeezing property; i.e., there exist $t_*$ and $N=N_0=N(t_*)$ such that $$ \|(I-P)(S(t_\ast)u_0-S(t_\ast)v_0)\|_2> \| P(S(t_\ast)u_0-S(t_\ast)v_0)\|_2 $$ then $$ \| S(t_\ast)u_0-S(t_\ast)v_0\|_2\leq\frac{1}{8}\| u_0-v_0\|_2. $$ \end{lemma} \begin{proof} We consider the operator $A=-\Delta $. Since $A$ is self-adjoint, positive operator and has a compact inverse, there exists a complete set of eigenvectors $\{\omega_{i}\}^{\infty}_{i=1}$ in $H$, the corresponding eigenvalues $\{\lambda_{i}\}^{\infty}_{i=1}$ satisfy $$ A\omega_{i}=\lambda_{i}\omega_{i},\quad 0<\lambda_{1}\leq\lambda_{2}\leq\dots\leq\lambda_{i}\leq\dots \to+\infty,\quad i\to+\infty. $$ We set $H_N=\mathop{\rm span}\{\omega_{1},\omega_{2} ,\dots , \omega_{N}\}$. $P_N$ is the orthogonal projection onto $H_N$, and $Q_{N}=I-P_{N} $ is the orthogonal projection onto the orthogonal complement of $H_N$, $w=P_Nw+Q_{N}w = p+q$. Assume that $\|P_Nw(t)\|\leq\|Q_Nw(t)\|$, taking the inner product of \eqref{e3.3} with $-\Delta q$, we obtain \begin{equation} \frac{1}{2}\frac{d}{dt}(\|\Delta q\|^{2}+\|\nabla q\|^2)+\|\Delta q\|^{2}+(f(u)-f(v),-\Delta q)=0. \label{e3.14} \end{equation} Similar to \eqref{e3.5}, it leads to \begin{equation} \label{e3.15} \begin{aligned} \big|\int_\Omega (f(u)-f(v))\Delta q\,dx\big| &\leq c\int_\Omega |w||\Delta q |\,dx+c\int_\Omega |u|^2|w||\Delta q|\,dx \\ &\quad +c\int_\Omega |v|^2|w||\Delta q|\,dx. \end{aligned} \end{equation} Since $$ \int_\Omega |u|^2|w||\Delta q|\,d x\leq\|u\|^2_\infty\|w\|\|\Delta q\| $$ and by the Agmon inequality: $\|u\|_\infty\leq c\|\nabla u\|^{1/2}\|\Delta u\|^{1/2}$, and \eqref{e3.1}, from \eqref{e3.15} we obtain \begin{equation} |\int_\Omega (f(u)-f(v))\Delta q\,dx|\leq c\|w\|\|\Delta q\| \leq\frac{\|\Delta q\|^2}{2}+\frac{c_2}{2}\|w\|^2, \label{e3.16} \end{equation} where $ c_2 $ depends on $\rho_1$ and $\rho_2$. Combining \eqref{e3.14} and \eqref{e3.16}, we deduce that \begin{equation} \frac{d}{dt}(\|\Delta q\|^{2}+\|\nabla q\|^2)+\|\Delta q\|^{2} \leq c_2\|w\|^2.\label{e3.17} \end{equation} Furthermore, by lemma \ref{lem3.6} and the Poincar\'e inequality, we have \begin{equation} \begin{aligned} \frac{d}{dt}(\|\Delta q\|^{2}+\|\nabla q\|^2)+\frac{\|\Delta q\|^{2}}{2}+\frac{\lambda _{N+1}}{2}\|\nabla q\|^2 &\leq c_2\|w\|^2\leq c_2\|p+q\|^2\\ &\leq 2c_2\|q\|^2 \leq 2c_2\lambda _{N+1}^{-1} \|\nabla q\|^2\\ &\leq c_3\lambda _{N+1}^{-2} \|\Delta w\|^2\\ &\leq c_3\lambda _{N+1}^{-2}e^{c_1t} \|\Delta w(0)\|^2. \end{aligned} \label{e3.18} \end{equation} Since $\lambda_1\leq\lambda_{N+1}$, \begin{equation} \frac{d}{dt}(\|\Delta q\|^{2}+\|\nabla q\|^2)+\frac{\|\Delta q\|^{2}}{2}+\frac{\lambda _{1}}{2}\|\nabla q\|^2\leq c_3\lambda _{N+1}^{-2}e^{c_1t} \|\Delta w(0)\|^2. \label{e3.19} \end{equation} Let $c_4=\min\{\frac{1}{2},\frac{\lambda _{1}}{2}\}$. Then \begin{equation} \frac{d}{dt}(\|\Delta q\|^{2}+\|\nabla q\|^2)+c_4(\|\Delta q\|^{2} +\|\nabla q\|^2) \leq c_3\lambda _{N+1}^{-2}e^{c_1t} \|\Delta w(0)\|^2.\label{e3.20} \end{equation} By the Gronwall Lemma, we conclude that \begin{align*} \|\Delta q(t)\|^{2}+\|\nabla q(t)\|^2 &\leq e^{-c_4t}(\|\Delta q(0)\|^{2}+\|\nabla q(0)\|^2) +c_5\lambda _{N+1}^{-2}e^{c_1t} \|\Delta w(0)\|^2\\ &\leq c_6(e^{-c_4t}+c_7\lambda _{N+1}^{-2}e^{c_1t}) \|\Delta w(0)\|^2. \end{align*} %\label{e3.21} Hence \begin{equation} \|\Delta w(t)\|^2\leq 2\|\Delta q(t)\|^2\leq c_8(e^{-c_4t}+c_9\lambda _{N+1}^{-2}e^{c_1t}) \|\Delta w(0)\|^2.\label{e3.21} \end{equation} Choose $t_*>0$, such that $c_8e^{-c_4t_*}\leq 1/128$, and then let $t_*$ be fixed, and $N$ large enough , such that $c_8c_9\lambda_{N+1}^{-2}e^{c_1t_*}\leq 1/128$. We obtain $$ \|\Delta w(t_*)\|\leq\frac{1}{8}\|\Delta w(0)\|. $$ \end{proof} \begin{theorem} \label{thm3.10} Assume that $f\in C^2(\mathbb{R};\mathbb{R})$ and satisfies {\rm (G1)--(G4)} with $f(0)=0$, $g\in V_1$. Then there exists an exponential attractor $\mathscr{M} \subset V_{2}$ for the semigroup of operators $ \{S(t)\}_{t\geq0}$ generated by \eqref{e1.1}--\eqref{e1.3}. \end{theorem} \begin{proof} From Lemma \ref{lem3.9}, $S(t_*)$ satisfies the squeezing property for some $t_*>0$. According to \cite[Theorem 2.1]{e1}, there exists an exponential attractor $\mathscr{M_*}$ for $(S(t_*),\mathscr{B})$ and we set $$ \mathscr{M}={\bigcup_{0\leq t\leq t_*}S(t)\mathscr{M}_*}. $$ By Lemma \ref{lem3.8}, $(t,u)\mapsto S(t)u $ is Lipschitz continuous from $[0,T]\times\mathscr{B}$ to $\mathscr{B}$. Then as in the proof of \cite[Theorem 3.1]{e1}, $\mathscr{M}$ is an exponential attractor for $(\{S(t)\}_{t\geq0},\mathscr{B})$. \end{proof} \subsection*{Acknowledgements} The authors would like to thank the anonymous referee for his or her many vital comments and suggestions. \begin{thebibliography}{00} \bibitem{a1} Aifantis. E. C; \emph{On the problem of diffusion in solids}, Acta Mech, \textbf{37} (1980): 265-296. \bibitem{e1} A. Eden, C. Foias, B. Nicolaenko, R. Temam; \emph{Exponential Attractors for Dissipative Evolution Equations}, New York:Masson. Paris, Wiely, (1994). \bibitem{k1} V. K. Kalantarov; \emph{On the attractors for some non-linear problems of mathematical physics}, Zap. Nauch. Sem. LOMI \textbf{152} (1986): 50-54. \bibitem{l1} J. L. Lions, E. Magenes; \emph{Non-homogeneous boundary value problems and applications}, Spring-verlag,Berlin, (1972). \bibitem{m1} Q. Z. Ma, C. K. Zhong; \emph{Global attractors of strong solutions to nonclassical diffusion equations}, Journal of Lanzhou University. \textbf{40}(2004): 7-9. \bibitem{s1} C. Y. Sun, S. Y. Wang, C. K. Zhong; \emph{Global attractors for a nonclassical diffusion equation}, Acta math sinica, English series. \textbf{23}(2007): 1271-1280. \bibitem{t1} R. Temam; \emph{Infinite-dimensional dynamical systems in mechanics and physic}, Springer, New York, (1997). \bibitem{w1} S. Y. Wang, D. S. Li, C. K. Zhong; \emph{On the dynamics of a class of nonclassical parabolic equations}, J. Math. Anal. Appl. \textbf{317}(2006): 565-582. \bibitem{x1} Y. L. Xiao; \emph{Attractors for a nonclassical diffusion equation}, Acta Math Appl Sinica. \textbf{18} (2002): 273-276. \end{thebibliography} \end{document}