\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 100, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2009/100\hfil Positive almost periodic solutions] {Positive almost periodic solutions of non-autonomous delay competitive systems with weak Allee effect} \author[Y. Li, K. Zhao\hfil EJDE-2009/100\hfilneg] {Yongkun Li, Kaihong Zhao} % in alphabetical order \address{Yongkun Li \newline Department of Mathematics, Yunnan University\\ Kunming, Yunnan 650091, China} \email{yklie@ynu.edu.cn} \address{Kaihong Zhao \newline Department of Mathematics, Yuxi Normal University\\ Yuxi, Yunnan 653100, China} \email{zhaokaihongs@126.com} \thanks{Submitted April 6, 2009. Published August 19, 2009.} \thanks{Supported by grant 04Y239A from the Natural Sciences Foundation of Yunnan Province.} \subjclass[2000]{34K14, 92D25} \keywords{Positive almost periodic solution; coincidence degree; delay; \hfill\break\indent non-autonomous competitive systems} \begin{abstract} By using Mawhin's continuation theorem of coincidence degree theory, we obtain sufficient conditions for the existence of positive almost periodic solutions for a non-autonomous delay competitive system with weak Allee effect. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} The Lotka-Volterra type systems have been studied in various fields of epidemiology, chemistry, economics and biological science. In the past few years, there has been increasing interest in studying dynamical characteristics such as stability, persistence and periodicity of Lotka-Volterra type systems. There have been considerable works on the qualitative analysis of Lotka-Volterra type systems with delays; see \cite{l1,l2, l3,l4, l6,y1,x1}. Naturally, the study of almost periodic solutions for Lotka-Volterra type systems is important and of great interest. There are two main approaches to obtain sufficient conditions for the existence and stability of the almost periodic solutions of biological models: One is using the fixed point theorem, Lyapunov functional method and differential inequality techniques \cite{c1,l5,y2}; the other is using functional hull theory and Lyapunov functional method \cite{m1,m2,m3}. However, to the best of our knowledge, there are very few published papers considering the almost periodic solutions for non-autonomous Lotka-Volterra type systems by applying the method of coincidence degree theory. Motivated by this, in this paper, we apply the coincidence theory to study the existence of positive almost periodic solutions for the following non-autonomous delay competitive systems with weak Allee effect \begin{equation} \label{e1.1} \begin{aligned} \dot{u}_{i}(t) &=u_{i}(t)\Big[F_{i}(t,u_{i}(t-\tau_{ii}(t))) -\sum_{j=1}^{n}b_{ij}(t)u_{j}(t)\\ &\quad -\sum_{j=1,j\neq i}^{n}c_{ij}(t)u_{j}(t-\tau_{ij}(t)) -\sum_{j=1}^{n}\int_{-\sigma_{ij}}^{0}\mu_{ij}(t,s)u_{j}(t+s)\, \mathrm{d}s\Big], \end{aligned} \end{equation} where $i=1,2,\dots ,n$, $u_{i}(t)$ stands for the $i$th species population density at time $t\in\mathbb{R}, b_{ij}(t)\geq0, c_{ij}(t)\geq0, \tau_{ij}(t)$ are continuous almost periodic functions on $R$, $\mu_{ij}(t,s)$ are positive almost periodic functions on $\mathbb{R}\times[-\sigma_{ij},0]$, continuous with respect to $t\in\mathbb{R}$ and integrable with respect to $s\in [-\sigma_{ij},0]$, where $\sigma_{ij}$ are nonnegative constants, moreover $\int_{-\sigma_{ij}}^{0}\mu_{ij}(t,s)\,\mathrm{d}s=1, i,j=1,2,\dots ,n$. The per capita growth rate $F_{i}\in C(\mathbb{R}^{2},\mathbb{R})$ is defined by the form for each $i=1,2,\dots ,n$, \begin{equation} \label{e1.2} F_{i}(t,x)=r_{i}(t)-f_{i}(t,x)x. \end{equation} In this definition, $r_{i}$ is the natural reproduction rate and $f_{i}$ represents the inner-specific competition, $c_{ij}$ in \eqref{e1.1} represents the interspecific competition. In addition, $f_{i}$ satisfies the following condition for each $i=1,2,\dots ,n$, \begin{equation} \label{e1.3} \frac{\partial f_{i}(t,x)}{\partial x}>0 \quad \text{and $f_{i}(t,x)$ are almost periodic in $t$,} \end{equation} for each $t\in\mathbb{R}$, there exists a constant $\alpha_{i}>0$ such that \begin{equation} \label{e1.4} f_{i}(t,\alpha_{i})=0. \end{equation} The situations formulated by $\frac{\partial f_{i}}{\partial x}>0$ and $\frac{\partial f_{i}}{\partial x}<0$ are called the weak Allee effect and the strong Allee effect respectively. Details about the Allee effect can be found in \cite{s1,t1,w1}. The initial condition for \eqref{e1.1} is \begin{equation} \label{e1.5} u_{i}(s)=\phi_{i}(s),\quad i=1,2,\dots ,n, \end{equation} where $\phi_{i}(s)$ are positive bounded continuous function on $[-\tau,0]$, $i=1,2,\dots ,n$ and $\tau=\max_{1\leq i,j\leq n} \{\max_{t\in\mathbb{R}}|\tau_{ij}(t)|, \sigma_{ij}\}$. The organization of the rest of this paper is as follows. In Section 2, we introduce some preliminary results which are needed in later sections. In Section 3, we establish our main results for the existence of almost periodic solutions of \eqref{e1.1}. Finally, we make the conclusion in Section 4. \section{Preliminaries} To obtain the existence of an almost periodic solution of \eqref{e1.1}, we firstly make the following preparations. \begin{definition}[\cite{f1}] \label{def2.1} \rm Let $u(t):\mathbb{R}\to \mathbb{R}$ be continuous in $t$. $u(t)$ is said to be almost periodic on $\mathbb{R}$, if, for any $\epsilon>0$, the set $K(u,\epsilon)=\{\delta:|u(t+\delta)-u(t)|<\epsilon, \text{ for any } t\in\mathbb{R}\}$ is relatively dense, that is for any $\epsilon>0$, it is possible to find a real number $l(\epsilon)>0$, for any interval with length $l(\epsilon)$, there exists a number $\delta=\delta(\epsilon)$ in this interval such that $|u(t+\delta)-u(t)|<\epsilon$, for any $t\in\mathbb{R}$. \end{definition} \begin{definition} \label{def2.2} \rm A solution $u(t)=(u_{1}(t),u_{2}(t),\dots ,u_{n}(t))^{T}$ of \eqref{e1.1} is called an almost periodic solution if and only if for each $i=1,2,\dots ,n,u_{i}(t)$ is almost periodic. \end{definition} For convenience, we denote $AP(\mathbb{R})$ is the set of all real valued, almost periodic functions on $\mathbb{R}$ and let \begin{gather*} \wedge(f_{j})=\Big\{\widetilde{\lambda}\in\mathbb{R}: \lim_{T\to\infty}\frac{1}{T}\int_{0}^{T}f_{j}(s) e^{-i\widetilde{\lambda}s}\,\mathrm{d}s\neq0\Big\},\quad j=1,2,\dots ,n, \\ \mathop{\rm mod}(f_{j})=\Big\{\sum^{N}_{i=1}n_{i}\widetilde{\lambda_{i}}:n_{i}\in Z,N\in N^+,\widetilde{\lambda_{i}}\in \wedge(f_{j})\Big\},\quad j=1,2,\dots ,n \end{gather*} be the set of Fourier exponents and the module of $f_{j}$, respectively, where $f_{j}(\cdot)$ is almost periodic. Suppose $f_{j}(t,\phi_{j})$ is almost periodic in $t$, uniformly with respect to $\phi_{j}\in C([-\tau,0],\mathbb{R})$. $K_{j}(f_{j},\epsilon,\phi_{j}(s)) =\{\delta:|f_{j}(t+\delta,\phi_{j}(s))-f_{j}(t,\phi_{j}(s))| <\epsilon,\forall t\in\mathbb{R}$\} denote the set of $\epsilon$-almost periods uniformly with respect to $\Phi_{j}(s)\in C([-\tau,0],\mathbb{R})$. $l_{j}(\epsilon)$ denote the length of inclusion interval. $m(f_{j})=\frac{1}{T}\int^{T}_{0}f_{j}(s)\,\mathrm{d}s$ be the mean value of $f_{j}$ on interval $[0,T]$, where $T>0$ is a constant. Clearly, $m(f_{j})$ depends on $T$. $m[f_{j}]=\lim_{T\to\infty}\frac{1}{T}\int^{T}_{0}f_{j}(s)\,\mathrm{d}s$. \begin{lemma}[\cite{f1}] \label{lem2.1} Suppose that $f$ and $g$ are almost periodic. Then the following statements are equivalent \begin{itemize} \item[(i)] $\mathop{\rm mod}(f)\supset \mathop{\rm mod}(g)$, \item[(ii)] for any sequence $\{t_{n}^{*}\}$, if $\lim_{n\to\infty}f(t+t_{n}^{*})=f(t)$ for each $t\in\mathbb{R}$, then there exists a subsequence $\{t_{n}\}\subseteq\{t_{n}^{*}\}$ such that $\lim_{n\to\infty}g(t+t_{n})=f(t)$ for each $t\in\mathbb{R}$. \end{itemize} \end{lemma} \begin{lemma}[\cite{e1}] \label{lem2.2} Let $u\in AP(\mathbb{R})$. Then $\int_{t-\tau}^{t}u(s)\,\mathrm{d}s$ is almost periodic. \end{lemma} Let $X$ and $Z$ be Banach spaces. A linear mapping $L: \mathop{\rm dom}(L)\subset X\to Z$ is called Fredholm mapping if its kernel, denoted by $\ker(L)=\{X\in \mathop{\rm dom}(L):Lx=0\}$, has finite dimension and its range, denoted by $\mathop{\rm Im}(L)=\{Lx:x\in \mathop{\rm dom}(L)\}$, is closed and has finite codimension. The index of $L$ is defined by the integer $\dim K(L)-\mathop{\rm codim} \mathop{\rm dom}(L)$. If $L$ is a Fredholm mapping with index 0, then there exists continuous projections $P:X\to X$ and $Q:Z\to Z$ such that $\mathop{\rm Im}(P)=\ker(L)$ and $\ker(Q)=\mathop{\rm Im}(L)$. Then $L|_{\mathop{\rm dom}(L)\cap \ker(P)}:\mathop{\rm Im}(L) \cap \ker(P)\to \mathop{\rm Im}(L)$ is bijective, and its inverse mapping is denoted by $K_{P}:\mathop{\rm Im}(L)\to \mathop{\rm dom}(L)\cap \ker(P)$. Since $\ker(L)$ is isomorphic to $\mathop{\rm Im}(Q)$, there exists a bijection $J:\ker(L)\to \mathop{\rm Im}(Q)$. Let $\Omega$ be a bounded open subset of $X$ and let $N:X\to Z$ be a continuous mapping. If $QN(\overline{\Omega})$ is bounded and $K_{P}(I-Q)N:\overline{\Omega}\to X$ is compact, then $N$ is called L-$compact$ on $\Omega$, where $I$ is the identity. Let $L$ be a Fredholm linear mapping with index 0 and let $N$ be a $L$-compact mapping on $\overline{\Omega}$. Define mapping $F:\mathop{\rm dom}(L)\cap \overline{\Omega}\to Z$ by $F=L-N$. If $Lx\neq Nx$ for all $x\in \mathop{\rm dom}(L)\cap\partial\Omega$, then by using $P,Q,K_{P},J$ defined above, the coincidence degree of $F$ in $\Omega$ with respect to $L$ is defined by \[ \deg_{L}(F,\Omega)=\deg(I-P-(J^{-1}Q+K_{P}(I-Q))N,\Omega,0), \] where $\deg(g,\Gamma,p)$ is the Leray-Schauder degree of $g$ at $p$ relative to $\Gamma$. Then The Mawhin's continuous theorem is given as follows: \begin{lemma}[\cite{g1}] \label{lem2.3} Let $\Omega\subset X$ be an open bounded set and let $N:X\to Z$ be a continuous operator which is $L$-compact on $\overline{\Omega}$. Assume \begin{itemize} \item[(a)] for each $\lambda\in (0,1),x\in\partial\Omega\cap \mathop{\rm dom}(L),Lx\neq\lambda Nx$; \item[(b)] for each $x\in\partial\Omega\cap L,QNx\neq 0$; \item[(c)] $\deg(JNQ,\Omega\cap \ker(L),0)\neq 0$. \end{itemize} Then $Lx=Nx$ has at least one solution in $\overline{\Omega}\cap \mathop{\rm dom}(L)$. \end{lemma} \section{Main Result} In this section, we state and prove the main results of this paper. By making the substitution $u_{i}(t)=\exp\{y_{i}(t)\}$, $i=1,2,\dots ,n$, \eqref{e1.1} can be reformulated as \begin{equation} \label{e3.1} \begin{aligned} \dot{y}_{i}(t) &=r_{i}(t)-f_{i}\big(t,\exp\{y_{i}(t-\tau_{ii}(t))\}\big) \exp\big\{y_{i}(t-\tau_{ii}(t))\big\} \\ &\quad -\sum_{j=1}^{n}b_{ij}(t)\exp\big\{y_{j}(t)\big\} -\sum_{j=1,i\neq j}^{n}c_{ij}(t)\exp\big\{y_{j}(t-\tau_{ij}(t))\big\}\\ &\quad -\sum_{j=1}^{n}\int_{-\sigma_{ij}}^{0}\exp\big\{y_{j}(t+s)\big\}ds, \quad i=1,2,\dots ,n. \end{aligned} \end{equation} The initial condition \eqref{e1.5} can be rewritten as \begin{equation} \label{e3.2} y_{i}(s)=\ln\phi_{i}(s)=:\psi_{i}(s),\quad i=1,2,\dots ,n \end{equation} Set $X=Z=V_{1}\oplus V_{2}$, where \begin{gather*} \begin{aligned} V_{1}&=\Big\{y(t)=(y_{1}(t),y_{2}(t),\dots ,y_{n}(t))^{T}\in C(\mathbb{R},\mathbb{R}^{n}):y_{i} (t)\in AP(\mathbb{R}),\\ &\mathop{\rm mod}(y_{i}(t))\subset \mathop{\rm mod}(H_{i}(t)), \forall\widetilde{\lambda_{i}}\in\wedge(y_{i}(t)) \text{ satisfies } |\widetilde{\lambda_{i}}|>\beta,\; i=1,2,\dots ,n\Big\}, \end{aligned} \\ V_{2}=\{y(t)\equiv(h_{1},h_{2},\dots ,h_{n})^{T}\in\mathbb{R}^{n}\}, \\ \begin{aligned} H_{i}(t) &=r_{i}(t)-f_{i}\big(t,\exp\{\psi_{i}(-\tau_{ii}(t))\}\big) \exp\big\{\psi_{i}(-\tau_{ii}(t))\big\} \\ &\quad -\sum_{j=1}^{n}b_{ij}(t)\exp\big\{\psi_{j}(0)\big\} -\sum_{j=1,i\neq j}^{n}c_{ij}(t)\exp\big\{\psi_{j}(-\tau_{ij}(0))\big\}\\ &\quad -\sum_{j=1}^{n}\int_{-\sigma_{ij}}^{0}\mu_{ij}(t,s) \exp\big\{\psi_{j}(s)\big\}\,\mathrm{d}s \end{aligned} \end{gather*} and $\psi_i(\cdot)$ is defined as \eqref{e3.2}, $i=1,2,\dots ,n$. $\beta$ is a given constant. For $y=(y_{1},y_{2},\dots ,y_{n})^{T}\in Z$, define $\|y\|=\max_{1\leq i\leq n}\sup_{t\in\mathbb{R}}|y_{i}(t)|$. \begin{lemma} \label{lem3.1} $Z$ is a Banach space equipped with the norm $\|\cdot\|$. \end{lemma} \begin{proof} If $y^{\{k\}}\subset V_{1}$ and $y^{\{k\}}=(y_{1}^{\{k\}},y_{2}^{\{k\}},\dots ,y_{n}^{\{k\}})^T$ converges to \\ $\overline{y}=(\overline{y}_{1},\overline{y}_{2},\dots , \overline{y}_{n})^T$, that is $y^{\{k\}}_{j}\to \overline{y}_{j}$, as $k\to \infty$, $j=1,2,\dots ,n$. Then it is easy to show that $\overline{y}_{j}\in AP(\mathbb{R})$ and $\mathop{\rm mod}(\overline{y}_{j})\in \mathop{\rm mod}(H_{j})$. For any $\widetilde{\lambda}_{j}\leq\beta$, we have \[ \lim_{T\to\infty}\frac{1}{T}\int^{T}_{0}y^{\{k\}}_{j}(t) e^{-i\widetilde{\lambda}_{j}t}dt=0,\quad j=1,2,\dots ,n; \] therefore, \[ \lim_{T\to\infty}\frac{1}{T}\int^{T}_{0}\overline{y}_{j}(t) e^{-i\widetilde{\lambda}_{j}t}dt=0,\quad j=1,2,\dots ,n, \] which implies $\overline{y}\in V_{1}$. Then it is not difficult to see that $V_{1}$ is a Banach space equipped with the norm $\|\cdot\|$. Thus, we can easily verify that $x$ and $Z$ are Banach spaces equipped with the norm $\|\cdot\|$. The proof is complete. \end{proof} \begin{lemma} \label{lem3.2} Let $L:X\to Z$, $Ly=\dot{y}$, then $L$ is a Fredholm mapping of index $0$. \end{lemma} \begin{proof} Clearly, $L$ is a linear operator and $\ker(L)=V_{2}$. We claim that $\mathop{\rm Im}(L)=V_{1}$. Firstly, we suppose that $z(t)=(z_{1}(t),z_{2}(t),\dots ,z_{n}(t))^{T} \in \mathop{\rm Im}(L)\subset Z$. Then there exist $z^{\{1\}}(t)=(z^{\{1\}}_{1}(t),z^{\{1\}}_{2}(t),\dots ,z^{\{1\}}_{n}(t))^{T}\in V_{1}$ and constant vector $z^{\{2\}}=(z^{\{2\}}_{1},z^{\{2\}}_{2},\dots ,z^{\{2\}}_{n})^{T}\in V_{2}$ such that \[ z(t)=z^{\{1\}}(t)+z^{\{2\}}; \] that is, \[ z_{i}(t)=z_{i}^{\{1\}}(t)+z_{i}^{\{2\}},\quad i=1,2,\dots ,n. \] From the definition of $z_{i}(t)$ and $z_{i}^{\{1\}}(t)$, we can easily see that $\int^{t}_{t-\tau}z_{i}(s)\,\mathrm{d}s$ and $\int^{t}_{t-\tau}z_{i}^{\{1\}}(s)\,\mathrm{d}s$ are almost periodic function. So we have $z_{i}^{\{2\}}\equiv 0$, $i=1,2,\dots ,n$, then $z^{\{2\}}\equiv(0,0,\dots ,0)^T$, which implies $z(t)\in V_{1}$, that is $\mathop{\rm Im}(L)\subset V_{1}$. On the other hand, if $u(t)=(u_{1}(t),u_{2}(t),\dots,u_{n}(t))^T\in V_{1}\backslash\{0\}$, then we have $\int^{t}_{0}u_{j}(s)\,\mathrm{d}s\in AP(\mathbb{R}),j=1,2,\dots ,n$. If $\widetilde{\lambda}_j\neq0$, then we obtain \[ \lim_{T\to\infty}\frac{1}{T}\int^{T}_{0}\Big(\int^{t}_{0}u_{j}(s)ds\Big) e^{-i\widetilde{\lambda}_{j}t}\,\mathrm{d}t =\frac{1}{i\widetilde{\lambda}_{j}} \lim_{T\to\infty}\frac{1}{T}\int^{T}_{0}u_{j}(t) e^{-i\widetilde{\lambda}_{j}t}\,\mathrm{d}t, \] $j=1,2,\dots ,n$. It follows that \[ \wedge\Big[\int_{0}^{t}u_{j}(s)\,\mathrm{d}s-m\Big(\int_{0}^{t}u_{j}(s)\,\mathrm{d}s\Big)\Big] =\wedge(u_{j}(t)),\quad j=1,2,\dots ,n, \] hence \[ \int_{0}^{t}u(s)\,\mathrm{d}s-m\Big(\int^{t}_{0}u(s)\,\mathrm{d}s\Big)\in V_{1}\subset X \] Note that $\int_{0}^{t}u(s)\,\mathrm{d}s-m(\int_{0}^{t}u(s)\,\mathrm{d}s)$ is the primitive of $u(t)$ in $X$, we have $u(t)\in \mathop{\rm Im}(L)$, that is $V_{1}\subset \mathop{\rm Im}(L)$. Therefore, $\mathop{\rm Im}(L)=V_{1}$. Furthermore, one can easily show that $\mathop{\rm Im}(L)$ is closed in $Z$ and \[ \dim \ker(L)=n=\mathop{\rm codim} \mathop{\rm Im}(L); \] therefore, $L$ is a Fredholm mapping of index 0. The proof is complete. \end{proof} \begin{lemma} \label{lem3.3} Let $N:X\to Z$, $Ny=(G_{1}^{y},G_{2}^{y},\dots ,G_{n}^{y})^T$, where \begin{align*} G_{i}^{y} &=r_{i}(t)-f_{i}\big(t,\exp\{y_{i}(t-\tau_{ii}(t))\}\big) \exp\big\{y_{i}(t-\tau_{ii}(t))\big\} \\ &\quad -\sum_{j=1}^{n}b_{ij}(t)\exp\big\{y_{j}(t)\big\}-\sum_{j=1,i\neq j}^{n}c_{ij}(t)\exp\big\{y_{j}(t-\tau_{ij}(t))\big\} \\ &\quad -\sum_{j=1}^{n}\int_{-\sigma_{ij}}^{0}\exp\big\{y_{j}(t+s)\big\}\, \mathrm{d}s,\,i=1,2,\dots ,n. \end{align*} Set \begin{gather*} P:X\to Z,\quad Py=\big(m(y_{1}),m(y_{2}),\dots ,m(y_{n})\big)^T,\\ Q:Z\to Z,\quad Qz=\big(m[z_{1}],m[z_{2}],\dots ,m[z_{n}]\big)^T. \end{gather*} Then $N$ is $L$-compact on $\overline{\Omega}$, where $\Omega$ is an open bounded subset of $X$. \end{lemma} \begin{proof} Obviously, $P$ and $Q$ are continuous projectors such that \[ \mathop{\rm Im} {P}=\ker(L),\, \mathop{\rm Im}(L)=\ker(Q). \] It is clear that $(I-Q)V_{2}=\{0\}$, $(I-Q)V_{1}=V_{1}$. Hence \[ \mathop{\rm Im}(I-Q)=V_{1}=\mathop{\rm Im}(L). \] Then in view of \[ \mathop{\rm Im}(P)=\ker(L), \,\mathop{\rm Im}(L)=\ker(Q) =\mathop{\rm Im}(I-Q), \] we obtain that the inverse $K_{P}:\mathop{\rm Im}(L)\to \ker(P)\cap \mathop{\rm dom}(L)$ of $L_{P}$ exists and is given by \[ K_{P}(z)=\int_{0}^{t}z(s)\,\mathrm{d}s -m\Big[\int_{0}^{t}z(s)\,\mathrm{d}s\Big]. \] Thus, \begin{gather*} QNy=\big(m[G_{1}^{y}],m[G_{2}^{y}],\dots ,m[G_{n}^{y}]\big)^T,\\ K_{P}(I-Q)Ny=\big(f(y_{1})-Q(f(y_{1})),f(y_{2})-Q(f(y_{2})), \dots ,f(y_{n})-Q(f(y_{n}))\big)^T, \end{gather*} where \[ f(y_{i})=\int_{0}^{t}\big(G_{i}^{y}-m[G_{i}^{y}]\big)\,\mathrm{d}s,\quad i=1,2,\dots ,n. \] Clearly, $QN$ and $(I-Q)N$ are continuous. Now we will show that $K_{P}$ is also continuous. By assumptions, for any $0<\epsilon<1$ and any compact set $\phi_{i}\subset C\big([-\tau,0],\mathbb{R}\big)$, let $l_{i}(\epsilon_{i})$ be the length of the inclusion interval of $K_{i}(H_{i},\epsilon_{i},\phi_{i})$, $i=1,2,\dots ,n$. Suppose that $\{z^{k}(t)\}\subset \mathop{\rm Im}(L)=V_{1}$ and $z^{k}(t)=(z_{1}^{k}(t),z_{2}^{k}(t),\dots ,z_{n}^{k}(t))^T$ uniformly converges to $\overline{z}(t)=(\overline{z}_{1}(t),\overline{z}_{2}(t),\dots , \overline{z}_{n}(t))^T$, that is $z_{i}^{k}\to\overline{z}_{i}$, as $k\to\infty$, $i=1,2,\dots ,n$. Because of $\int_{0}^{t}z^{k}(s)\,\mathrm{d}s\in Z$, $k=1,2,\dots ,n$, there exists $\sigma_{i}(0<\sigma_{i}<\epsilon_{i})$ such that $K_{i}(H_{i},\sigma_{i},\phi_{i})\subset K_{i}(\int_{0}^{t}z_{i}^{k}(s)ds,\sigma_{i},\phi_{i})$, $i=1,2,\dots ,n$. Let $l_{i}(\sigma_{i})$ be the length of the inclusion interval of $K_{i}(H_{i},\sigma_{i},\phi_{i})$ and \[ l_{i}=\max\big\{l_{i}(\epsilon_{i}),l_{i}(\sigma_{i})\big\},\quad i=1,2,\dots ,n. \] It is easy to see that $l_{i}$ is the length of the inclusion interval of $K_{i}(H_{i},\sigma_{i},\phi_{i})$ and $K_{i}(H_{i},\epsilon_{i},\phi_{i})$, $i=1,2,\dots ,n$. Hence, for any $t\notin[0,l_{i}]$, there exists $\xi_{t}\in K_{i}(H_{i},\sigma_{i},\phi_{i})\subset K_{i}(\int_{0}^{t}z_{i}^{k}(s)\,\mathrm{d}s,\sigma_{i},\phi_{i})$ such that $t+\xi_{t}\in [0,l_{i}]$, $i=1,2,\dots ,n$. Hence, by the definition of almost periodic function we have \begin{equation} \label{e3.3} \begin{aligned} &\big\|\int_{0}^{t}z^{k}(s)\,\mathrm{d}s\big\|\\ &=\max_{1\leq i\leq n}\sup_{t\in\mathbb{R}} \Big|\int_{0}^{t}z_{i}^{k}(s)\,\mathrm{d}s\Big| \\ &\leq\max_{1\leq i\leq n}\sup_{t\in [0,l_{i}]} \Big|\int_{0}^{t}z_{i}^{k}(s)\,\mathrm{d}s\Big| +\max_{1\leq i\leq n}\sup_{t\notin [0,l_{i}]}\Big|\int_{0}^{t}z_{i}^{k}(s)\,\mathrm{d}s -\int_{0}^{t+\xi_{t}}z_{i}^{k}(s)\,\mathrm{d}s\\ &\quad +\int_{0}^{t+\xi_{t}}z_{i}^{k}(s)\,\mathrm{d}s\Big|\\ &\leq2\max_{1\leq i\leq n}\sup_{t\in[0,l_{i}]}\Big| \int_{0}^{t}z_{i}^{k}(s)\,\mathrm{d}s\Big| +\max_{1\leq i\leq n}\sup_{t\notin[0,l_{i}]}\Big| \int_{0}^{t}z_{i}^{k}(s)\,\mathrm{d}s -\int_{0}^{t+\xi_{t}}z_{i}^{k}(s)\,\mathrm{d}s\Big| \\ &\leq2\max_{1\leq i\leq n}\Big|\int_{0}^{l_{i}}z_{i}^{k}(s)\,\mathrm{d}s \Big|+\max_{1\leq i\leq n}\epsilon_{i}. \end{aligned} \end{equation} From this inequality, we can conclude that $\int^{t}_{0}z(s)ds$ is continuous, where $z(t)=(z_{1}(t),z_{2}(t),\dots ,z_{n}(t))^T\in \mathop{\rm Im}(L)$. Consequently, $K_{P}$ and $K_{P}(I-Q)Ny$ are continuous. From \eqref{e3.3}, we also have $\int_{0}^{t}z(s)\,\mathrm{d}s$ and $K_{P}(I-Q)Ny$ also are uniformly bounded in $\overline{\Omega}$. Further, it is not difficult to verify that $QN(\overline{\Omega})$ is bounded and $K_{P}(I-Q)Ny$ is equicontinuous in $\overline{\Omega}$. By the Arzela-Ascoli theorm, we have immediately conclude that $K_{P}(I-Q)N(\overline{\Omega})$ is compact. Thus $N$ is $L$-compact on $\overline{\Omega}$. The proof is complete. \end{proof} By \eqref{e1.3}, $f_{i}(t,x)$ can be represented as a power-series at $\alpha_{i}$ of $x$, in form of \[ f_{i}(t,x)=f_{i}(t,\alpha_{i})+\frac{\partial f_{i}}{\partial x}\Big|_{(t,\alpha_{i})}x+o(x),\quad i=1,2,\dots ,n, \] where $o(x)$ is a higher-order infinitely small quantity of $x$. By \eqref{e1.4}, we conclude that $f_{i}(t,\alpha_{i})=0$, $i=1,2,\dots ,n$. For convenience, we denote $\frac{\partial f_{i}}{\partial x}\big|_{(t,\alpha_{i})} :=c_{ii}(t)$, $i=1,2,\dots ,n$. By \eqref{e1.3}, $c_{ii}(t)>0$. \begin{theorem} \label{thm3.1} Assume that \begin{gather*} m[r_{i}(t)]=\lim_{T\to\infty}\frac{1}{T}\int_{0}^{T}r_{i}(t) \,\mathrm{d}t>0, \\ m\Big[\sum_{j=1}^{n}(b_{ij}(t)+c_{ij}(t))\Big]=\lim_{T\to\infty} \frac{1}{T}\int_{0}^{T}\sum_{j=1}^{n}(b_{ij}(t)+c_{ij}(t)) \,\mathrm{d}t>0 \,. \end{gather*} Then \eqref{e1.1} has at least one positive almost periodic solution. \end{theorem} \begin{proof} To use the continuation theorem of coincidence degree theorem to establish the existence of a solution of \eqref{e3.1}, we set Banach space $X$ and $Z$ the same as those in Lemma \ref{lem3.1} and set mappings $L,N,P,Q$ the same as those in Lemma \ref{lem3.2} and Lemma \ref{lem3.3}, respectively. Then we can obtain that $L$ is a Fredholm mapping of index 0 and $N$ is a continuous operator which is $L$-compact on $\overline{\Omega}$. Now, we are in the position of searching for an appropriate open, bounded subset $\Omega$ for the application of the continuation theorem. Corresponding to the operator equation \[ Ly=\lambda Ny,\lambda\in(0,1), \] we obtain \begin{equation} \label{e3.4} \begin{aligned} \dot{y}_{i}(t) &=\lambda\Big[r_{i}(t)-c_{ii}(t)\exp\{y_{i}(t-\tau_{ii}(t))\} -o(\exp\{2y_{i}(t-\tau_{ii}(t))\}) \\ &\quad -\sum_{j=1}^{n}b_{ij}(t)\exp\{y_{j}(t)\}-\sum_{j=1,i\neq j}^{n}c_{ij}(t)\exp\{y_{j}(t-\tau_{ij}(t))\}\\ &\quad -\sum_{j=1}^{n}\int_{-\sigma_{ij}}^{0}\mu_{ij}(t,s) \exp\{y_{j}(t+s)\}\,\mathrm{d}s\Big],\quad i=1,2,\dots ,n. \end{aligned} \end{equation} Assume that $y(t)=(y_{1}(t),y_{2}(t),\dots ,y_{n}(t))^T\in X$ is a solution of \eqref{e3.4} for some $\lambda\in(0,1)$. Denote \[ M_{1}=\max_{1\leq i\leq n}\sup_{t\in\mathbb{R}}\{y_{i}(t)\},\quad M_{2}=\min_{1\leq i\leq n}\inf_{t\in\mathbb{R}}\{y_{i}(t)\}, \] by \eqref{e3.4}, we derive \begin{align*} m[r_{i}(t)] &=m\Big[c_{ii}(t)\exp\{y_{i}(t-\tau_{ii}(t))\} +o(\exp\{2y_{i}(t-\tau_{ii}(t))\}) \\ &\quad +\sum_{j=1}^{n}b_{ij}(t)\exp\{y_{j}(t)\}+\sum_{j=1,i\neq j}^{n}c_{ij}(t)\exp\{y_{j}(t-\tau_{ij}(t))\} \\ &\quad + \sum_{j=1}^{n}\int_{-\sigma_{ij}}^{0}\mu_{ij}(t,s) \exp\{y_{j}(t+s)\}\,\mathrm{d}s\Big],\quad i=1,2,\dots ,n \end{align*} and consequently \[ m[r_{i}(t)]\leq\exp\{M_{1}\}\Big\{m\Big[\sum_{j=1}^{n}(b_{ij}(t) +c_{ij}(t))\Big]+n+1\Big\},\quad i=1,2,\dots ,n; \] that is, \begin{equation} \label{e3.5} M_{1}\geq\ln\frac{m[r_{i}(t)]}{m[\sum_{j=1}^{n}(b_{ij}(t) +c_{ij}(t))]+n+1},\quad i=1,2,\dots ,n. \end{equation} Similarly, we can get \begin{equation} \label{e3.6} M_{2}\leq\ln\frac{m[r_{i}(t)]}{m[\sum_{j=1}^{n}(b_{ij}(t) +c_{ij}(t))]+n-1},\quad i=1,2,\dots ,n. \end{equation} By \eqref{e3.5} and \eqref{e3.6}, we find that there exist $t_{1}^{i}\in\mathbb{R}$, $i=1,2,\dots ,n$ such that $y_{i}(t_{1}^{i})\leq R_{1}$, where \[ R_{1}=\max_{1\leq i\leq n}\Big| \ln\frac{m[r_{i}(t)]}{m[\sum_{j=1}^{n}(b_{ij}(t)+c_{ij}(t))]+n-1}\Big|+1. \] Furthermore, we have \begin{equation} \label{e3.7} \begin{aligned} \big\|y\big\| &\leq\max_{1\leq i\leq n}|y_{i}(t_{1}^{i})| +\max_{1\leq i\leq n}\sup_{t\in\mathbb{R}} \Big|\int_{t_{1}^{i}}^{t}\dot{y}_{i}(s)\,\mathrm{d}s\Big| \\ &\leq R_{1} +2\max_{1\leq i\leq n}\sup_{t\in[t_{1}^{i},t_{1}^{i}+l_{i}] }\Big|\int_{t_{1}^{i}}^{t}\dot{y}_{i}(s)\,\mathrm{d}s\Big|+\max_{1\leq i\leq n}\epsilon_{i} \\ &\leq R_{1}+2\max_{1\leq i\leq n} \Big|\int_{t_{1}^{i}}^{t_{1}^{i}+l_{i}}\dot{y}_{i}(s)\,\mathrm{d}s\Big|+1. \end{aligned} \end{equation} Choose a point $\widetilde{\tau}_{i}$ such that $\widetilde{\tau_{i}}-t_{1}^{i}\in[l_{i},2l_{i}]\cap K_{i}(H_{i},\sigma_{i},\phi_{i})$, where $\sigma_{i}(0<\sigma_{i}<\epsilon_{i})$ satisfies $K_{i}(H_{i},\sigma_{i},\phi_{i})\subset K_{i}(y_{i},\epsilon_{i},\phi_{i})$, $i=1,2,\dots ,n$. Integrating \eqref{e3.4} from $t_{1}^{i}$ to $\widetilde{\tau}_{i}$, we get \begin{align*} &\lambda\int_{t_{1}^{i}}^{\widetilde{\tau}_{i}}\Big[c_{ii}(t) \exp\{y_{i}(t-\tau_{ii}(t))\}+o(\exp\{2y_{i}(t-\tau_{ii}(t))\}) +\sum_{j=1}^{n}b_{ij}(t)\exp\{y_{j}(t)\} \\ &+\sum_{j=1,i\neq j}^{n}c_{ij}(t)\exp\{y_{j}(t-\tau_{ij}(t))\} +\sum_{j=1}^{n}\int_{-\sigma_{ij}}^{0}\mu_{ij}(t,s)\exp\{y_{j}(t+s)\}\,\mathrm{d}s\Big]\,\mathrm{d}t \\ &=\lambda\int_{t_{1}^{i}}^{\widetilde{\tau}_{i}}r_{i}(t)\,\mathrm{d}t- \int_{t_{1}^{i}}^{\widetilde{\tau}_{i}}\dot{y}_{i}(t)\,\mathrm{d}t \\ &\leq \lambda\int_{t_{1}^{i}}^{\widetilde{\tau}_{i}}|r_{i}(t)| \,\mathrm{d}t+\epsilon_{i},\quad i=1,2,\dots ,n. \end{align*} From the above inequality and \eqref{e3.4}, we obtain \begin{align*} &\int_{t_{1}^{i}}^{\widetilde{\tau}_{i}}|\dot{y}_{i}(t)|\,\mathrm{d}t\\ &\leq \lambda\int_{t_{1}^{i}}^{\widetilde{\tau}_{i}}|r_{i}(t)|\,\mathrm{d}t+ \lambda\int_{t_{1}^{i}}^{\widetilde{\tau}_{i}} \Big[c_{ii}(t)\exp\{y_{i}(t-\tau_{ii}(t))\} +o(\exp\{2y_{i}(t-\tau_{ii}(t))\}) \\ &\quad + \sum_{j=1}^{n}b_{ij}(t)\exp\{y_{j}(t)\} +\sum_{j=1,i\neq j}^{n}c_{ij}(t)\exp\{y_{j}(t-\tau_{ij}(t))\} \\ &\quad +\sum_{j=1}^{n}\int_{-\sigma_{ij}}^{0}\mu_{ij}(t,s) \exp\{y_{j}(t+s)\}\,\mathrm{d}s\Big]\,\mathrm{d}t \\ &\leq 2\int_{t_{1}^{i}}^{\widetilde{\tau}_{i}}|r_{i}(t)|dt+\epsilon_{i} \\ &\leq 2\int_{t_{1}^{i}}^{\widetilde{\tau}_{i}}|r_{i}(t)|\,\mathrm{d}t+1, \quad i=1,2,\dots ,n, \end{align*} which together with \eqref{e3.7} and $\widetilde{\tau}\geq t_{1}^{i}+l_{i}$, $i=1,2,\dots ,n$, we have $\|y\|\leq\overline{R}$, where \[ \overline{R}=R_{1}+4\max_{1\leq i\leq n}\int_{0}^{\widetilde{\tau}}|r_{i}(t)|dt+3. \] Clearly, $\overline{R}$ is independent of $\lambda$. Take \[ \Omega=\{y=(y_{1},y_{2},\dots ,y_{n})^T\in X:\|y\|<\overline{R}+1\}. \] It is clear that $\Omega$ satisfies the requirement (a) in Lemma \ref{lem2.3}. when $y\in \partial\Omega\cap \ker(L)$, $y=(y_{1},y_{2},\dots ,y_{n})^T$ is a constant vector in $\mathbb{R}^{n}$ with $\|y\|=\overline{R}+1$. Then \[ QNy=\big(m[G_{1}],m[G_{2}],\dots ,m[G_{n}]\big)^T,\quad y\in X \] where \begin{align*} G_{i}&=r_{i}(t)-f_{i}(t,\exp\{y_{i}\})\exp\{y_{i}\}\\ &\quad -\sum_{j=1}^{n}b_{ij}(t)\exp\{y_{j}\}-\sum_{j=1,i\neq j}^{n}c_{ij}(t)\exp\{y_{j}\}\\ &\quad -\sum_{j=1}^{n}\int_{-\sigma_{ij}}^{0}\mu_{ij}(t,s) \exp\{y_{j}\}\,\mathrm{d}s,\quad i=1,2,\dots ,n, \end{align*} thus $QNy\neq0$, which implies that the requirement (b) in Lemma \ref{lem2.3} is satisfied. Furthermore, take the isomorphism $J:\mathop{\rm Im}(Q)\to \ker(L),Jz\equiv z$ and let $\Phi(\gamma;y)=-\gamma y+(1-\gamma)JQNy$, then for any $y\in\partial\Omega\cap \ker(L),y^T\Phi(\gamma;y)<0$, we have \[ \deg\{JQN,\Omega\cap \ker(L),0\}=\deg\{-y,\Omega\cap \ker(L),0\}\neq0. \] So, the requirement (c) in Lemma \ref{lem2.3} is satisfied. Hence, \eqref{e3.1} has at least one almost periodic solution in $\overline{\Omega}$, that is \eqref{e1.1} has at least one positive almost periodic solution. The proof is complete. \end{proof} We remark that when $n=1$ in \eqref{e1.1}, if $F_{1}(t,x)$ is a linear function and $\mu_{11}(t)\equiv0$, then Theorem \ref{thm3.1} is the same as \cite[Theorem 3.1]{m3}. \begin{thebibliography}{00} \bibitem{c1} L. Chen, H. Zhao; \emph{Global stability of almost periodic solution of shunting inhibitory celluar networks with variable coefficients}, Chaos, Solitons \& Fractals. 35(2008) 351-357. \bibitem{e1} K. Ezzinbi, M. A. Hachimi; \emph{Existence of positive almost periodic solutions of functional via Hilbert's projective metric}, Nonlinear Anal. 26(6)(1996) 1169-1176. \bibitem{f1} A. Fink; \emph{Almost Periodic Differential Equitions}, in: Lecture Notes in Mathematics, vol.377, Springer, Berlin, 1974 \bibitem{g1} R. Gaines, J. Mawhin; \emph{Coincidence Degree and Nonlinear Differetial Equitions}, Springer Verlag, Berlin, 1977. \bibitem{l1} Y. Li, Y. Kuang; \emph{Priodic solutions of periodic delay Lotka-Volterra equitions and systems}, J. Math. Anal. Appl. 255 (2001) 260-280. \bibitem{l2} Y. Li; \emph{Positive periodic solutions of discrete Lotka-Voterra competition systems with state depedent delays}, Appl. Math. Comput. 190 (2007) 526-531. \bibitem{l3} Y. Li; \emph{Positive periodic solutions of periodic neutral Lotka-Volterra system with state depedent delays}, J. Math. Anal. Appl. 330 (2007) 1347-1362. \bibitem{l4} Y. Li; \emph{Positive periodic solutions of periodic neutral Lotka-Volterra system with distributed delays}, Chaos, Solitons \& Fractals. 37 (2008) 288-298. \bibitem{l5} Y. Li, X. Fan; \emph{Existence and globally exponential stability of almost periodic solution for Cohen-Grossberg BAM neural networks with variable coefficients}, Appl. Math. Model. In Press, doi:10.1016/j.apm.2008.05.013. \bibitem{l6} W. Lin, L. Chen; \emph{Positive periodic solutions of delayed periodic Lotka-Volterra systems}, Phys. Lett. A. 334 (2005) 273-287. \bibitem{m1} X. Meng, J. Jiao, L. Chen; \emph{Global dynamics behaviors for a nonnautonomous Lotka-Voltera almost periodic dispersal system with delays}, Nonlinear Anal. 68(2008) 3633-3645. \bibitem{m2} X. Meng, L. Chen; \emph{Periodic solution and almost periodic solution for nonnautonomous Lotka-Voltera dispersal system with infinite delay}, J. Math. Anal. Appl. 339(2008) 125-145. \bibitem{m3} X. Meng, L. Chen; \emph{Almost periodic solution of non-nautonomous Lotka-Voltera predator-prey dispersal system with delays}, Journal of Theoretical Biology. 243(2006) 562-574. \bibitem{s1} J. Shi, R. Shivaji; \emph{Persistence in reaction diffusion models with weak Allee effect}, J. Math. Biol. 52(2006) 807-829. \bibitem{t1} Horst R. Thieme; \emph{Mathematics in Population Biology}, In: Princeton Syries in Theoretial and Computational Biology, Princeton University Press, Princeton, NJ, 2003. \bibitem{w1} Mei-Hui. Wang, Mark Kot; \emph{Speed of invasion in a model with strong or weak Allee effects}, Math. Biosci. 171(1)(2001) 83-97. \bibitem{x1} Y. Xia, J. Cao, S. Chen; \emph{Positive solutions for a Lotka-Volterra mutualism system with several delays}, Appl. Math. Model. 31 (2007) 1960-1969. \bibitem{y1} X. Yang; \emph{Global attractivity and positive almost periodic solution of a single secies population model}, J. Math. Anal. Appl. 336 (2007) 111-126. \bibitem{y2} Y. Yu, M. Cai; \emph{Existence and exponential stability of almost-periodic solutions for higher-order Hopfield neural networks}, Math. Comput. Model. 47(2008) 943-951. \end{thebibliography} \end{document}