\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 108, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/108\hfil Positive solutions] {Positive solutions for semi-linear elliptic equations in exterior domains} \author[H. M\^aagli, S. Turki, N. Zeddini\hfil EJDE-2009/108\hfilneg] {Habib M\^aagli, Sameh Turki, Noureddine Zeddini} % in alphabetical order \address{Habib M\^aagli \newline D\'epartement de Math\'ematiques, Facult\'e des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia} \email{habib.maagli@fst.rnu.tn} \address{Sameh Turki \newline D\'epartement de Math\'ematiques, Facult\'e des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia} \email{sameh.turki@ipein.rnu.tn} \address{Noureddine Zeddini \newline D\'epartement de Math\'ematiques, Facult\'e des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia} \email{noureddine.zeddini@ipein.rnu.tn} \thanks{Submitted August 12, 2009. Published September 10, 2009.} \subjclass[2000]{34A12, 35J60} \keywords{Positive solutions; nonlinear elliptic equations; exterior domain} \begin{abstract} We prove the existence of a solution, decaying to zero at infinity, for the second order differential equation $$ \frac{1}{A(t)}(A(t)u'(t))'+\phi(t)+f(t,u(t))=0,\quad t\in (a,\infty). $$ Then we give a simple proof, under some sufficient conditions which unify and generalize most of those given in the bibliography, for the existence of a positive solution for the semilinear second order elliptic equation $$ \Delta u+\varphi(x,u)+g( |x|) x.\nabla u =0, $$ in an exterior domain of the Euclidean space ${\mathbb{R}}^{n},n\geq 3$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}[theorem]{Example} \section{Introduction} The semilinear elliptic equation \begin{equation} \label{1} \Delta u+\varphi(x,u)+g( |x|) x.\nabla u=0,\quad x\in G_\delta = \{x\in {\mathbb{R}}^{n} : |x|> \delta >0\}, \end{equation} constitutes the object of numerous investigations in the last few years (see \cite{A1,C2,C3,C4,E1,E2,E3,N1,W1}). The function $\varphi$ is nonnegative and locally H\"{o}lder continuous in $G_\delta\times {\mathbb{R}}$ for which there exist two continuous functions $q: [\delta, \infty)\to [0, \infty)$ and $\omega: [0, \infty)\to [0,\infty)$ such that $$ 0 \leq \varphi(x,t)\leq q(|x|)\omega(t),\quad t\in [0, \infty),\; x \in G_\delta\,. $$ So far, the optimal sufficient condition stated to ensure the existence of a positive solution, decaying to zero at infinity, for \eqref{1} in some $G_B$ with $B>\delta$ is \begin{equation}\label{1'} \int_\delta^\infty r\,\left[q(r)+g^-(r)\right]\,dr<\infty \,, \end{equation} where $g^-(r)=\max(-g(r),0)$ for $r\geq \delta$. To apply the method of sub-solutions and super-solutions developed in \cite{N1} and other works, the scaling function $ |x|= r= \beta(s)=(\frac{s}{n-2})^{1/(n-2)}$ plays a capital role in finding a radial super-solution for \eqref{1} of the form $u(x)= h(|x|)= h(r)$, where $h$ is chosen so that $y(s)= s h( \beta(s))$ satisfies a nonlinear differential equation \begin{equation} \label{2} y''(s)+ G( s, y(s), y'(s))=0\,\quad s\geq s_0= (n-2)\delta^{n-2}. \end{equation} As a sub-solution of \eqref{1} we understand any function $\omega \in C^2(G_B) \cap C(\overline{G_B})$ such that $\Delta \omega (x) +\varphi(x,\omega (x))+g(|x|)x\,\cdot \nabla \omega (x) \geq0$ in $G_B$. For the super-solution, the sign of the inequality should be reversed. Our aim in this paper is twofold. Firstly, we study in section 2 the existence of solutions, having a nonnegative limit at infinity, for the problem \begin{equation}\label{3} \frac{1}{A(t)}(A(t)u'(t))' +\phi(t)+ f(t,u(t))= 0,\quad t\in (a,\infty), \end{equation} where $A$ and $f$ satisfy some hypothesis stated in the next section. Secondly, in section 3, we omit the scaling function $\beta$ defined before and we give a simple proof for the existence of positive solutions, decaying to zero at infinity, in some $G_B$, $B>\delta$ for the semi-linear elliptic equation \eqref{1}. This will be done under sufficient conditions given by the hypotheses (A3)-(A4) below, which improve and generalize \eqref{1'}. More precisely we will prove the existence of a positive solution to \eqref{1} even when $\int_\delta^\infty r\,g^-(r)\,dr=\infty$. \section{Positive solutions of second-order ODEs} In this section, we are concerned with the existence of positive solutions for the problem \begin{equation}\label{5} \begin{gathered} \frac{1}{A(t)}(A(t)u'(t))' + \phi(t)+ f(t,u(t))= 0, \quad \text{for } t \geq a>1 \\ Au'(a) = -\alpha \leq 0\,,\quad \lim_{t\to \infty}u(t) = \lambda \geq 0 \,,\quad \text{with } \alpha +\lambda>0\,, \end{gathered} \end{equation} where $A$ is a positive and differentiable function on $[1,\infty)$, $\phi$ is a nonnegative continuous function on $[1,\infty)$ and $f:[1,\infty )\times [0,\infty)\to [0,\infty)$ is continuous such that $f(x,0)=0$. In the sequel we suppose that $ \int_1^\infty \frac{1}{A(t)}\,dt<\infty$ and we denote by $$ G(t)=A(t)\Big( \int_t^{\infty}\frac{1}{A(s)}\,ds\Big) $$ for $ t\geq 1$. The following hypotheses satisfied by $A$, $\phi$ and $f$ throughout this section: \begin{itemize} \item[(A1)] $ \int_1^\infty G(t) \phi(t)\,dt<\infty$; \item[(A2)] For each $c>0$, there exists a continuous function $ k: [1,\infty)\to [0,\infty) $ such that $$ |f(t,u)-f(t,v)|\leq k(t)|u-v|\quad \text{for any } (t,u,v)\in [1,\infty) \times [0,c]\times [0,c] $$ and $\int_1^{\infty}G(t)\,k(t)\,dt<\infty$. \end{itemize} Our first existence result is the following. \begin{theorem}\label{thm1} Let $\alpha\geq 0$ and $\lambda \geq 0$ with $\alpha + \lambda>0$. Under the hypotheses {\rm (A1)-(A2)}, there exists $a>1$ such that \eqref{5} has a unique positive solution $u \in C^1([a, \infty), {\mathbb{R}})$. \end{theorem} \begin{proof} Let $$ c>M:= \lambda+ \alpha \int_1^\infty \frac{1}{A(t)}\,dt + \int_1^\infty G(t) \phi (t)\,dt. $$ From (A2), there exists a $k$ such that $|f(s,u)-f(s,v)|\leq k(s)|u-v|\, \text{ for any } (s,u,v)\in [1,\infty) \times [0,c]\times [0,c]$ and $\int_1^{\infty}G(t)\,k(t)\,dt<\infty$. Let $a>1$ such that $$ \int_a^\infty G(t)k(t)\,dt < 1-\frac{M}{c}:=\sigma. $$ We denote by $ C_b([a,\infty), \mathbb{R})$ the set of continuous bounded real valued functions on $[a, \infty)$ and by $$ \Gamma: = \{u\in C_b([a, \infty),{\mathbb{R}}): \lambda \leq u \leq c\}\,. $$ Then $\Gamma$ endowed with the supremum norm is a Banach space. To apply a fixed point argument, we define the operator $T$ on $\Gamma$ by \begin{equation}\label{6} Tu(r)=\lambda+\alpha\int_r^\infty \frac{1}{A(t)}dt+\int_r^\infty \frac{1}{A(t)}\Big(\int _a^t A(s) [\phi(s)+ f(s,u(s))]ds\Big)dt. \end{equation} First, we claim that $T (\Gamma) \subset \Gamma$. Indeed, from (A2) and Fubini theorem, we get that for each $u\in \Gamma$ any $r\geq a$, \begin{align*} \lambda \leq Tu(r) &\leq \lambda+\alpha \int_a^\infty \frac{1}{A(t)}dt +\,\int_a^\infty \frac{1}{A(t)}\Big[\int_a^t A(s)\big(\phi(s)+ck(s)\big)\,ds\Big]\,dt \\ &\leq \lambda+ \alpha \int_a^\infty \frac{1}{A(t)}dt + \int_a^\infty G(s) \phi(s)\,ds +c \, \int_a^\infty G(s)k(s)\,ds \leq c. \end{align*} Now, we have to show that $T$ is a contraction on $(\Gamma, \|.\|_\infty)$. Indeed, let $u, v\in \Gamma$ and $r \in [a,\infty)$. Then by the assumption (A2) and Fubini theorem we have \begin{align*} |Tu(r)-Tv(r)| &\leq \int_r^\infty \frac{1}{A(t)}\Big(\int_a^t A(s)k(s)|u(s)-v(s)|\,ds\Big)dt \\ &\leq {\|u-v\|_\infty}\int_a^\infty A(s)k(s)\Big(\int_s^\infty \frac{1}{A(t)}\,dt\Big) ds, \end{align*} which implies that $\|Tu-Tv\|_{\infty}\leq \sigma \,{\|u-v\|_\infty}$. Thus, by the Banach fixed point theorem, there exists a unique point $u\in(\Gamma,\|.\|_\infty)$ such that $T u = u$. It is easy to verify that $u$ is the unique solution in $C^1([a,\infty),{\mathbb{R}})$ for \eqref{5}. This completes the proof. \end{proof} It is worth pointing out that for any given $u(a)\geq 0$ and $u'(a)\leq 0$, the corresponding solution to the equation is unique and defined for all times (that is, blowup is not possible), see \cite{B1,C1,H1}. Also and under more restrictive conditions, the asymptotic behavior of the solutions have been studied, see \cite{L1}. \begin{example}\label{exa21} \rm Let $\sigma>0$ and $\theta : [1,\infty)\to {\mathbb{R}}$ be a continuous function such that $ \lim_{t\to \infty}\theta (t)=0$. Let $A(t)=t^{\sigma+1}\exp\big( \int_1^t\frac{\theta(s)}{s}\,ds\big)$. Then $ \lim_{t \to \infty} \frac{t\,A'(t)}{A(t)}=\sigma +1>1$. So $ \int_1^\infty \frac{1}{A(s)}ds<\infty$ and we have $ \int_t^\infty \frac{1}{A(s)}\,ds\sim \frac{t}{\sigma \, A(t)}$ as $t \to \infty$. Consequently $G(t)\sim \frac{t}{\sigma}$ as $t \to \infty$. Let $q, \rho$ be respectively two nontrivial nonnegative continuous function on $[1,\infty)$ and $[0,\infty)$ such that $ \int_1^\infty t\,q(t)dt<\infty$ and put $f(t,u)=q(t) \int_0^u\rho(s)ds$. Then for each nonnegative continuous function $\phi$ on $[1,\infty)$ satisfying $ \int_1^\infty t\,\phi (t) dt<\infty$, there exists $a>1$ such that \eqref{5} has a unique positive solution $u\in C^1([a,\infty),{\mathbb{R}})$. \end{example} \section{Applications to elliptic equations} In this section, we are concerned with the nonlinear second order elliptic equation \eqref{1} in an exterior domain $G_\delta=\{x\in {\mathbb{R}}^n : |x|> \delta\}$, where $n\geq 3$ and $\delta \geq 0$. We prove, under some assumptions on the functions $\varphi, g$, that \eqref{1} has a positive solution in $G_B$ for $B\geq \delta$ decaying to zero as $|x|$ tends to infinity. More precisely, we omit the function $\beta$ defined in section 1 and we apply the result in section 2 to give a simple proof for the existence of positive solution, decaying to zero, for \eqref{1} in $G_B$ with $B$ large enough. To this aim, we consider two continuous functions $\varphi$ and $g$ satisfying \begin{itemize} \item[(A3)] $\varphi \in C( G_\delta \times {\mathbb{R}},{\mathbb{R}}_+)$ and there exists a nonnegative continuous function $f$ on $[\delta,\infty)\times \mathbb{R}$ such that $f(t,0)=0$ and a nonnegative continuous function $\phi$ on $[\delta,\infty)$ such that $0\leq \varphi(x,u)\leq f(|x|,u)+\phi(|x|)$. Moreover for each $c>0$, there exists a nontrivial nonnegative continuous function $k$ defined on $[\delta,\infty)$ such that, $$ |f(t,u)-f(t,v)|\leq k(t)|u-v|,\quad \forall u,v\in {[0,c]},\; \forall t \geq \delta ; $$ \item[(A4)] $$ \int_\delta^\infty [k(t)+\phi(t)] A(t)\Big(\int_t^\infty \frac{1}{A(r)}dr\Big)dt<\infty, $$ where $A(t)=t^{n-1} \exp \big(- \int_\delta^t\xi\, g^-(\xi)d\xi \big)$ and $g^-=\max(-g,0)$. \end{itemize} In the particular case when $ \int_\delta^\infty r\, g^-(r)\,dr<\infty$, hypothesis (A4) reduces to $ \int_\delta^\infty t\,[k(t)+\phi(t)]\,dt<\infty$. So hypothesis (A4) is weaker than the condition \eqref{1'} given in the introduction where $\phi=0$. Next, we recall the following two lemmas needed to achieve the proof of our second main result. \begin{lemma}[\cite{N1}] \label{lem1} If for some $B\geq \delta$, there exists a nonnegative sub-solution $w$ and a nonnegative super-solution $v$ to \eqref{1} in $G_B$, such that $w(x)\leq v(x)$ for all $x\in \overline{G_B}$, then \eqref{1} has a solution $u$ in $G_B$, such that $w\leq u\leq v$ in $\overline{G_B}$ and $u=v$ on $S_B=\{x\in {\mathbb{R}}^n/ |x|=B\}$. \end{lemma} \begin{lemma}[{\cite[Theorem 3.5]{G1}}] \label{lem2} Let $\pounds$ be a uniformly elliptic operator on a domain $\Omega$. Let $u\in C^2(\Omega)$ such that $\pounds u \geq 0$ in $\Omega$. If there exists $x_0 \in \Omega$ satisfying $ \sup_{{x\in \Omega}}\, u(x)= u(x_0)$, then $u$ is constant in all $\Omega$. \end{lemma} Now, we give our main result in this section. \begin{theorem} \label{thm3.4} Let $\delta>0$ and assume {\rm (A3)-(A4)}. Then \eqref{1} has a positive solution $u$ in $G_B$ for some $B\geq \delta$, such that $ \lim_{x \to \infty}u(x)=0$. \end{theorem} \begin{proof} We will apply Lemma \ref{lem1}. Clearly the trivial function $w=0$ is a sub-solution of \eqref{1} in $G_\delta$. Next, we try to find a positive radial super-solution $y(r)=y(|x|)$ for \eqref{1} with $ \lim_{r\to \infty} y(r)=0$. Taking into account (A3), it suffices to find a function $y$ such that \begin{gather*} y''+[\frac{n-1}{r}+rg(r)]y'+f(r,y) +\phi(r) \leq 0 \quad \text{for } r>B>\delta \\ \lim_{r\to \infty}y(r)=0. \end{gather*} Now, taking into account of Theorem \ref{thm1}, it suffices to find $B>\delta$ and a solution for the problem \begin{align*} y''+[\frac{n-1}{r}-r g^-(r)]y'+f(r,y)+\phi(r)=0,\, \quad r>B \\ y'(r)<0 ,\quad r>B, \quad \lim_{r\to \infty}y(r)=0. \end{align*} Or equivalently, \begin{equation}\label{8} \begin{gathered} \frac{1}{A(r)}(A(r)y'(r))'+f(r,y)+\phi(r)=0,\,\quad r>B \\ y'(r)<0 ,\quad r>B, \quad \lim_{r\to \infty} y(r)=0\,, \end{gathered} \end{equation} where $$ A(r)= \,r^{n-1}\exp\Big(- \int_\delta^r \xi g^-(\xi)d\xi\Big). $$ So it follows from hypotheses (A3)-(A4) and Theorem \ref{thm1} that there exists $B>\delta$ such that \eqref{8} has a positive solution $y(r)$ on $[B,\infty)$. Obviously $y$ is a super-solution for \eqref{1} in $G_B$. Hence, by Lemma \ref{lem1}, problem \eqref{1} has a solution $u$ in $G_B$ such that $0\leq u(x) \leq y(|x|)$ in $G_B$ and $u= y> 0 $ on $S_B$. Next, we prove that the solution $u$ is positive in $G_B$. Suppose that there exists $x_0\in G_B$ such that $u(x_0)=0$. Then, the uniformly elliptic operator $\pounds u:=\Delta u+ g(|x|)x.\nabla u $ satisfies $\pounds (-u)\geq \varphi(x,u) \geq 0$ in $G_B$ and $ \sup_{{x\in G_B}}( -u(x))= -u(x_0)=0$. Hence by Lemma \ref{lem2} we obtain $u=0$ in $G_B$. From the continuity of $u$ in $\overline{G_B}$, this contradicts the fact that $u>0$ on $S_B$ and shows that $u(x)>0$, for all $x\in G_B$. \end{proof} \begin{example} \label{exa3.1} \rm In the sequel, we define by $\mathop{\rm Log}_0 t=t$ and $\mathop{\rm Log}_mt=\mathop{\rm Log}(\mathop{\rm Log}_{m-1}t)$ for $m\in {\mathbb{N}}^{\star}$ and $t$ large enough. Let $\delta_m>0$ such that $\mathop{\rm Log}_{m}(\delta_m)=1$ and let $g$ be a continuous function on $[\delta_m,\infty)$ such that \begin{equation}\label{eq3.2} g^-(r)=\max(-g(r),0)= \frac{\gamma}{r\, \prod_{k=0}^m \mathop{\rm Log}_k(r)}, \end{equation} where $ \gamma >0$ if $m \in {\mathbb{N}}^{\star}$ and $0< \gamma \delta_m$ such that \eqref{1} has a positive solution $u$ on $G_B$ decaying to zero at infinity. \end{example} \subsection*{Acknowledgements} The authors want to thank the anonymous referee for his/her careful reading of the original manuscript and the helpful suggestions. \begin{thebibliography}{00} \bibitem{A1} R. P. Agarwal, O. G. Mustafa: \emph{Riccatian approach to the decay of solutions of certain semi-linear PDE's}, Appl. Math. Lett. 20 (2007), 1206--1210. \bibitem{B1} S. R. Bernfeld: \emph{The extendability of solutions of perturbed scalar differential equations}, Pacific J. Math. 42 (1972), 277--288. \bibitem{C1} A. Constantin: \emph{Global existence of solutions for perturbed differential equations}, Ann. Mat. Pura Appl. 168 (1995), 237--299. \bibitem{C2} A. Constantin: \textit {Existence of positive solutions of quasilinear elliptic equations}, Bull. Austral. Math. Soc. 54 (1996) 147--154. \bibitem{C3} A. Constantin: \emph{Positive solutions of quasilinear elliptic equations}, J. Math. Anal. Appl. 213 (1997) 334--339. \bibitem{C4} A. Constantin: \emph{On the existence of positive solutions of second order differential equations}, Ann. Mat. Pura App. 184 (2005) 131--138. \bibitem{E1} M. Ehrnstr\"{o}m: \emph{On radial solutions of certain semi-linear elliptic equations}, Nonlinear. Anal. TMA .64 (2006) 1578--1586. \bibitem{E2} M. Ehrnstr\"{o}m: \emph{Positive solutions for second-order nonlinear differential equations}, Nonlinear. Anal. TMA .64 (2006) 1608--1620. \bibitem{E3} M. Ehrnstr\"{o}m, O. G. Mustafa: \emph{On positive solutions of a class of nonlinear elliptic equations}, Nonlinear Anal. 67 (2007) 1147--1154. \bibitem{G1} D. Gilbarg, N. S. Trudinger: \emph{Elliptic partial differential equations of second order}, Springer (1983). \bibitem{H1} T. Hara, T. Yoneyama and J. Sugie: \emph{ Continuability of solutions of perturbed differential equations}, Nonlinear Anal. 8 (1984), 963--975. \bibitem{L1} O. Lipovan: \emph{ On the asymptotic behavior of the solutions to a class of second order nonlinear differential equations}, Glasgow Math. J. 45 (2003), 179--187. \bibitem{N1} E. S. Noussair, C. A. Swanson: \emph{Positive solutions of quasilinear elliptic equations in exterior domains}, J. Math. Anal. Appl. 75 (1980), 121--133. \bibitem{W1} F. H. Wong, S. P. Wang, and C. C. Yeh: \emph{Positive solutions of nonlinear elliptic equations}, Appl. Math. Lett. 21 (2008), 298--302. \end{thebibliography} \end{document}