\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 115, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/115\hfil Upper and lower solutions] {Upper and lower solutions for a second-order three-point singular boundary-value problem} \author[Q. Zhang, D. Jiang, S. Weng, H. Gao \hfil EJDE-2009/115\hfilneg] {Qiumei Zhang, Daqing Jiang, Shiyou Weng, Haiyin Gao} \address{Qiumei Zhang \newline School of Science, Changchun University, Changchun 130022, China.\newline Department of Mathematics, Northeast Normal University, Changchun 130024, China} \email{zhangqm1110@yahoo.com.cn} \address{Daqing Jiang \newline Department of Mathematics, Northeast Normal University, Changchun 130024, China} \email{jiangdq067@nenu.edu.cn} \address{School of Science, Changchun University, Changchun 130022, China} \email[Haiyin Gao]{gaohaiyinhealthy@yahoo.com.cn} \email[Shiyou Weng]{wengshiyou2001@yahoo.com.cn} \thanks{Submitted January 27, 2009. Published September 12, 2009.} \thanks{Supported by grants 10571021 from NSFC of China, and and KLAS from Key Laboratory \hfill\break\indent for Applied Statistics of MOE} \subjclass[2000]{34B15, 34B16} \keywords{Singular boundary-value problem; upper and lower solutions; \hfill\break\indent existence of solutions; superlinear} \begin{abstract} We study the singular boundary-value problem \begin{gather*} u''+ q(t)g(t,u)=0,\quad t \in (0,1),\; \eta \in (0,1),\;\gamma >0\\ u(0)=0, \quad u(1)=\gamma u(\eta)\,. \end{gather*} The singularity may appear at $ t=0$ and the function $g$ may be superlinear at infinity and may change sign. The existence of solutions is obtained via an upper and lower solutions method. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} Motivated by the study of multi-point boundary-value problems for linear second order ordinary differential equations, Gupta \cite{g2} studied certain three point boundary-value problems for nonlinear ordinary differential equations. Since then, more general nonlinear multi-point boundary-value problems have been studied by several authors using the Leray-Schauder theorem, nonlinear alternative of Leray-Schauder or coincidence degree theory. We refer the reader to \cite{f1,f2,f3,g4,m1,m2,m3,m4} for some existence results of nonlinear multi-point boundary-value problems. Recently, Ma \cite{m3} proved the existence of positive solutions for the three point boundary-value problem \begin{gather*} u''+ b(t)g(u)=0,\quad t \in (0,1)\\ u(0)=0, \quad u(1)=\alpha u(\eta), \end{gather*} where $\eta \in (0,1)$, $0< \alpha < 1/\eta$, $ b \geq 0$ and $g \geq 0$ is either superlinear or sublinear. He applied a fixed point theorem in cones. In this paper, we study the singular three-point boundary-value problem \begin{equation} \begin{gathered} u''+ q(t)g(t,u)=0,\quad t \in (0,1),\;\eta \in (0,1),\;\gamma >0\\ u(0)=0, \quad u(1)=\gamma u(\eta). \end{gathered}\label{e1.1} \end{equation} The singularity may appear at $t=0$, and the function $g$ may be superlinear at $u=\infty$ and may change sign. Some basic results on the singular two point boundary-value problems were obtain in \cite{a1,j1,o1}, in all these papers the arguments rely on the assumption that $g(t,u)$ is positive. This implies that the solutions are concave. Recently, some authors have studied the case when $g$ is allowed to change sign by applying the modified upper and lower solutions method; see for example \cite{j1}. The present work is a direct extension of some results on the singular two-point boundary-value problems. As in \cite{j1}, our technique relies essentially on a modified method of upper and lower solutions method for singular three-point boundary-value problems which we believe is well adapted to this type of problems. \section{Upper and lower solutions} Consider the three-point boundary-value problem \begin{equation} \begin{gathered} u''+ f(t,u)=0,\quad t \in (0,1),\;\eta \in (0,1),\;\gamma \in(0,1/ \eta)\\ u(0)= A, \quad u(1)-\gamma u(\eta)= B. \end{gathered}\label{e2.1} \end{equation} We use the following assumption: \begin{itemize} \item[(A1)] $f:(0,1]\times \mathbb{R} \to \mathbb{R}$ is a continuous function, there exist two functions $\alpha,\beta \in C([0,1],{\mathbb{R}})$ and $\alpha(t)\leq\beta(t)$, for all $t\in [0,1]$, if there exist a function $h\in C(\,(0,1],(0, \infty) ) $, such that \begin{gather} |f(t,u)| \leq h(t) \quad \text{for } \alpha(t)\leq u \leq \beta(t), \label{e2.2} \\ \lim_{t \to 0^+} t^2 h(t)=0, \quad \int_0^1 t h(t)dt < \infty. \label{e2.3} \end{gather} \end{itemize} We call a function $\alpha(t)$ a lower solution for \eqref{e2.1}, if $\alpha \in C([0,1], \mathbb{R}) \cap C^2((0,1), \mathbb{R})$, and \begin{gather*} \alpha''+ f(t,\alpha) \geq 0,\quad \mbox{for } t \in (0,1),\\ \alpha(0)\leq A, \quad \alpha(1)-\gamma \alpha(\eta)\leq B. \end{gather*} Similarly, we call a function $\beta(t)$ an upper solution for \eqref{e2.1}, if $\beta \in C([0,1], \mathbb{R}) \cap C^2((0,1), \mathbb{R})$, and \begin{gather*} \beta''+ f(t,\beta)\leq0,\quad \mbox{for } t \in (0,1),\\ \beta(0)\geq A, \quad \beta(1)-\gamma \beta(\eta)\geq B. \end{gather*} A function $u(t)$ is said to be a solution to \eqref{e2.1}, if it is both a lower and an upper solution to \eqref{e2.1}. Our first result reads as follows. \begin{theorem} \label{thm1} Assume {\rm (A1)} and let $\alpha,\beta $ be, respectively, a lower solution and an upper solution for \eqref{e2.1} such that $\alpha(t)\leq \beta (t)$ on $[0,1]$. Then \eqref{e2.1} has at least one solution $ u(t) $ such that $$ \alpha(t)\leq u(t)\leq \beta(t),\quad \text{for } t\in [0,1]. $$ \end{theorem} Consider now the modified boundary-value problem \begin{equation} \begin{gathered} u''+f_1(t,u)=0,\quad \text{for } t \in (0,1),\\ u(0)=A, \quad u(1)-\gamma u(\eta)=B, \end{gathered} \label{e2.1*} \end{equation} where $$ f_1(t,u) = \begin{cases} f(t,\alpha(t)), & \mbox{if } u<\alpha(t),\\ f(t,u), & \mbox{if } \alpha(t)\leq u \leq \beta(t),\\ f(t,\beta(t)), & \mbox{if } u> \beta(t). \end{cases} $$ \begin{lemma} \label{lem2.1} Assume that \eqref{e2.3} holds. Then the boundary-value problem \begin{equation} \begin{gathered} y''=-h(t), \quad 0 < t < 1,\\ y(0)=A, \quad y(1)-\gamma y(\eta)=B \end{gathered} \label{e2.4} \end{equation} has a unique solution $y(t)$ in $C([0,1],[0, \infty) ) \cap C^2((0,1), \mathbb{R})$, which can be written as $$ y(t)= A + \frac{B-A(1-\gamma)}{1-\gamma \eta} t +\int_0^1 G(t,s) h(s)ds, \quad 0 \leq t \leq 1, $$ where $G(t,s)$ is Green's function of the boundary-value problem $- y''= 0$, $y(0)=0$, $y(1)=\gamma y(\eta)$. The function $G$ is explicitly given by: when $0\leq s \leq \eta$, \[ G(t,s) = \begin{cases} \frac{s[1-t-\gamma(\eta-t)]}{1-\gamma \eta}, & s\leq t,\\ \frac{t[1-s-\gamma(\eta-s)]}{1-\gamma \eta}, & s>t; \end{cases} \] when $\etat. \end{cases} $$ \end{lemma} \begin{proof} Uniqueness. The proof of the uniqueness of a solution is standard and hence omitted. Existence. Let $$ y(t) :=A + \frac{B-A(1-\gamma)}{1-\gamma \eta} t + \int^1_0 G(t,s) h(s) ds, \quad 0 \leq t \leq 1; $$ i.e., $$ y(t)=\begin{cases} A + \frac{B-A(1-\gamma)}{1-\gamma \eta} t +\int^t_0\frac{s[1-t-\gamma(\eta-t)]}{1-\gamma \eta}h(s)ds\\ +\int^\eta_t\frac{t[1-s-\gamma(\eta-s)]}{1-\gamma \eta}h(s)ds +\int^1_\eta\frac{t(1-s)}{1-\gamma \eta}h(s)ds, & 0\leq t \leq \eta, \\[4pt] A + \frac{B-A(1-\gamma)}{1-\gamma \eta} t +\int^\eta_0 \frac{s[1-t-\gamma(\eta-t)]}{1-\gamma \eta}h(s)ds\\ +\int^t_\eta \frac{s(1-t)+\gamma \eta (t-s)}{1-\gamma \eta}h(s)ds +\int^1_t\frac{t(1-s)}{1-\gamma \eta}h(s)ds, & \eta0$, one can find a $\delta_1>0$ (independent with $u$) such that $0<\delta_1<1/8$ and \begin{equation} (\Phi u)(t)<\frac{\epsilon}{2}, \quad t \in [0, 2 \delta_1] . \label{e2.8} \end{equation} On the other hand, from \eqref{e2.5}, since $|f_1(s,u(s))|\leq h(s)$, $s\in (0,1)$, we can obtain $$ |(\Phi u)'(t)| \leq L, \quad t\in [\delta_1, 1]. $$ Let $\delta_2=\frac {\epsilon}{2 L} $, then for $t_1, t_2 \in [\delta_1,1]$, $|t_2-t_1|<\delta_2$, we have \begin{equation} |(\Phi u)(t_1)-(\Phi u)(t_2)|\leq L |t_1- t_2|< \frac {\epsilon}{2}. \label{e2.9} \end{equation} Define $\delta =\min\{\delta_1,\delta_2\}$, then using \eqref{e2.8}, \eqref{e2.9}, we obtain \begin{equation} |(\Phi u)(t_1)-(\Phi u)(t_2)|<\epsilon, \label{e2.10} \end{equation} for $t_1, t_2\in [0,1]$, $|t_1- t_2|<\delta$. This shows that $\{(\Phi u)(t): u\in X \}$ is equicontinuous on $[0,1]$. We can obtain the continuity of $\Phi$ in a similar way as above. In fact, if $u_n, u\in X$ and $\|u_n-u\|\to 0\ $ as $n\to \infty$, then we have \begin{equation} |(\Phi u_n)(t) - (\Phi u)(t)| \leq 2 \int_0^1G(t,s)h(s)ds =2 y(t),\quad t\in [0,1], \label{e2.11} \end{equation} Noting the facts that $y(0)=0$ and the continuity of $y(t)$ on $[0,1]$, then for any $\epsilon >0$, one can find a $\delta_1>0$ (independent of $u_n $) such that $0<\delta_1<1/ 8$ and \begin{equation} |(\Phi u_n)(t) - (\Phi u)(t)| < \epsilon, \quad t \in [0, \delta_1]. \label{e2.12} \end{equation} On the other hand, from the continuity of $f_1$, one has \begin{equation} |(\Phi u_n)(t) -( \Phi u)(t)| \to 0, \quad t \in [\delta_1, 1], \label{e2.13} \end{equation} as $n\to \infty$. This together with \eqref{e2.12} implies that $\|\Phi u_n-\Phi u\| \to 0$ as $n\to \infty$. Therefore, $\Phi :X\to X$ is completely continuous. The proof is complete. \end{proof} \begin{lemma} \label{lem2.3} Let $u(t)$ be a solution to \eqref{e2.1*}. Then $\alpha(t) \leq u(t)\leq \beta(t)$ for all $t\in [0,1]$; i.e., $u(t)$ is a solution to \eqref{e2.1}. \end{lemma} \begin{proof} We first prove that $u(t)\leq \beta(t)$ on $[0,1]$. Let $x(t):=u(t)-\beta(t)$. Assume that $u(t)>\beta(t)$ for some $t\in [0,1]$. Since $u(0)=0\leq \beta (0)$, it follows that $$ x(0)\leq 0, \quad x(1)=u(1)-\beta(1)\leq \gamma u(\eta)-\gamma \beta(\eta)=\gamma x(\eta). $$ Let $ \sigma \in (0,1]$ be such that $ x(\sigma)=\max_{t \in [0,1]}x(t)$. Then $x(\sigma) >0$. Case(i): $ \sigma \in (0,1)$. So there exists an interval $(a,\sigma]\subset (0,1)$ such that $x(t)>0$ in $(a,\sigma]$, and $$ x(a)=0, \quad x(\sigma)=\max_{t \in [0,1]} x(t) >0, \quad x'(\sigma)=0. $$ For $t\in (a, \sigma]$ we have that $f_1(t,u(t))=f(t,\beta(t))$ and therefore $$ u''(t)+f_1(t,u(t))=u''(t)+f(t,\beta(t))=0 \quad\text{for all } t\in (a, \sigma]. $$ On the other hand, as $\beta$ is an upper solution for \eqref{e2.1}, we have $$ \beta''(t)+f(t,\beta(t))\leq 0 \quad\text{for all } t\in (a, \sigma]. $$ Thus, we obtain $u''(t)\geq \beta''(t)$ for all $t\in (a, \sigma]$, and hence, $x''(t)\geq0$. Then $x'(t)\leq 0$ on $(a,1] $ which is a contradiction. Case(ii): $ \sigma =1$. So there exists $(a,1] \subset (0,1]$ such that $$ x(a)=0, \quad x(1)=\max_{t \in [0,1]} x(t), x(1)- \gamma x(\eta) \leq 0. $$ In the same way as in Case(i), we can obtain that $ x(t) >0,x''(t)\geq 0, t \in (a,1]$. Since $ x(\eta)\geq \frac{1}{\gamma}x(1)>0$, then $ \eta >a$. \end{proof} Consider the three-point boundary-value problem \begin{equation} \begin{gathered} x''=h(t)>0, \quad a < t < 1, \\ x(a)=0, \quad x(1)-\gamma x(\eta)=b_1 \leq 0. \end{gathered} \label{e2.14} \end{equation} Then this equation has a unique solution $x(t) \in C([a,\sigma], [0, \infty)) \cap C^2((a,1), \mathbb{R})$, which can be represented as $$ x(t)= \frac{b_1 (t-a)}{1-a- \gamma (\eta-a)} -\int_a^1 G_{[a,1]}(t,s) h(s)ds, \quad a \leq t \leq 1, $$ where $G_{ [a,1]}(t,s)$ is the Green's function of the boundary-value problem $- y''= 0$, $y(a)=0$, $y(1)=\gamma y(\eta)$, which is explicitly given by: when $a\leq s \leq \eta$, $$ G_{ [a,1]}(t,s) = \begin{cases} \frac{(s-a)[1-t-\gamma(\eta-t)]}{1-a- \gamma (\eta-a)}, & s\leq t,\\[4pt] \frac{(t-a)[1-s-\gamma(\eta-s)]}{1-a- \gamma (\eta-a)}, & s>t; \end{cases} $$ when $\etat. \end{cases} $$ Since $0< \gamma < \frac{1}{\eta}< \frac{1-a}{\eta-a}$, then $G_{ [a,1]}(t,s) \geq 0$, and hence $ x(t)\leq 0 $ on $[a,1]$, which is a contradiction. In very much the same way, we can prove that $u(t) \geq \alpha(t)$ on $[0,1]$. \section{Main results} Let $g:[0,1] \times (0, \infty)\to { \mathbb{R}}$ be a continuous function and $q \in C((0,1], { \mathbb{R}_0^+})$. Consider the three-point boundary-value problem \begin{equation} \begin{gathered} u''+ q(t)g(t,u)=0,\quad t \in (0,1),\;\eta \in (0,1),\; \gamma \in(0,1]\\ u(0)=0, \quad u(1)=\gamma u(\eta). \end{gathered}\label{e3.1} \end{equation} \begin{theorem} \label{thm2} Assume that \begin{itemize} \item[(H1)] $|g(t,x)| \leq F(x) + Q(x)$ on $ [0,1] \times (0,\infty)$ with $F>0$ continuous and non-increasing on $(0, \infty)$, $Q \geq 0$ continuous on $[0, \infty)$, and $\frac{Q}{F}$ nondecreasing on $(0,\infty)$; \item[(H2)] there exist constants $L > 0$ and $\varepsilon>0$ such that $g(t,x) > L$ for all $(t,x) \in [0,1] \times (0,\varepsilon]$, and $F(x)>L$, $x\in (0,\varepsilon]$; \item[(H3)] \begin{gather} \lim_{t\to 0^+} t^2q(t)=0, \quad \int_0^1 tq(t)dt<\infty,\label{e3.2}\\ \sup_{c \in (0, \infty)} \Big( \frac{1} {1 + \frac{Q(c)} {F(c)} } \int^c_0 \frac{du}{ F(u)} \Big) > b_0, \label{e3.3} \end{gather} where $b_0 = \int^1_0 rq(r)dr$. \end{itemize} Then \eqref{e3.1} has at least one solution $u \in C([0,1], [0,\infty)) \cap C^2((0,1), \mathbb{R})$ with $u(t)> 0$ on $(0,1]$. \end{theorem} From Lemma \ref{lem2.1}, we obtain the following result. \begin{lemma} \label{lem3.1} There exists an unique solution $W\in C([0,1],[0,\infty))\cap C^2((0,1),\mathbb{R})$, with $W(t)> 0$ on $(0,1]$ to the problem \begin{equation} \begin{gathered} W''+ q(t)=0, \quad 0 < t < 1,\\ W(0)=0, \quad W(1)=\gamma W(\eta). \end{gathered} \label{e3.4} \end{equation} \end{lemma} Choose $M>0$, $\delta >0$ ($\delta b_0. \label{e3.5} \end{equation} Let $n_0\in \{1,2,\dots \}$ be chosen so that $1/n_0 < \min\{\varepsilon-m\|W\|, \delta\}$, where $W$ is the solution of \eqref{e3.4}, and $0 L > m \quad\text{for all } t\in [0,1]. $$ Then we obtain \begin{align*} \alpha_n''(t)+ q(t)g(t, \alpha_n(t)) &=(mW(t)+\frac{1}{n})''+q(t)g(t,mW(t)+\frac{1}{n})\\ &=mW''(t)+q(t)g(t,mW(t)+\frac{1}{n})\\ &=q(t)(g(t,mW(t)+\frac{1}{n})-m)>0, \quad 00$. In the same way as in the Claim, we can easily prove $\alpha_n(t)=\frac{1}{n}+mW(t)$ is also a (strict) lower solution of \eqref{e3.8n}. By Lemma \ref{lem2.1}, let $\beta_n^0\in C([0,1],\mathbb{R})\cap C^2((0,1),\mathbb{R})$ be the unique solution of the boundary-value problem \begin{equation} \begin{gathered} u''+ q(t)F(\alpha_n(t))(1+\frac{Q(M)}{F(M)})=0, \quad 0 < t < 1,\\ u(0)=\frac{1}{n}, \quad u(1)-\gamma u(\eta)=\frac{1-\gamma }{n}. \end{gathered} \label{e3.9n} \end{equation} Since $\beta_n^0$ is a solution of this equation, \begin{gather*} {\beta_n^0}''+ q(t)F(\alpha_n(t))(1+\frac{Q(M)}{F(M)})=0, \quad 0< t <1,\\ {\beta_n^0}(0)=\frac{1}{n}, \quad {\beta_n^0}(1)-\gamma {\beta_n^0}(\eta)=\frac{1-\gamma}{n}. \end{gather*} On the other hand, as $\alpha_n$ is a lower solution of \eqref{e3.8n}, and $\alpha_n\geq 1/n$, we have \begin{gather*} {\alpha_n}''+ q(t)F(\alpha_n(t))(1+\frac{Q(M)}{F(M)})\geq 0, \quad 0< t<1,\\ \alpha_n(0)=\frac{1}{n}, \quad \alpha_n(1)-\gamma {\alpha_n}(\eta)=\frac{1-\gamma}{n}. \end{gather*} So we obtain $\alpha_n(t)\leq \beta_n^0(t)$ for $t\in [0,1]$. Thus \begin{align*} &{\beta_n^0}''+q(t)F^*(\beta_n^0)(1+\frac{Q(M)}{F(M)})\\ &=-q(t)F(\alpha_n)(1+\frac{Q(M)}{F(M)})+q(t)F(\beta_n^0) (1+\frac{Q(M)}{F(M)})\\ &=q(t)(1+\frac{Q(M)}{F(M)})(F(\beta_n^0)-F(\alpha_n))\leq 0, \end{align*} so that $\beta_n^0$ is an upper solution for problem \eqref{e3.8n}. If we now take $\alpha_n^0\equiv \alpha_n$, we have that $\alpha_n^0$ and $\beta_n^0$ are, respectively, a lower and an upper solution of \eqref{e3.8n} with $\alpha_n^0(t)\leq \beta_n^0(t)$, for all $t\in [0,1]$. So by the Lemma \ref{lem2.3}, we know that there exists a solution $\beta_n\in C([0,1],\mathbb{R})\cap C^2((0,1),\mathbb{R})$ of \eqref{e3.8n} such that $$ \alpha_n(t) =\alpha_n^0(t)\leq \beta_n(t)\leq \beta_n^0(t), \quad \forall t\in [0,1]. $$ Now we claim that $\|\beta_n\| 0$ there is $h_r \in C((0,1], (0,\infty) )$: $|q(t)g(t,x)| \leq h_r(t)$ for all $(t,x)\in (0,1]\times[r,\infty)$, such that $$ \lim_{t\to 0^+}t^{2}h_r(t)=0 , \quad \int_0^1 t h_r(t) dt < +\infty; $$ \item[(H2*)] there exist constants $L > 0$ and $\varepsilon>0$ such that $g(t,x) > L$ for all $(t,x) \in [0,1] \times (0,\varepsilon]$. \end{itemize} Then \eqref{e3.1} has at least one solution $u \in C([0,1], [0,\infty) \cap C^2((0,1), \mathbb{R})$. Moreover, if $g(t,x)$ is non-increasing in $x > 0$, then the solution is unique. \end{theorem} \section{An example} Consider the singular boundary-value problem \begin{equation} \begin{gathered} u''+ \sigma t^{-m} (u^{-\alpha}+u^{\beta} -T\sin(8\pi t))=0, \quad t \in (0,1)\\ u(0)=0,\quad z u(1)=\gamma u(\eta), \quad \eta \in (0,1),\; \gamma \in(0,1] \end{gathered} \label{e4.1} \end{equation} with $ 0 \leq m <2$, $ \sigma > 0$, $\alpha>0$, $\beta \geq 0$. Set \begin{gather*} F(u) = u^{-\alpha}, \quad Q(u)= u^{\beta}+1, \quad q(t)= \sigma t^{-m},\\ b_0 = \int^1_0 r q(r)dr =\frac{\sigma}{2-m}. \end{gather*} Applying Theorem \ref{thm2}, we find that \eqref{e4.1} has a positive solutions if \begin{equation} \sigma < (2-m) \sup_{x\in (0, \infty)} \frac{ x^{\alpha + 1}} { (\alpha+1)(1 + x^{\alpha} + x^{\alpha + \beta})}. \label{e4.2} \end{equation} Obviously, (H1)-(H3) in Theorem \ref{thm2} are satisfied. Thus, \eqref{e4.1} has a solution $u\in C([0,1],[0,\infty)\cap C^2((0,1),\mathbb{R})$ with $u>0$ on $(0,1]$. We remark that if $ 0 \leq \beta <1$, then \eqref{e4.1} has at least one positive solution for all $ \sigma >0$, since the right-hand side of \eqref{e4.2} is infinity. \begin{thebibliography}{00} \bibitem{a1} R. P. Agarwal and D. O'Regan: Nonlinear superlinear singular and nonsingular second order boundary-value problems. {\it J. Differential Equations}, \textbf{143} (1998), 60-95. \bibitem{a2} R. P. Agarwal, H. Gao, D. Q. Jiang, D. O'Regan, and X. Zhang: Existence principles and a upper and lower solution theory for the one-dimension $p$-Laplacian singular boundary-value problem with sign changing nonlinearities. {\it Dynamic Systems and Applications}, \textbf{15} (2006), 3-20. \bibitem{f1} W. Feng and J. R. L. Webb: Solvability of a three-point Nonlinear boundary-value problems at resonance. {\it Nonlinear Analysis TMA}, \textbf{30} (1997) No. 6, 3227-3238. \bibitem{f2} W. Feng and J. R. L. Webb: Solvability of a m-point boundary-value problems with nonlinear growth. {\it J. Math. Anal. Appl.}, \textbf{212} (1997), 467-480. \bibitem{f3} W. Feng: On a m-point Nonlinear boundary-value problem. {\it Nonlinear Analysis TMA}, \textbf{30} (1997), No. 6, 5369-5374. \bibitem{g1} Y. P. Guo, W. R. Shan, W. G. Ge: Positive solutions for a second order m-point boundary-value problems. {\it J. comput. Appl. Math. }, \textbf{151} (2003), 415-424. \bibitem{g2} C. P. Gupta: Solvability of a three-point nonlinear boundary-value problem for a second order ordinary differential equations. {\it J. Math. Anal. Appl.}, \textbf{168} (1992), 540-551. \bibitem{g3} C. P. Gupta, S. K. Ntouyas, P. C. Tsamatos: Solvability of a m-point boundary-value problem for second order ordinary differential equations. {\it J. Math. Anal. Appl.}, \textbf{189} (1995), 575-584. \bibitem{g4} C. P. Gupta: A sharper condition for the solvability of a three-point second-order boundary-value problem. {\it J. Math. Anal. Appl.}, \textbf{205} (1997), 586-597. \bibitem{h1} X. M. He, W. G. Ge: Triple solutions for second order three-point boundary-value problems. {\it J. Math. Anal. Appl.}, \textbf{268} (2002), 256-265. \bibitem{j1} D. Q. Jiang: Upper and lower solutions for a superlinear singular boundary-value problem. {\it Computers and Mathematics with Applications}, \textbf{41} (2001), 563-569. \bibitem{m1} R. Ma: Existence theorems for a second order three-point boundary-value problem. {\it J. Math. Anal. Appl.}, \textbf{212} (1997), 430-442. \bibitem{m2} R. Ma: Existence theorems for a second order m-point boundary-value problem. {\it J. Math. Anal. Appl.}, \textbf{211} (1997), 545-555. \bibitem{m3} R. Ma: Positive solutions of a nonlinear three-point boundary-value problem. {\it Electronic Journal of Differential Equations}, \textbf{1999} (1999), No. 34, 1-8 \bibitem{m4} R. Ma and N. Cataneda: Existence of solution for nonlinear m-point boundary-value problem. {\it J. Math. Anal. Appl.}, \textbf{256} (2001), 556-567. \bibitem{m5} R. Ma and Wang Haiyan: Positive solutions of nonlinear three-point boundary-value problems. {\it J. Math. Anal. Appl. }, \textbf{279} (2003), 1216-1227. \bibitem{o1} D. O'Regan: Positive solutions to singular and nonsingular second-order boundary-value problems. {\it J. Math. Anal. Appl.}, \textbf{142} (1989), 40-52. \bibitem{x1} Xu Xian: Positive solutions of Singular m-point Boundary Value Problems with Positive Parameter. {\it J. Math. Anal. Appl. }, \textbf{291} (2004), 352-367. \bibitem{z1} Z. X. Zhang and J. Y. Wang: The upper and lower solution method for a class of singular nonlinear second-order three-point boundary-value problems. {\it J. Comput. Appl.}, \textbf{147} (2002), 41-52. \bibitem{w1} Z. L. Wei, Z. T. Zhang: A necessary and sufficient condition for the existence of positive solutions of singular superlinear boundary value problems. {\it Acta Mathematica Sinica Chinese Series}, \textbf{48} (2005), No. 1, 25-34. \end{thebibliography} \end{document}