\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 122, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/122\hfil Oscillation of solutions] {Oscillation of solutions to impulsive dynamic equations on time scales} \author[Q. Li, F. Guo \hfil EJDE-2009/122\hfilneg] {Qiaoluan Li, Fang Guo} \address{Qiaoluan Li \newline College of Mathematics and Information Science, Hebei Normal University, \newline Shijiazhuang, 050016, China} \email{qll71125@163.com} \address{Fang Guo \newline Department of Mathematics and Computer, Bao Ding University, 071000, China} \email{gf825@126.com} \thanks{Submitted February 26, 2009. Published September 29, 2009.} \thanks{Supported by grant 07M004 from the Natural Science Foundation of Hebei Province, \hfill\break\indent and by the Main Foundation of Hebei Normal University} \subjclass[2000]{34A60, 39A12, 34K25} \keywords{Oscillation; time scales; impulsive dynamic equations} \begin{abstract} In this article, we study the oscillation of second order impulsive dynamic equations on time scales. The effect of the moments of impulse are fixed. Using Riccati transformation techniques, we obtain some conditions for the oscillation of all solutions \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}[theorem]{Example} \newtheorem{definition}[theorem]{Definition} \section{Introduction} This paper concerns the oscillation of second-order impulsive dynamic equations on time scales. We consider the system \begin{equation} \begin{gathered} \label{e1} (a(t)x^\Delta (t))^\Delta +p(t)x(\sigma(t))=0,\quad t\in\mathbb{J}_{ \mathbb{T}} :=[t_0,\infty)\cap \mathbb{T},t\neq t_k,\; k=1,2,\dots,\\ x(t_{k}^{+})=b_kx(t_k),\quad x^\Delta (t_{k}^{+})=c_kx^\Delta (t_k),\quad k=1,2,\dots,\\ x(t_{0}^{+})=x(t_0),\quad x^\Delta (t_{0}^{+})=x^\Delta (t_0), \end{gathered} \end{equation} where $\mathbb{T}$ is a time scales, unbounded-above, with $t_k\in \mathbb{T}$, $0\leq t_00$, $c_k>0$, $d_k=\frac{c_k}{b_k}$, $ t_k$ are right dense, where $ C_{\rm rd}$ denotes the set of rd-continuous functions, $\sigma(t):=\inf \{{s\in \mathbb{T} :s>t}\}$, $\mathbb{R}^+ =\{x:x>0\}$. \begin{definition} \label{def1} \rm A function $x$ is a solution of \eqref{e1}, if it satisfies $(a(t)x^\Delta (t))^\Delta +p(t)x(\sigma(t))=0$ a.e. on $\mathbb{J}_{\mathbb{T}}\backslash\{t_k\}$, $k=1,2,\dots$, and for each $k=1,2,\dots,x$ satisfies the impulsive condition $x(t_{k}^{+})=b_kx(t_k)$, $x^\Delta (t_{k}^{+})=c_kx^\Delta (t_k)$ and the initial condition $x(t_{0}^{+})=x(t_0)$, $x^\Delta (t_{0}^{+})=x^\Delta (t_0)$. \end{definition} \begin{definition} \label{def2} \rm A solution $x$ of \eqref{e1} is oscillatory if it is neither eventually positive nor eventually negative; otherwise it is called non-oscillatory. Equation \eqref{e1} is called oscillatory if all solutions are oscillatory. \end{definition} In recently years, there has been an increasing interest in studying the oscillation and non-oscillation of solutions of various equations on time scales, and we refer the reader to papers \cite{e1,s1,s2,z1} and references cited therein. The time scales calculus has a tremendous potential for applications in mathematical models of real processes. Impulsive dynamic equations on time scales have been investigated by Agarwal \cite{a1}, Benchohra \cite{b1} and so forth. Benchohra \cite{b1} considered the existence of extremal solutions for a class of second order impulsive dynamic equations on time sales. The oscillation of impulsive differential equations and difference equations have been investigated by many authors and numerous papers have been published on this class of equations and good results were obtained (see \cite{g1,m1} and the references therein). But fewer papers are on the oscillation of impulsive dynamic equations on time scales. For example, Huang \cite{h1} considered the equation \begin{gather*} y^{\Delta\Delta}(t)+f(t, y^{\sigma}(t))=0,\quad t\in\mathbb{J}_{ \mathbb{T}}:=[0,\infty)\cap \mathbb{T},\quad t\neq t_k,\;k=1,2,\dots,\\ y(t_{k}^{+})=g_k(y(t_k)),\quad y^\Delta (t_{k}^{+})=h_k(y^\Delta (t_k)),\quad k=1,2,\dots,\\ y(t_{0}^{+})=y(t_0),\quad y^\Delta (t_{0}^{+})=y^\Delta (t_0). \end{gather*} Using Riccati transformation techniques, they obtain sufficient conditions for oscillations of all solutions. \section{Results} In the following, we assume the solutions of \eqref{e1} exist in $\mathbb{J}_{\mathbb{T}}$. To the best of our knowledge, the question of the oscillation for second order self-conjugate impulsive dynamic equations has not been yet considered. \begin{lemma} \label{lem1} Suppose that $x(t)>0$, $t\geq t_{0}'\geq t_0$ is a solution of \eqref{e1}. If \begin{equation} \int_{t_0}^{t_1}\frac{\Delta s}{a(s)}+d_1\int_{t_1}^{t_2}\frac{\Delta s}{a(s)}+d_1d_2\int_{t_2}^{t_3}\frac{\Delta s}{a(s)}+\dots+d_1d_2\dots d_n\int_{t_n}^{t_{n+1}}\frac{\Delta s}{a(s)}+\dots=\infty, \label{e2} \end{equation} then $x^\Delta (t_{k}^{+})\geq 0$ and $x^\Delta (t)\geq 0$ for $t\in (t_k,t_{k+1}]_\mathbb{T}$, where $t_k \geq t_{0}'$ \end{lemma} The proof is similar to that in \cite[Lemma 2.1]{h1}; so we omit it. We remark that when $a(t)\equiv 1$, Lemma \ref{lem1} reduces to \cite[Lemma 2.1]{h1}. \begin{lemma} \label{lem2} Assume that $ q(t)\in C_{\rm rd}(\mathbb{T},\mathbb{R}^+)$, if $$ \omega ^{\Delta\Delta}(t)+q(t)\omega^\Delta (t)\leq 0 $$ has a positive solution, then $$ \omega ^{\Delta\Delta}(t)+q(t)\omega^\Delta (t)= 0 $$ has a positive solution. \end{lemma} The proof is similar to that in \cite[Lemma 4.1.2]{e2}; so we omit it. \begin{theorem} \label{thm1} Assume that $a(t)\equiv 1 $ and \eqref{e2} holds. \begin{equation} \Big(\prod_{T\leq t_{k}T\geq t_0\label{e3} \end{equation} is oscillatory, then \eqref{e1} is oscillatory. \end{theorem} \begin{proof} Suppose to the contrary that \eqref{e1} has a non-oscillatory solution $x(t)$, we may assume that $x(t)$ is eventually positive solution of \eqref{e1}; i.e., $x(t)>0$, $t\geq T\geq t_0$. From Lemma \ref{lem1}, we have $x^\Delta (t)\geq 0$, $x^\Delta (t_{k}^{+})\geq 0$, $t\geq T$, $t\in \mathbb{T}$. Let $z(t)=\frac{x^\Delta (t)}{x(t)}\geq 0$. For $t\neq t_k$, we get \begin{gather*} z^\Delta (t) = \frac{x^{\Delta\Delta}(t)x(t)-(x^\Delta (t))^2}{x(t) x(\sigma(t))} =-p(t)-\frac{z^2(t)}{1+\mu(t)z(t)},\\ z(t^{+}_{k})=\frac{x^\Delta (t_k^{+})}{x(t_k^+)} =\frac{c_kx^\Delta (t_k)}{b_kx(t_k)}=d_kz(t_k). \end{gather*} Thus we arrive at \begin{gather*} z^\Delta (t)+\frac{z^2(t)}{1+\mu(t)z(t)}+p(t)=0,\quad t\in [T,\infty)\cap\mathbb{T},\; t\neq t_k, \\ z(t_{k}^{+})=d_kz(t_k). \end{gather*} Now we define $v(t)=(\prod_{T\leq t_{k} T$, $t\in \mathbb{T}$. Then for $t_n>T$, $$ v(t_{n}^{+})=(\prod_{T\leq t_k\leq t_n}d_{k}^{-1})z(t_n^{+})= (\prod_{T\leq t_k\leq t_n}d_{k}^{-1})d_nz(t_n)=v(t_n), $$ which implies that $v(t)$ is rd-continuous on $(T,\infty)\cap\mathbb{T}$. For $t\neq t_n$, we have \begin{align*} v^\Delta (t) &= \prod_{T\leq t_k< t}d_{k}^{-1}z^\Delta (t)\\ &= \prod_{T\leq t_k< t}d_{k}^{-1}[-p(t)-\frac{z^2(t)}{1+\mu(t)z(t)}]\\ &=\prod_{T\leq t_k< t}d_{k}^{-1}[-p(t)-\frac{(\prod_{T\leq t_k< t}d_{k})^{2}v^2(t)}{1+\prod_{T\leq t_k< t}d_{k}\mu(t)v(t)}]\\ &= -\prod_{T\leq t_k< t}d_{k}\frac{v^2(t)}{1+\prod_{T\leq t_k< t}d_{k}\mu(t)v(t)}-\prod_{T\leq t_k< t}d_{k}^{-1}p(t). \end{align*} For $t=t_n$, the left-hand derivative of $v(t)$ at $t=t_n$ is given by \begin{align*} v^\Delta (t_{n}^{-}) &= \prod_{T\leq t_k< t_n}d_{k}^{-1}z^\Delta (t_{n}^{-})\\ &= \prod_{T\leq t_k< t_n}d_{k}^{-1}\lim_{t\to t_{n}^{-}}[-p(t)-\frac{z^2(t)}{1+\mu(t)z(t)}]\\ &= \prod_{T\leq t_k< t_n}d_{k}^{-1}[-p(t_n)-\frac{z^2(t_n)}{1+\mu(t_n)z(t_n)}] \\ &= \prod_{T\leq t_k< t_n}d_{k}^{-1}[-p(t_n)-\frac{\prod_{T\leq t_k< t_n}d_{k}^{2}v^2(t_n)}{1+\mu(t_n)\prod_{T\leq t_k< t_n}d_{k}v(t_n)}] \\ &= -\prod_{T\leq t_k< t_n}d_{k}^{-1}p(t_n)-\prod_{T\leq t_k< t_n}d_{k}\frac{v^2(t_n)}{1+\mu(t_n)\prod_{T\leq t_k< t_n}d_{k}v(t_n)}]. \end{align*} Similarly, we obtain $$ v^\Delta (t_{n}^{+})=-\prod_{T\leq t_k\leq t_n}d_{k}\frac{v^2(t_n)}{1+\prod_{T\leq t_k\leq t_n}d_{k}\mu(t_n)v(t_n)}-\prod_{T\leq t_k\leq t_n}d_{k}^{-1}p(t_n). $$ So for $t>T$, \begin{equation} v^\Delta (t)+\prod_{T\leq t_k0$, $t>T$. Then \begin{gather*} w^\Delta (t) = q(t)w(t)=\prod_{T\leq t_k< t}d_{k}v(t)w(t),\\ \begin{aligned} \Big(\prod_{T\leq t_k< t}d_{k}^{-1}w^\Delta \Big)^\Delta &= (v(t)w(t))^\Delta =w^\Delta (t)v(t)+w(\sigma(t))v^\Delta (t)\\ &= \prod_{T\leq t_k< t}d_{k}v^{2}(t)w(t)+e_{q}(\sigma(t),\,t_0)v^\Delta (t). \end{aligned} \end{gather*} Since $$ e_q(\sigma(t),\,t_0)=(1+\mu(t)q(t))e_q(t,\,t_0)=(1+\mu(t)v(t) \prod_{T\leq t_k< t}d_{k})w, $$ by \eqref{e4} we obtain \begin{align*} \Big(\prod_{T\leq t_k< t}d_{k}^{-1}w^\Delta \Big)^\Delta &= w[\prod_{T\leq t_k< t}d_{k}v^{2}(t)+(1+\mu(t)v(t)\prod_{T\leq t_k< t}d_{k})v^\Delta (t)]\\ &= -w[1+\mu(t)v(t)\prod_{T\leq t_k< t}d_{k}]\prod_{T\leq t_k< t}d_{k}^{-1}p(t)\\ &\leq -w(t)\prod_{T\leq t_k< t}d_{k}^{-1}p(t),\quad \text{a.e. } \end{align*} This implies $$ \Big(\prod_{T\leq t_k< t}d_{k}^{-1}w^\Delta \Big)^\Delta +\prod_{T\leq t_k< t}d_{k}^{-1}p(t)w\leq 0,\quad \text{a.e. } $$ has a positive solution. By Lemma \ref{lem2}, we obtain $$ \Big(\prod_{T\leq t_{k}t_0$, then $$ x(t_{n}^{+})=y(t_{n}^{+})\prod_{t_0\leq t_k\leq t_n}b_k =b_nx(t_n). $$ Furthermore, for $t\neq t_n$, we have \begin{gather*} x^\Delta (t)=(\prod_{t_0\leq t_k0,\; k=1,2,\dots, \\ x((\frac{1}{5})^{+})=x(\frac{1}{5}),\quad x^\Delta ((\frac{1}{5})^{+})=x^\Delta (\frac{1}{5}), \end{gathered} \end{equation} where $p(t)\in C_{\rm rd}(\mathbb{T},\mathbb{R}^+)$, $\mathbb{P}_{\frac{1}{2},\frac{1}{2}}=\bigcup_{k=0}^{\infty} [k,k+\frac{1}{2}]$. Assume that for each $t_0\geq 0$ there exists $k_0\in N$ and $l_0\in N$ such that $k_0\geq t_0$ and $$ \sum_{j=1}^{l_0}\int_{k_0+j}^{k_0+j+\frac{1}{2}}p(t)dt +\frac{1}{2}\sum_{j=0}^{l_0-1}p(k_0+j+\frac{1}{2})\geq 4. $$ From \cite[Theorem 4.46]{b2}, we know that $$ x^{\Delta \Delta}+p(t)x(\sigma(t))=0 $$ is oscillatory on $\mathbb{T}$. By Theorem \ref{thm2}, \eqref{e6} is oscillatory. \end{example} \begin{example} \label{exa2}\rm Consider the equation \begin{equation} \label{e7} \begin{gathered} (\frac{\sigma(t)}{t}x^\Delta )^\Delta +tx(\sigma(t))=0,\quad t\geq 1,\; t\neq k,\; k=1,2,\dots,\\ x(t_k^+)=b_kx(t_k),\quad x^\Delta (t_k^+)=b_kx^\Delta (t_k),\quad b_k>0,\;k=1,2,\dots\\ x(1^+)=x(1),\quad x^\Delta (1^+)=x^\Delta (1), \end{gathered} \end{equation} where $\mu(t)=\sigma(t)-t\leq ct$, $\,\,c$ is a positive constant. Since $\mu(t) \leq ct, $ we get $$ \frac{t}{\sigma(t)}=\frac{t}{t+\mu (t)}\geq \frac{1}{1+c}. $$ It is easy to see that \begin{gather*} \int_{1}^{\infty}\frac{t}{\sigma(t)}\Delta t\geq \frac{1}{1+c}\int_{1}^{\infty}\Delta t=\infty, \\ \int_{1}^{\infty}t\Delta t=\infty. \end{gather*} By \cite[Theorem 3.2]{b3}, we see that $$ (\frac{\sigma(t)}{t}x^\Delta )^\Delta +tx(\sigma(t))=0, $$ is oscillatory. So \eqref{e7} is oscillatory. \end{example} \begin{thebibliography}{00} \bibitem{a1} P. R. Agarwal, M. Benchohra, D.O'Regan, A. Ouahab; \emph{Second order impulsive dynamic equations on time scales}, Funct. Differ,Equ.11 (2004), 223-234. \bibitem{b1} M. Benchohra, S. K. Ntouyas, A. Ouahab; \emph{Extremal solutions of second order impulsive dynamic equations on time scales}, J. Math. Anal. Appl. 324 (2006), No. 1, 425-434. \bibitem{b2} M. Bohner, A. Peterson; \emph{Dynamic equations on time scales: An introduction with applications}, Birkh\"auser, Boston, (2001). \bibitem{b3} M. Bohner, L. Erbe and A. Peterson; \emph{Oscillation for nonlinear second order dynamic equations on a time scale}, J. Math. Anal. Appl., 301(2005), 491-507. \bibitem{e1} L. Erbe, A. Peterson, S. h. Saker; \emph{Oscillation criteria for second order nonlinear daynamic equations on time scales}, J. London Math., 3 (2003), 701-714. \bibitem{e2} L. H. Erbe, Q. K. Kong, B. G. Zhang; \emph{Oscillation theory for functional differential equations}, New York: Marcel Dekker, 1995. \bibitem{g1} L. P. Gimenes, M. Federson, P. T¢boas; \emph{Impulsive stability for systems of second order retarded differential equations}, Nonlinear Anal., 67 (2007), 545-553. \bibitem{h1} M. G. Huang, W. Z. Feng; \emph{Oscillation of second-order nonlinear impulsive dynamic equations on time scales}, Electronic J. Differ. Equa. 2007(2007), No. 72, 1-13. \bibitem{m1} Mingshu Peng; \emph{Oscillation criteria for second-order impulsive delay difference equations}, Appl. Math. Comput., 146(1), (2003), 227-235. \bibitem{s1} S. H. Saker; \emph{Oscillation of second order forced nonlinear dynamic equations on time scales}, Electronic J. Qualitative Theory Differ. Equ., 23 (2005), 1-17. \bibitem{s2} S. H. Saker; \emph{Oscillation criteria of second order half-linear dynamic equations on time scales}, J. Comput. Appl. Math, 177 (2005), 375-387. \bibitem{z1} B. G. Zhang, Z. S. Liang; \emph{Oscillation of second-order nonlinear delay dynamic equations on time scales}, Comput. Math. Appl. 49(2005), 599-609. \end{thebibliography} \end{document}