\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 126, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/126\hfil Twin periodic solutions] {Twin periodic solutions of predator-prey dynamic system on time scales} \author[R.-H. He, H.-X. Li, L. Zhang\hfil EJDE-2009/126\hfilneg] {Rong-Hua He, Hong-Xu Li, Liang Zhang} % in alphabetical order \address{Rong-Hua He \newline Department of Mathematics, Chengdu University of Information Technology, Chengdu, Sichuan 610103, China. \newline Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China} \email{ywlcd@cuit.edu.cn} \address{Hong-Xu Li \newline Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China} \email{hoxuli@sohu.com} \address{Liang Zhang \newline Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China} \email{lzhang1979@yahoo.com.cn} \thanks{Submitted December 2, 2008. Published October 4, 2009.} \subjclass[2000]{92D25, 39A12} \keywords{Time scales; delayed predator-prey dynamic system; \hfill\break\indent periodic solutions; continuation theorem} \begin{abstract} In this article, we consider a delayed predator-prey dynamic system with type IV functional responses on time scales. Sufficient criteria for the existence of at least two periodic solutions are established by using the well-known continuation theorem due to Mawhin. An example is given to illustrate the main result. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} In studying the interaction between predators and their prey, it is crucial to determine what specific form of the functional response that describes the mount of prey consumed per predator per unit of time is biological plausible provides a sound basis for theoretical development. In this paper, we consider the following delay predator-prey dynamic equation with type IV functional responses on time scale $\mathbb{T}$: \begin{equation} \begin{gathered} y_1^\Delta (t) = b_1(t)-a_1(t)\exp \{y_1(t-\tau _1(t))\} -\frac{c(t)\exp \{y_2(t-\gamma (t))\}}{\exp \{2y_1(t)\}/ n+\exp \{y_1(t)\}+a}, \\ y_2^\Delta (t) = -b_2(t)+\frac{a_2(t)\exp \{y_1(t-\tau _2(t))\}}{\exp \{2y_1(t)(t-\tau _2(t))\}/ n+\exp \{y_1(t-\tau _2(t))\}+a}, \end{gathered} \label{e1.1} %a3 \end{equation} where for $i=1, 2$; $c, \gamma , a_i, b_i, \tau _i\in C_{rd}(\mathbb{T} ) $ are $\omega $-priodic functions with $c(t)\geq 0, \gamma (t)\geq 0, a_i(t)\geq 0, \tau _i(t)\geq 0, \overline{c}>0$, and ${\bar b_i}>0$, $n $ and $a$ are positive constants, $C_{rd}(\mathbb{T})$ will be defined later. Calculus on time scales was initiated by Stefan Hilger in 1990 with the motivation of providing a unified approach to continuous and discrete analysis. Since then the theory of dynamic equations on time scales has become a new important mathematical branch, and it has been applied in various directions (see, eg., \cite{a1,a2,b1,b2,b3,h1,k1,l1,p1,s1,w1,w2,z1,z2,z3} and the refs cited therein). On the other hand, the Mawhin's continuation is a powerful tool when deal with the existence of periodic solutions for population models, and much work have been done (see, e.g., \cite{c1,h2,l2,w2,z4} and the references cited therein). However, to the best of our knowledge, the study on the existence of multiple periodic solutions for population models on time scales are scarce. Motivated and inspired by the above excellent work, in this paper, we establish some sufficient criteria for the existence of at least two periodic solutions for system \eqref{e1.1} by using Mawhin technique. \section{Preliminaries} We first provide without proof several definitions and results from the calculus on time scales which are useful in the following argument. For more details, we refer the authors to \cite{b3}. A time scale $\mathbb{T}$ is an arbitrary nonempty closed subset of the real numbers, and it inherits the topology from the real numbers with the standard topology. Let $\omega >0$ is a constant. Throughout this paper, the time scale we considered is always assumed to be $\omega $-priodic (i.e., $t\in \mathbb{T}$ implies $t\pm \omega \in \mathbb{T}$) and unbounded above and below. Set \[ \kappa =\min \{ \mathbb{R^+\cap\mathbb{T}}\} , \quad \mathbb{I}_\omega =[\kappa , \kappa +\omega ]\cap \mathbb{T}. \] \begin{definition} \label{def2.1} \rm The forward jump operator $\sigma :\mathbb{T} \to \mathbb{T}$ and the backward jump operator $\rho :\mathbb{T}\to \mathbb{T}$ are defined by \[ \sigma (t):=\inf\{s\in \mathbb{T}:s\geq t\}, \quad \rho (t):=\sup\{s\in \mathbb{T}:s\leq t\}, \] respectively, for any $t\in \mathbb{T}$. If $\sigma (t)=t$, then $t$ is called right-dense (otherwise: right-scattered), and if $\rho (t)=t$, then $t$ is called left--dense (otherwise left-scattered). \end{definition} \begin{definition} \label{def2.2} \rm Assume that $f:\mathbb{T}\to \mathbb{R}$ and fix $t\in \mathbb{T}$. Then $f$ is called differential at $t\in \mathbb{T}$ if there exists $c\in\mathbb{R}$ such that given any $\varepsilon >0$, there is an open neighborhood $U$ of $t$ satisfying \[ |[f(\sigma (t))-f(s)]-c[\sigma (t)-s]|\leq\varepsilon |\sigma (t)-s|, \quad s\in U. \] In this case, $c$ is called the delta (or Hilger) derivative of $f$ at $t\in\mathbb{T}$, and is denoted by $c=f^\Delta (t)$. \end{definition} \begin{remark} \label{rmk2.1} \rm We say that $f$ is delta (Hilger) differential on $\mathbb{T}$ if $f^\Delta (t)$ exists for all $t\in \mathbb{T}$. A function $F:\mathbb{T}\to \mathbb{R}$ is called an antiderivative of $f: \mathbb{T}\to \mathbb{R}$ provided that $F^\Delta (t)=f(t)$ for all $t\in \mathbb{T}$. Then we define \[ \int_r^sf(t)\Delta t=F(s)-F(r), \quad r, s\in \mathbb{T}. \] \end{remark} \begin{definition} \label{def2.3} \rm A function $f:\mathbb{T}\to\mathbb{R}$ is called rd-continuous if it is continuous at right-dense points in $\mathbb{T}$ and its left-sided limits exist(finite) at left-dense points in $\mathbb{T}$. The set of rd-continuous functions $f:\mathbb{T}\to\mathbb{R}$ will be denoted by $C_{rd}=C_{rd}(\mathbb{T})=C_{rd}[\mathbb{T}, \mathbb{R})$. \end{definition} \begin{remark} \label{rmk2.2} \rm Every rd-continuous function has an antiderivative. Every continuous function is rd-continuous. \end{remark} \begin{lemma} \label{lem2.1} If $a, b\in \mathbb{T}$, $\alpha, \beta\in \mathbb{R}$ and $f, g\in C_{rd}(\mathbb{T})$, then \begin{itemize} \item[(C1)] $\int_a^b[\alpha f(t)+\beta g(t)]\Delta t=\alpha \int_a^bf(t)\Delta t+\beta \int_a^bg(t)\Delta t$; \item[(C2)] if $f(t)\geq 0$ for all $a\leq t\leq b$, then $\int_a^bf(t)\Delta t\geq 0$; \item[(C3)] if $|f(t)|\leq g(t)$ on $[a, b):=\{t\in \mathbb{T} :a\leq t{\bar b_2}(1+2\sqrt{\frac an}) \exp \{({|\bar b_1|}+{\bar b_1})\omega \}$; \item[(ii)] ${\bar b_1}>{\bar a_1}l_{+}\exp \{({| \bar b_1|}+{\bar b_1})\omega \}$. \end{itemize} \end{theorem} \begin{proof} Corresponding to the operator equation (\ref{b1}) we have \begin{equation} (y_1^\Delta (t), y_2^\Delta (t))^T=\lambda (\Phi _1(t), \Phi _2(t))^T. \label{c1} \end{equation} Suppose that $y\in X$ is a solution of system (\ref{c1}) for a certain $\lambda \in (0, 1)$. Integrating (\ref{c1}) over set $\mathbb{I}_\omega$, we obtain \begin{gather} {\bar b_1}\omega = \int_{\mathbb{I}_\omega}\big[a_1(t)\exp \{y_1(t-\tau _1(t))\}+\frac{c(t)\exp \{y_2(t-\gamma (t))\}}{ \exp \{2y_1(t)\}/ n+\exp \{y_1(t)\}+a}\big]\Delta t, \label{c2} \\ {\bar b_2}\omega = \int_{\mathbb{I}_\omega}\big[\frac{ a_2(t)\exp {y_1(t-\tau _2(t))}}{\exp \{{2y_1(t-\tau _2(t))\}}/n +\exp {y_1(t-\tau _2(t))}+a}\big]\Delta t. \label{c3} \end{gather} From (\ref{c1})--(\ref{c3}), we have \begin{gather} \int_{\mathbb{I}_\omega}|y_1^\Delta (t)|\Delta t \leq \lambda \big\{ \int_{\mathbb{I}_\omega}|b_1(t)|\Delta t+\int_{\mathbb{I}_\omega}[-\Phi _1(t)+b_1( t)]\Delta t\big\} <({|\bar b_1|}+{\bar b_1})\omega ,\label{c4} \\ \int_{\mathbb{I}_\omega}|y_2^\Delta (t)|\Delta t \leq \lambda \big\{ \int_{\mathbb{I}_\omega}|b_2(t)|\Delta t+\int_{\mathbb{I}_\omega}[\Phi _2(t)+b_2( t)]\Delta t\big\} <({|\bar b_2|}+{\bar b_2})\omega . \label{c5} \end{gather} Because $y=(y_1(t), y_2(t))^T\in X$, there exist $\xi _i, \eta _i\in \mathbb{I}_\omega$, $i=1, 2$ such that \begin{equation} y_i(\xi _i)=\min_{t\in \mathbb{I}_\omega}\{y_i(t)\}, \quad y_i(\eta _i)=\max_{t\in \mathbb{I}_\omega}\{y_i(t)\}. \label{c6} \end{equation} From (\ref{c3}) and (\ref{c6}) we get \begin{align*} {\bar b_2}\omega &\leq \int_{\mathbb{I}_\omega}\big[\frac{ a_2(t)\exp \{y_1(\eta _1)\}}{\exp \{2y_1(\xi _1)\}/n +\exp \{y_1(\xi _1)\}+a}\big]\Delta t \\ &=\frac{{\bar a_2}\omega \exp \{y_1(\eta _1)\}}{\exp \{2y_1(\xi _1)\}/n+\exp \{y_1(\xi _1)\}+a}, \end{align*} which implies \begin{equation} y_1(\eta _1)\geq \ln \big[\frac{{\bar b_2}}{{\bar a_2}}(\exp \{2y_1(\xi _1)\}/n+\exp {y_1(\xi _1)}+a)\big]. \label{c7} \end{equation} By virtue of (\ref{c4}), (\ref{c7}) and Lemma \ref{lem2.2}, we get \begin{align*} y_1(t) &\geq y_1(\eta _1)-\int_{\mathbb{I}_\omega}|y_1^\Delta (t)|\Delta t \\ &>\ln [\frac{{\bar b_2}}{{\bar a_2}}(\exp \{2y_1(\xi _1)\}/n+\exp {y_1(\xi _1)}+a)]-({|\bar b_1|}+ {\bar b_1})\omega . \end{align*} In particular, \[ y_1(\xi _1)>\ln \big[\frac{{\bar b_2}}{{\bar a_2}}(\exp \{2y_1(\xi _1)\}/n+\exp {y_1(\xi _1)}+a)\big]-({|\bar b_1|}+{\bar b_1})\omega . \] or \begin{equation} \frac{{\bar b_2}}n\exp \{2y_1(\xi _1)\}-\big({\bar a_2}\exp \{( {|\bar b_1|}+{\bar b_1})\omega \}-{\bar b_2}\big)\exp \{y_1(\xi _1)\}+{\bar b_2}a<0. \label{c8} \end{equation} According to (i), we have \begin{equation} \ln l_{-}0. \] Similarly, we can show that \begin{equation} y_1(\eta _1)<\ln v_{-}\quad\text{or}\quad y_1(\eta _1)>\ln v_{+}. \label{c10} \end{equation} From (\ref{c4}), (\ref{c9}) and Lemma \ref{lem2.2}, \begin{equation} y_1(t)\leq y_1(\xi _1)+\int_{\mathbb{I}_\omega}|y_1^\Delta (t)|\Delta t<\ln l_{+}+({|\bar b_1|}+{\bar b_1})\omega :=P_1. \label{c11} \end{equation} On the other hand, (\ref{c2}) and (\ref{c6}) yield \begin{gather} {\bar b_1}\omega \geq \frac{{\bar c}\omega \exp \{y_2(\xi _2)\}}{ \exp \{2P_1\}/n+\exp \{P_1\}+a}, \label{c12} \\ {\bar b_1}\omega \leq {\bar a_1}\omega \exp \{P_1\}+\frac{{\bar c }\omega \exp \{y_2(\eta _2)\}}a. \label{c13} \end{gather} It follows from (\ref{c12}) that \[ y_2(\xi _2)\leq \ln \big[\frac{{\bar b_1}}{{\bar c}}(\exp \{2P_1\}/n+\exp \{P_1\}+a)\big]. \] This, together with (\ref{c5}) and Lemma \ref{lem2.2}, yields \begin{equation} \begin{aligned} y_2(t) &\leq y_2(\xi _2)+\int_{\mathbb{I}_\omega}|y_2^\Delta (t)|\Delta t \\ &<\ln \big[\frac{{\bar b_1}}{{\bar c}}(\exp \{2P_1\}/n+\exp \{P_1\}+a)\big]+({|\bar b_2|}+{\bar b_2} )\omega :=P_2. \label{c14} \end{aligned} \end{equation} Moreover, because of (ii), it follows from (\ref{c13}) that \[ y_2(\eta _2)\geq \ln \big[\frac a{{\bar c}}({\bar b_1}-\exp \{({\bar B_1}+{\bar b_1})\omega {\bar a_1}l_{+}\})\big], \] which, combined with Lemma \ref{lem2.2}, gives \begin{equation} \begin{aligned} y_2(t) &\geq y_2(\eta _2)-\int_{\mathbb{I}_\omega}|y_2^\Delta (t)|\Delta t \\ &>\ln [\frac a{{\bar c}}({\bar b_1}-\exp \{({ \bar B_1}+{\bar b_1})\omega {\bar a_1}l_{+}\})]-({ |\bar b_2|}+{\bar b_2})\omega :=P_3. \label{c15} \end{aligned} \end{equation} It follows from (\ref{c14}) and (\ref{c15}) that \begin{equation} \max_{t\in \mathbb{I}_\omega}|y_2(t)|<\max \{|P_2|, |P_3|\}:=P. \label{c16} \end{equation} Obviously, $\ln l_{\pm }$, $\ln v_{\pm }$, $P_1$ and $P$ are independent of the choice of $\lambda \in (0, 1)$. Now, let's consider $QNh$ with $h=(h_1, h_2)^T\in \mathbb{R}^2$. Note that \[ QNh=\begin{pmatrix} {\bar b_1}-{\bar a_1}\exp \{h_1\}-\frac{ {\bar c}\exp \{h_2\}}{\exp \{2h_1\}/n+\exp \{h_1\}+a} \\ -{\bar b_2}+\frac{{\bar a_2}\exp \{h_1\}}{ \exp \{2h_1\}/n+\exp \{h_1\}+a} \end{pmatrix} \] In view of (i) and (ii), one can show that $QNh=0$ has two distinct constant solutions: \begin{gather*} z^{\dag }=\Big(\ln u_{l-}, \ln \frac{({\bar b_1}-{\bar a_1} u_{l-})g(u_{l-})}{{\bar c}}\Big)^T, \\ z^{\ddag }=\Big(\ln u_{l+}, \ln \frac{({\bar b_1}-{\bar a_1} u_{l+})g(u_{l+})}{{\bar c}}\Big)^T, \end{gather*} where, $g(u_{l-})=u_{l-}^2/n+u_{l-}+a$, and $g(u_{l+})=u_{l+}^2/n+u_{l+}+a$. Chose $M>0$ such that \begin{equation} M>\max \big\{ |\ln \frac{(\bar{b}_1-\bar{a}_1u_{l-})g( u_{l-}) }{\bar{c}}|, \; |\ln \frac{(\bar{b}_1-\bar{a}_1u_{l+})g(u_{l+})}{{\bar c}}|\big\} . \label{c17} \end{equation} And set \begin{gather*} \Omega _1 = \big\{ y=(y_1(t), y_2(t))^T\in X: y_1(t)\in (\ln l_{-}, \ln v_{-}), \; \max_{t\in I_\omega }|y_2(t)|0.757>{\bar b_2}\big(1+2\sqrt{a/n}\big) \exp \{({|\bar b_1|}+{\bar b_1})\omega \}, \\ {\bar b_1} = 0.050>0.045>{\bar a_1}l_{+}\exp \{({|\bar b_1|}+{\bar b_1})\omega \}, \end{gather*} which show that all the conditions in Theorem \ref{thm3.1} are fulfilled. By Theorem \ref{thm3.1} we derive that (\ref{d1}) has at least two $2\pi$-periodic solutions. \begin{remark} \label{rmk 4.1} \rm System (\ref{d1}) models two populations (one is the predator and the other is the prey) that are both continuous in one period of the year, die out in other period of the year, and their offspring are renascent after incubating or dormant in another period of the year, both of them giving rise to non-overlapping populations. \end{remark} \subsection*{Acknowledgements} This work is supported by a grant 3777501 from the Natural Science Development Foundation of CUIT of China. \begin{thebibliography}{99} \bibitem{a1} Douglas R. Anderson., Zackary R. Kenz; Global asymptotic behavior for delay dynamic equations, Nonlinear Anal. TMA 66 (2007) 1633-1644. \bibitem{a2} R. P. Agarwal, M. Bohner; Basic calculus on time scales and some of its applications, Results Math. 35 (1999) 3-22. \bibitem{b1} M. Bohner, M. Fan, J. M. Zhang; Existence of periodic solutions in predator-prey and competition dynamic systems, Nonlinear Anal. RWA 7 (2006) 1193-1204. \bibitem{b2} M. Benchohra, J. Henderson S. K. Ntouyas and A. Ouahab; On First Order Impulsive Dynamic Equations on Time Scales, J. Differ. Eqns. Appl. 8 (2004) 541-548. \bibitem{b3} M. Bohner, A. Peterson; Dynamic Equations on Time Scales: An Introduction with Applications, Birkh\"auser, Boston, 2001. \bibitem{c1} F. Chen; Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Compt. 162 (2005) 1279-1302. \bibitem{c2} X. X. Chen, H. J. Guo; Four periodic solutions of a generalized delayed predator-prey system on time scales, Rocky Mountain J. Math. 38(5), (2008) 1-16. \bibitem{g1} R. E. Gaines, J. L. Mawhin; Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Mathematics, vol. 568, Springer, Berlin, Heidelberg, NewYork, 1977. \bibitem{h1} S. Hilger; Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990) 18-56. \bibitem{h2} H. F. Huo, W. T. Li; Existence of positive periodic solution of a neutral impulsive delay predator-prey system, Appl. Math. Comput. 185 (2007) 499-507. \bibitem{k1} B. Kaymakcalan, V. Lakshmikanthan, S. Sivasundaram; Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996. \bibitem{l1} V. Lakshmikantham, S. Sivasundaram, B. Kaymarkcalan; Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996. \bibitem{l2} Y. Li, y. Kuang; Periodic Solutions of Periodic Delay Lotka-Volterra Equations and Systems, J. Math. Anal. Appl. 255 (2001) 260-280. \bibitem{p1} Christian P\"ozsche; Exponential dichotomies of linear dynamic equations on measure chains under slowly varying coefficients, J. Math. Anal. Appl. 289 (2004) 317-335. \bibitem{s1} S. H. Saker; Oscillation of nonlinear dynamic equations on time scales on time scales, Appl. Math. Comput. 148 (2004) 81-91. \bibitem{w1} D. B. Wang; Three positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales, Nonlinear Anal. TMA, 68 (2008) 2172-2180. \bibitem{w2} L. L. Wang, W. T. Li; Periodic solutions and permanence for a delayed nonautonomous ratio-dependent predator-prey model with Holling type functional response, J. Comput. Appl. Math. 162 (2004) 341-357. \bibitem{z1} A. Zafer; Calculating the matrix exponential of a constant matrix on time scales, Appl. Math. Lett. 21 (2008) 612-616. \bibitem{z2} B. G. Zhang, S. L. Zhu; Oscillation of second order nonlinear delay differential equations on time scales, Compt. Math. Appl. 49 (2005) 599-609. \bibitem{z3} B. G. Zhang, X. Yan, X. Liu; Oscillation criteria of certain delay dynamic equations on time scales, J. Differ. Eqns. Appl. 11 (2005) 944-946. \bibitem{z4} W. Zhang, D. Zhu, P. Bi; Multiple positive periodic solutions of a delayed discrete predator-prey system with type IV functional responses, Appl. Math. Lett. 20 (2007) 1031-1038. \end{thebibliography} \end{document}