\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 131, pp. 1--16.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/131\hfil Multiple solutions] {Multiple solutions for nonlinear elliptic equations on Riemannian manifolds} \author[W. Chen, J. Yang \hfil EJDE-2009/131\hfilneg] {Wenjing Chen, Jianfu Yang} % in alphabetical order \address{Wenjing Chen \newline Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China} \email{wjchen1102@yahoo.com.cn} \address{Jianfu Yang \newline Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China} \email{jfyang\_2000@yahoo.com} \thanks{Submitted September 15, 2009. Published October 9, 2009.} \subjclass[2000]{35J20, 35J61, 58J05} \keywords{Multiple solutions; Semilinear elliptic equation; \hfill\break\indent Riemannian manifold; Ljusternik-Schnirelmann category} \begin{abstract} Let $(\mathcal{M}, g)$ be a compact, connected, orientable, Riemannian $n$-manifold of class $C^{\infty}$ with Riemannian metric $g$ $(n\geq 3)$. We study the existence of solutions to the equation \[ -\varepsilon^2\Delta_{g} u+V(x)u=K(x)|u|^{p-2}u \] on this Riemannian manifold. Here $2
0,
\end{equation}
has a positive radial solution $U$; see for
instance \cite{bl1}. The function $U$ and its radial
derivatives satisfy the following decaying law
$$
U(r)\sim e^{-|r|}|r|^{-\frac{n-1}{2}}, \quad
\lim_{r\to \infty}\frac{U'(r)}{U(r)}=1, \quad r=|x|.
$$
By a result in \cite{k}, $U$ is the unique positive solution of
problem (\ref{eq:1.3}). We may verify that
$w(z):=\big(\frac{V(\eta)}{K(\eta)}\big)^{1/(p-2)}
U\Big(\big(V(\eta)\big)^{1/2}z\Big)$
with $K(\eta)>0$ is a ground state solution of problem
\eqref{eq:1.4}; that is, it is the minimizer of the variational
problem
$$
c_{\eta}:=\inf_{u\in N_{\eta}}E_{\eta}(u),
$$
where
$$
E_{\eta}(u)=\frac{1}{2}\int_{\mathbb{R}^n}(|\nabla u|^2+V(\eta)u^2)\,
dz-\frac{1}{p}\int_{\mathbb{R}^n}K(\eta)|u|^p\,dz
$$
is the associated energy functional of problem \eqref{eq:1.4} and
$$
N_{\eta}:=\big\{u\in H^1(\mathbb{R}^n)\backslash \{0\}:
\int_{\mathbb{R}^n}(|\nabla u|^2+V(\eta)u^2)\,dz=\int_{\mathbb{R}^n}K(\eta)|u|^p\,dz\big\}
$$
is the related Nehari manifold. In fact,
\[
c_{\eta} = E_{\eta}(w)=\big(\frac{1}{2}-\frac{1}{p}\big)
\frac{V^{\frac{p}{p-2}-\frac{n}{2}}(\eta)}{K^{\frac{2}{p-2}}(\eta)}
\int_{\mathbb{R}^n}|U(z)|^p\,dz.
\]
Let
$$
c_0=\inf_{\eta\in \mathcal {M}}c_\eta \quad {\rm and}\quad
\Omega:=\{\eta\in \mathcal {M}: c_{\eta}=c_0\}.
$$
For $\delta>0$ let
$$
\Omega_{\delta}:=\{\xi\in \mathcal {M}: \inf_{\eta\in
\Omega}\|\xi-\eta\|_{g}\leq \delta\}.
$$
We assume in this paper that $V, K\in C(\mathcal{M},\mathbb{R})$
and there is a positive number $\nu>0$ such that $V, K\geq \nu>0$.
Denote by $\mathop{\rm cat}_{X}(A)$ the Ljusternik-Schirelmann category of $A$ in
$X$. Let
$$
K_{\rm max}= \max_{x\in\mathcal{M}} K(x), \quad
K_{\rm min}= \min_{x\in\mathcal{M}} K(x).
$$
Our main result is the following.
\begin{theorem}\label{th.1.1}
Problem \eqref{eq:1.1} has at least
$\mathop{\rm cat}_{\Omega_{\delta}}(\Omega)$
positive solutions for $\varepsilon>0$ small.
\end{theorem}
Solutions of problem \eqref{eq:1.1} will be found as critical points
of the associated functional
\[
I_{\varepsilon}(u)=\frac{1}{\varepsilon^n}
\Big(\frac{1}{2}\int_{\mathcal
{M}}\big(\varepsilon^2|\nabla_{g} u(x)|^2+V(x)u^2\big)\,
d\mu_{g}-\frac{1 }{p}\int_{\mathcal {M}}K(x)|u^{+}|^p\,
d\mu_{g}\Big),
\]
in the Hilbert space
$$
H_{g}^1(\mathcal {M}):=\big\{u: \mathcal
{M}\to \mathbb{R}: \int_{\mathcal {M}}(|\nabla_{g}u|^2
+u^2)\,d\mu_{g}<\infty\big\}
$$
with the norm
$$
\|u\|_{g}=\Big(\int_{\mathcal {M}}(|\nabla_{g}u|^2+u^2)\,d\mu_{g}\Big)^{1/2},
$$
where $d\mu_{g}=\sqrt{\det g}dz$ denotes the volume form on
$\mathcal {M}$ associated with the metric $g$. For $\sigma>0$, let
$$
\Sigma_{\varepsilon, \sigma}:=\{u\in \mathcal {N}_{\varepsilon}
: I_{\varepsilon}(u)< c_0+\sigma\}
$$
be a subset of the Nehari manifold
\[
\mathcal {N}_{\varepsilon}:=\big\{u\in H_{g}^1(\mathcal {M})
\backslash \{0\}:\int_{\mathcal{M}}(\varepsilon^2|
\nabla_{g} u(x)|^2+V(x)u^2)\, d\mu_{g}
=\int_{\mathcal {M}}K(x)|u^{+}|^p\,d\mu_{g}\big\}
\]
related to the functional $I_{\varepsilon}$. To prove Theorem
\ref{th.1.1}, we first show that problem \eqref{eq:1.1} has at least
$\mathop{\rm cat}_{\Sigma_{\varepsilon, \sigma}}\Sigma_{\varepsilon, \sigma}$
solutions, then we need to relate $\mathop{\rm cat}_{\Sigma_{\varepsilon,
\sigma}}\Sigma_{\varepsilon, \sigma}$ with
$\mathop{\rm cat}_{\Omega_{\delta}}\Omega$. By a result in \cite{h}, we know that
$\mathcal {M}$ can be isometrically embedded in a Euclidean space
$\mathbb{R}^{N}$ as a regular sub-manifold with $N>2n$. For any set
$\omega\subset\mathcal {M}$ and $r>0$, we define
$$
[\omega]_r:=\{z\in \mathbb{R}^N :\mathop{\rm dist}(z, \omega)\leq r\}
$$
a subset of $\mathbb{R}^N$, where $\mathop{\rm dist}(z, \omega)$
denotes the distance between $z$ and $\omega$ with respect to
the Euclidian metric in $\mathbb{R}^N$. Let $r = r(\Omega_{\delta})$
be the radius of topological invariance of $\Omega_{\delta}$,
which is defined by
$$
r(\Omega_{\delta}):=\sup\{l>0 :
\mathop{\rm cat}([\Omega_{\delta}]_l)
=\mathop{\rm cat}(\Omega_{\delta})\}.
$$
We choose $r>0$ so small that the metric projection
\[
\Pi : [\Omega_{\delta}]_{r}\subset \mathbb{R}^N\to \Omega_{\delta}
\]
is well defined. We will construct a function $\phi_{\varepsilon}:
\Omega \to \Sigma_{\varepsilon, \sigma}$ and a function
$\beta: \Sigma_{\varepsilon, \sigma}\to
[\Omega_{\delta}]_{r}$ such that
\[
\Omega\xrightarrow[]{\phi_{\varepsilon}}\Sigma_{\varepsilon, \sigma}
\xrightarrow[]{\beta}[\Omega_{\delta}]_r\xrightarrow[]{\Pi}
\Omega_{\delta},
\]
and $\Pi \circ \beta \circ \phi_{\varepsilon}$ is homotopic to the
identity on $\Omega_{\delta}$. It implies that
$\mathop{\rm cat}_{\Sigma_{\varepsilon, \sigma}}\Sigma_{\varepsilon, \sigma}\geq
\mathop{\rm cat}_{\Omega_\delta}\Omega$.
In section 2, we outline our frame of work. The mappings
$\phi_{\varepsilon}$ and $\beta$ are constructed in section 3 and
section 4 respectively.
\section{The framework and preliminary results}
Let $\mathcal {M}$ be a compact Riemannian manifolds of class
$C^{\infty}$. On the tangent bundle of $\mathcal {M}$ we define the
exponential map $\exp: T\mathcal{M}\to \mathcal {M}$ which
has the following properties: (i) $\exp$ is of class $C^{\infty}$;
(ii) there exists a constant $R>0$ such that $\exp_x\big|_{B(0,R)}:
B(0,R)\to B_{g}(x,R)$ is a diffeomorphism for all
$x\in \mathcal {M}$. Fix such an $R$ in this paper and denote by $B(0,R)$
the ball in $\mathbb{R}^{n}$ centered at 0 with radius $R$ and
$B_{g}(x,R)$ the ball in $\mathcal {M}$ centered at $x$ with radius
$R$ with respect to the distance induced by the metric $g$. Let
$\mathcal {C}$ be the atlas on $\mathcal {M}$ whose charts are given
by the exponential map and $\mathcal {P}=\{\psi_{C}\}_{C\in \mathcal
{C} }$ be a partition of unity subordinate to the atlas $\mathcal
{C}$. For $u\in H_{g}^1(\mathcal {M})$, we have
\[
\int_{\mathcal {M}}|\nabla_{g}u|^2\,d\mu_{g}=\sum_{C\in
\mathcal {C}}\int_{C}\psi_{C}(x)|\nabla_{g}u|^2\,d\mu_{g}.
\]
Moreover, if $u$ has support inside one chart $C=B_{g}(\eta,R)$,
then
\begin{align*}
&\int_{\mathcal {M}}|\nabla_{g}u|^2\,d\mu_{g}\\
&=\int_{B(0,
R)}\psi_{C}(\exp_{x_0}(z))g_{x_0}^{ij}(z)\frac{\partial
u(\exp_{x_0}(z))}{\partial z_{i}}\frac{\partial
u(\exp_{x_0}(z))}{\partial z_{j}} |g_{x_0}(z)|^{1/2}\,dz,
\end{align*}
where $g_{x_0}$ denotes the Riemannian metric reading in $B(0,R)$
through the normal coordinates defined by the exponential map
$\exp_{x_0}$. In particular, $g_{x_0}(0)=Id$. We let
$|g_{x_0}(z)|:=det(g_{x_0}(z))$ and $(g^{ij}_{x_0})(z)$ is the
inverse matrix of $g_{x_0}(z)$. Since $\mathcal {M}$ is compact,
there are two strictly positive constants $h$ and $H$ such that
$$
\forall x\in \mathcal {M}, \quad \forall \upsilon\in T_{x}\mathcal
{M}, \quad h\|\upsilon\|^2\leq g_{x}(\upsilon, \upsilon)\leq
H\|\upsilon\|^2.
$$
Hence, we have
$$
\forall x\in \mathcal {M}, \quad h^n\leq |g_{x}|\leq H^n.
$$
Theorem \ref{th.1.1} will follow from the following result in
\cite{mw}.
\begin{proposition}\label{Prop.2.1}
Let $\mathcal {N}$ be a $C^{1,1}$ complete Riemannian manifold
modeled on a Hilbert space and J be a $C^1$ functional on $\mathcal
{N}$ bounded from below. If there exists $b>\inf_{\mathcal
{N}}J$ such that $J$ satisfies the Palais-Smale condition on the
sublevel $J^{-1}(-\infty, b)$, then for any noncritical level a,
with $a0$,
$C$ is independent of $u$. For $u\in H_{g}^1(\mathcal {M})$, there
exists a unique $t_{\varepsilon}(u)>0$, $t_{\varepsilon}:
H_{g}^1(\mathcal {M})\backslash\{0\}\to \mathbb{R}^{+}$,
such that $t_{\varepsilon}(u)u\in \mathcal {N}_{\varepsilon}$ and
$$
I_{\varepsilon}(t_{\varepsilon}(u)u)=\max_{t\geq0}I_{\varepsilon}(tu).
$$
More precisely,
\begin{equation} \label{eq:3.1}
t_{\varepsilon}^{p-2}(u)=\frac{\int_{\mathcal
{M}}\left(\varepsilon^2|\nabla_{g} u(x)|^2+V(x)u^2\right)\,d\mu_{g}}{\int_{\mathcal {M}}K(x)|u^{+}|^p\,d\mu_{g}}.
\end{equation}
The function $t_{\varepsilon}(u)$ is $C^1$. Let us define a smooth
real function $\chi_{R}$ on $\mathbb{R}^{+}$ such that
\begin{equation} \label{eq:3.2}
\chi_{R}(t):=\begin{cases}
1 & \text{if } 0\leq t\leq \frac{R}{2};\\
0 & \text{if } t\geq R\,.
\end{cases}
\end{equation}
and $|\chi'_{R}(t)|\leq \frac{2}{R}$. Fixing $\eta\in\Omega$ and
$\varepsilon>0$, we define
\begin{equation} \label{eq:3.3}
W_{\eta, \varepsilon}(x):= \begin{cases}
w_{\varepsilon}(\exp_{\eta}^{-1}(x))\chi_{R}(|\exp_{\eta}^{-1}(x)|)
& \text{if } x\in B_{g}(\eta, R);\\
0 & \text{otherwise},
\end{cases}
\end{equation}
where $w(z)$ is the ground state solution of problem \eqref{eq:1.4}
and $w_{\varepsilon}(z)=w(\frac{z}{\varepsilon})$. We define
$\phi_{\varepsilon}: \Omega\to \mathcal {N}_{\varepsilon}$
by
\begin{equation}\label{eq:3.4}
\phi_{\varepsilon}(\eta) = t_{\varepsilon}(W_{\eta, \varepsilon}(x))W_{\eta,
\varepsilon}(x).
\end{equation}
\begin{lemma}\label{le:3.2}
With the above notation, we have
\begin{gather} \label{eq:3.5}
\frac{1}{\varepsilon^{n}}\int_{\mathcal {M}}\varepsilon^2|\nabla_{g}W_{\eta, \varepsilon}(x)|^2\,d\mu_{g} \to
\int_{\mathbb{R}^n}|\nabla w|^2 dz \quad \text{as } \varepsilon\to 0.
\\ \label{eq:3.6}
\frac{1}{\varepsilon^{n}}\int_{\mathcal {M}}V(x)|W_{\eta, \varepsilon}(x)|^2\,d\mu_{g} \to
\int_{\mathbb{R}^n}V(\eta)w^2(z) dz \quad \text{as } \varepsilon\to 0,
\\ \label{eq:3.7}
\frac{1}{\varepsilon^{n}}\int_{\mathcal {M}}K(x)|W_{\eta, \varepsilon}(x)|^p\ \mu_{g} \to
\int_{\mathbb{R}^n}K(\eta)w^p(z) dz \quad \text{as } \varepsilon\to 0.
\end{gather}
\end{lemma}
\begin{proof} We have
\begin{align*}
&\Big|\frac{1}{\varepsilon^{n}}\int_{\mathcal {M}}\varepsilon^2|\nabla_{g}W_{\eta, \varepsilon}(x)|^2\,d\mu_{g}
-\int_{\mathbb{R}^n}|\nabla w|^2 dz\Big|\\
&= \Big|\frac{1}{\varepsilon^{n}}\int_{B_g(\eta, R)}\varepsilon^2
\big|\nabla_{g}\left(w_{\varepsilon}(\exp_{\eta}^{-1}(x))
\chi_{R}(|\exp_{\eta}^{-1}(x)|)\right)\big|^2\,d\mu_{g}
-\int_{\mathbb{R}^n}|\nabla w|^2 dz\Big|\\
&= \Big|\frac{1}{\varepsilon^{n}}\int_{B(0, R)}\varepsilon^2
\big|\nabla\left(w_{\varepsilon}(z)
\chi_{R}(|z|)\right)\big|_{g}^2|g_{\eta}(z)|^{1/2}\,dz
-\int_{\mathbb{R}^n}|\nabla w|^2 dz\Big|\\
&= \Big|\int_{B(0, \frac{R}{\varepsilon})}\left|\nabla\left(w(z)
\chi_{\frac{R}{\varepsilon}}(|z|)\right)\right|_{g}^2\left|g_{\eta}(\varepsilon z)\right|^{1/2}\,dz
-\int_{\mathbb{R}^n}|\nabla w|^2 dz\Big|\\
&\leq \int_{\mathbb{R}^n}\Big|\sum_{i,j=1}^{n}
\frac{\partial w(z)}{\partial z_i}\frac{\partial w(z)}{\partial
z_j}\left|\chi^2_{\frac{R}{\varepsilon}}
(|z|)g^{ij}_{\eta}(\varepsilon z)|g_{\eta}(\varepsilon z)|^{1/2}
-\delta_{ij}\right|\Big|\, dz\\
&\quad +\int_{\mathbb{R}^n}\Big|\sum_{i,j=1}^{n}g^{ij}_{\eta}
(\varepsilon z) \chi_{\frac{R}{\varepsilon}}(|z|)w(z)
\left(\frac{\partial w}{\partial z_i}
\frac{\partial \chi_{\frac{R}{\varepsilon}}(|z|)}{\partial z_j}
+\frac{\partial w}{\partial z_j}
\frac{\partial \chi_{\frac{R}{\varepsilon}}(|z|)}{\partial z_i}
\right)\Big||g_{\eta}(\varepsilon z)|^{1/2}\,dz\\
&\quad +\int_{\mathbb{R}^n}\Big|\sum_{i,j=1}^{n}g^{ij}_{\eta}(\varepsilon z)
w^2(z)\frac{\partial \chi_{\frac{R}{\varepsilon}}(|z|)}{\partial z_i}
\frac{\partial \chi_{\frac{R}{\varepsilon}}(|z|)}{\partial z_j}\Big|
|g_{\eta}(\varepsilon z)|^{1/2}\,dz:=I_1+I_2+I_3.
\end{align*}
By the compactness of the manifold $\mathcal {M}$ and regularity of
the exponential map of the Riemannian metric $g$, we have
$$
\lim_{\varepsilon\to
0}\big|\chi^2_{\frac{R}{\varepsilon}}
(|z|)g^{ij}_{\eta}(\varepsilon z)|g_{\eta}(\varepsilon
z)|^{1/2}-\delta_{ij}\big|=0
$$
uniformly with respect to $\eta\in \Omega$, so $I_1\to 0$ as
$\varepsilon\to 0$. By the definition of $\chi_{R}(t)$,
\begin{align*}
I_2
&\leq \frac{H^{n/2}}{h}\int_{\mathbb{R}^n}
\Big|\sum_{i,j=1}^{n}
w(z)\Big(\frac{\partial w}{\partial z_i}
\frac{\partial \chi_{\frac{R}{\varepsilon}}(|z|)}{\partial z_j}+\frac{\partial w}{\partial z_j}
\frac{\partial \chi_{\frac{R}{\varepsilon}}(|z|)}{\partial z_i}\Big)
\Big|\,dz\\
&\leq \frac{4H^{n/2}\varepsilon}{Rh}\int_{\mathbb{R}^n}\left|w(z)
\right|\left|\nabla w(z)\right|\, dz\\
&= \frac{4H^{n/2}\varepsilon}{Rh}\left(\frac{V(\eta)}{K(\eta)}\right)
^{2/(p-2)}V(\eta)^{-n/2}\int_{\mathbb{R}^n}\left|U
(z)\right|\left|\nabla U(z)\right|\,dz\\
&\leq \frac{2H^{n/2}\varepsilon}{Rh}\frac{V^{\frac{2}{p-2}
-\frac{n}{2}}(\eta)}{K^{\frac{2}{p-2}}(\eta)}
\int_{\mathbb{R}^n}(|\nabla U(z)|^2 +|U (z)|^2)\,dz.
\end{align*}
Similarly,
\[
I_3
\leq\frac{H^{n/2}}{h}\frac{4\varepsilon^2}{R^2}
\frac{V^{\frac{2}{p-2}-\frac{n}{2}}(\eta)}{K^{\frac{2}{p-2}}(\eta)}
\int_{\mathbb{R}^n}U(z)^2\,dz.
\]
Hence, $I_2+I_3\to 0$ uniformly with respect to $\eta\in
\Omega$ as $\varepsilon\to 0$ and (\ref{eq:3.5}) follows.
Next, we prove (\ref{eq:3.6}). We have
\begin{align*}
&\Big|\frac{1}{\varepsilon^{n}}\int_{\mathcal {M}}V(x)|W_{\eta, \varepsilon}(x)|^2\,d\mu_{g}-\int_{\mathbb{R}^n}V(\eta)w^2(z) dz\Big|\\
&= \Big|\frac{1}{\varepsilon^{n}}\int_{B_g(\eta, R)}V(x)
|w_{\varepsilon}(\exp_{\eta}^{-1}(x))\chi_{R}(|\exp_{\eta}^{-1}(x)|)|^2\,d\mu_{g}-\int_{\mathbb{R}^n}V(\eta)w^2(z) dz\Big|\\
&= \Big|\frac{1}{\varepsilon^{n}}\int_{B(0, R)}V(\exp_{\eta}(z))|w_{\varepsilon}(z)\chi_{R}(|z|)|^2|g_{\eta}(z)
|^{1/2}\,dz-\int_{\mathbb{R}^n}V(\eta)w^2(z) dz\Big|\\
&= \Big|\int_{B(0, \frac{R}{\varepsilon})}V(\exp_{\eta}(\varepsilon z))|w(z)\chi_{R}(|\varepsilon z|)|^2
|g_{\eta}(\varepsilon z)|^{1/2}\,dz-\int_{\mathbb{R}^n}V(\eta)w^2(z)\, dz
\Big|\\
&\leq \Big|\int_{\mathbb{R}^n}\left[V(\exp_{\eta}(\varepsilon z))|\chi_{R}(|\varepsilon z|)|^2
|g_{\eta}(\varepsilon z)|^{1/2}-V(\eta)\right]w^2(z) dz\Big|\\
&\quad +\Big|\int_{\mathbb{R}^n\backslash B(0, \frac{R}{\varepsilon})}
\left[V(\exp_{\eta}(\varepsilon z))|\chi_{R}(|\varepsilon z|)|^2
|g_{\eta}(\varepsilon z)|^{1/2}-V(\eta)\right]
w^2(z) dz\Big|\\
&:= I_4+I_5.
\end{align*}
We note that $\exp_{\eta}(\varepsilon z)\to \eta$ and
$g_{\eta}(\varepsilon z)\to \delta_{ij}$ as $\varepsilon
\to 0$, by the continuity of $V$, $I_4\to 0$.
Obviously, $I_5\to 0$. So (\ref{eq:3.6}) holds. (\ref{eq:3.7}) can
be proved in the same way.
\end{proof}
\begin{proposition}\label{prop:3.1}
For $\varepsilon>0$, the map $\phi_{\varepsilon} : \Omega\to
\mathcal {N}_{\varepsilon}$ is continuous; and for any $\sigma>0$,
there exists $\varepsilon_0>0$ such that if
$\varepsilon<\varepsilon_0$ $\phi_{\varepsilon}(\eta)\in
\Sigma_{\varepsilon, \sigma}$ for all $\eta\in \Omega$.
\end{proposition}
\begin{proof}
The continuity of $\phi_{\varepsilon}$ can be proved as
\cite[Proposition 4.2]{bbm}, so we omit the details.
Now, we show $\phi_{\varepsilon}(\eta)\in \Sigma_{\varepsilon,
\sigma}$ for $\forall \eta\in \Omega$. By Lemma \ref{le:3.2},
\begin{align*}
t_{\varepsilon}^{p-2}(W_{\eta, \varepsilon}(x))
&= \frac{\frac{1}{\varepsilon^n}\int_{\mathcal
{M}}\varepsilon^2|\nabla_{g} W_{\eta, \varepsilon}(x)(x)|^2d
\mu_{g}+\frac{1}{\varepsilon^n}\int_{\mathcal {M}}V(x)\left(W_{\eta,
\varepsilon}(x)\right)^2\,d
\mu_{g}}{\frac{1}{\varepsilon^n}\int_{\mathcal {M}}K(x)|W^{+}_{\eta,
\varepsilon}(x)|^p\,d\mu_{g}}\\
& \to \frac{\int_{\mathbb{R}^n}|\nabla w(z)|^2\,dz+\int_{\mathbb{R}^n}V(\eta)w^2(z)\,dz}{\int_{\mathbb{R}^n}K(\eta)w^p(z)\,dz}=1.
\end{align*}
Consequently,
\begin{align*}
I_{\varepsilon}(\phi_{\varepsilon}(\eta))
&= I_{\varepsilon}(t_{\varepsilon}(W_{\eta, \varepsilon}(x))W_{\eta,
\varepsilon}(x))\\
&= \frac{1}{2}\int_{\mathbb{R}^n}(|\nabla w(z)|^2+V(\eta)w^2(z))\,
dz-\frac{1}{p}\int_{\mathbb{R}^n}K(\eta)w^p(z)\,dz+o(1)\\
&= c_\eta+o(1)=c_0+o(1)
\end{align*}
uniformly with respect to $\eta\in \Omega$ and the proof is
completed.
\end{proof}
\section{The function $\beta$}
Let us define the center of mass $\beta(u)\in \mathbb{R}^N$ for
$u\in \mathcal {N}_{\varepsilon}$ by
$$
\beta(u):=\frac{\int_{\mathcal {M}}x|u^{+}(x)|^p\,d\mu_{g}}{\int_{\mathcal {M}}|u^{+}(x)|^p\,d\mu_{g}}.
$$
The function $\beta$ is well defined on $u\in \mathcal
{N}_{\varepsilon}$ since $u^{+}\not\equiv 0$ if $u\in \mathcal
{N}_{\varepsilon}$. Let
\begin{equation} \label{eq:4.a0}
m_{\varepsilon}:=\inf_{u\in \mathcal{N}_{\varepsilon}}I_{\varepsilon}(u),
\end{equation}
which is achieved as $\mathcal {M}$ is compact. Since $K(x), V(x)$
are bounded, we may show the following result as in
\cite[Lemma 5.1]{bbm}.
\begin{lemma}\label{le:4.1}
There exists a number $\alpha>0$ such that for any $\varepsilon>0$,
$m_{\varepsilon}\geq\alpha$.
\end{lemma}
For a given $\varepsilon>0$, let $\mathcal
{P}_{\varepsilon}=\{P_j^{\varepsilon}\}_{j\in
\Lambda_{\varepsilon}}$ be a finite good partition of the manifold
$\mathcal {M}$ introduced in \cite{bbm}: if for any $j\in
\Lambda_{\varepsilon}$ the set partition $P_j^{\varepsilon}$ is
closed; $P_j^{\varepsilon}\cap P_i^{\varepsilon}\subseteq \partial
P_j^{\varepsilon}\cap \partial P_i^{\varepsilon}$ for any $i\neq j$;
there exist $r_1(\varepsilon)\geq r_2(\varepsilon)>0$ such that
there are points $q_j^{\varepsilon}\in P_j^{\varepsilon}$ for any
$j$, satisfying $B_g(q_j^{\varepsilon}, \varepsilon)\subset
P_j^{\varepsilon}\subset B_g(q_j^{\varepsilon},
r_2(\varepsilon))\subset B_g(q_j^{\varepsilon}, r_1(\varepsilon))$
and any point $x\in \mathcal {M}$ is contained in at most
$N_{\mathcal {M}}$ balls $B_g(q_j^{\varepsilon}, r_1(\varepsilon))$,
where $N_{\mathcal {M}}$ does not depend on $\varepsilon$. This last
condition can be satisfied for $\varepsilon$ small enough by the
compactness of $\mathcal {M}$, and $r_1(\varepsilon)$,
$r_2(\varepsilon)$ can be chosen so that $r_1(\varepsilon)\geq
r_2(\varepsilon)\geq (1+\frac{1}{\Theta})\varepsilon$ with a
constant $\Theta$ independent on $\varepsilon$. We may assume that
the value $\varepsilon_0$ of Proposition \ref{prop:3.1} is small
enough for the manifold $\mathcal {M} $ to have good partitions.
\begin{lemma}\label{le:4.2}
There exists a constant $\gamma>0$ such that for any fixed
$\sigma>0$, $\varepsilon\in (0, \varepsilon_0)$ and function $u\in
\Sigma_{\varepsilon, \sigma}$, there exists a set
$\tilde{P}_{\sigma}^{\varepsilon}\in \mathcal {P}_{\varepsilon}$
such that
$$
\frac{1}{\varepsilon^n}\int_{\tilde{P}_{\sigma}^{\varepsilon}}K(x)|u^{+}|^p\,d\mu_g\geq\gamma.
$$
\end{lemma}
\begin{proof}
Fixed $\sigma>0$ and $0<\varepsilon< \varepsilon_0$. Then for any
$u\in \mathcal {N}_{\varepsilon}$ and any good partition $\mathcal
{P}_{\varepsilon}=\{P_j^{\varepsilon}\}_{j\in
\Lambda_{\varepsilon}}$, let $u_j^{+}=u^{+}$ on the set
$P_j^{\varepsilon}$. Then
\begin{equation} \label{eq:4.a}
\begin{aligned}
&\frac{1}{\varepsilon^n}\int_{\mathcal
{M}}(\varepsilon^2|\nabla_{g} u(x)|^2+V(x)u^2)\,d\mu_{g}\\
&=\frac{1}{\varepsilon^n}\int_{\mathcal {M}}K(x)|u^{+}|^p\,d\mu_{g}\\
&= \frac{1}{\varepsilon^n}\sum_{j\in
\Lambda_{\varepsilon}}\int_{P_j^{\varepsilon}}K(x)|u^{+}|^p\,d\mu_{g}\\
&\leq \max_j\Big(\frac{1}{\varepsilon^n}\int_{P_j^{\varepsilon}}K(x)
|u_j^{+}|^p\,d\mu_{g}\Big)^{\frac{p-2}{p}}\sum_{j\in
\Lambda_{\varepsilon}}\Big(\frac{1}{\varepsilon^n}
\int_{P_j^{\varepsilon}}K(x)|u_j^{+}|^p\,d\mu_{g}\Big)^{2/p}.
\end{aligned}
\end{equation}
Let
\[
\chi_{\varepsilon}(t):= \begin{cases}
1 & \text{if } t\leq r_2(\varepsilon);\\
0 & \text{if } t> r_1(\varepsilon)
\end{cases}
\]
be a smooth cutoff function, where $r_1(\varepsilon),
r_2(\varepsilon)$ are defined above for good partitions, and assume
that $|\chi'_{\varepsilon}|\leq \frac{\Theta}{\varepsilon}$
uniformly. Let
$$
\tilde{u}_j(x)=u^{+}(x)\chi_{\varepsilon}(|x-q_j^{\varepsilon}|).
$$
We know that $\tilde{u}_j(x)\in H_g^1(\mathcal {M})$, and
$supt(\tilde{u}_j(x))=B_g(q_j^{\varepsilon}, r_1(\varepsilon))$. By
the definition of $u_j^{+}$, we have $u_j^{+}=u^{+}$ on the set
$P_j^{\varepsilon}\subset B_g(q_j^{\varepsilon},
r_2(\varepsilon))\subset B_g(q_j^{\varepsilon}, r_1(\varepsilon))$.
By the Sobolev inequality there exists a positive constant $C$ such
that for any $j$,
\begin{equation} \label{eq:4.b}
\begin{aligned}
&\Big(\frac{1}{\varepsilon^n}\int_{P_j^{\varepsilon}}K(x)|u_j^{+}
|^p\,d\mu_g\Big)^{2/p}\\
&=\Big(\frac{1}{\varepsilon^n}\int_{P_j^{\varepsilon}}K(x)|u^{+}|^p\,d\mu_g\Big)^{2/p} \\
&\leq \Big(\frac{1}{\varepsilon^n}\int_{B_g(q_j^{\varepsilon}, r_2(\varepsilon))}K(x)|u^{+}\chi_{\varepsilon}(|x-q_j^{\varepsilon}|)|^p\,d\mu_g\Big)^{2/p} \\
&\leq \Big(\frac{1}{\varepsilon^n}\int_{B_g(q_j^{\varepsilon},
r_1(\varepsilon))}K(x)|u^{+}\chi_{\varepsilon}(|x-q_j^{\varepsilon}|)|^p
\, d\mu_g\Big)^{2/p}\\
&=\Big(\frac{1}{\varepsilon^n}\int_{\mathcal {M}}K(x)|\tilde{u}_j|^p\,d\mu_g\Big)^{2/p}\\
&\leq K_{\rm max}^{2/p}\Big(\frac{1}{\varepsilon^n}
\int_{\mathcal {M}}|\tilde{u}_j|^p\, d\mu_g\Big)^{2/p}\\
&\leq K_{\rm max}^{2/p}C\frac{1}{\varepsilon^n}\int_{\mathcal {M}}
\left(\varepsilon^2|\nabla_g \tilde{u}_j|^2+|\tilde{u}_j|^2\right)\,
d\mu_g\\
&= K_{\rm max}^{2/p}C\frac{1}{\varepsilon^n}\int_{P_j^{\varepsilon}}
\left(\varepsilon^2|\nabla_g \tilde{u}_j|^2+|\tilde{u}_j|^2\right)d\mu_g\\
&\quad+ K_{\rm max}^{2/p}C\frac{1}{\varepsilon^n}\int_{B_g(q_j^{\varepsilon}, r_1(\varepsilon))\backslash P_j^{\varepsilon}}
\left(\varepsilon^2|\nabla_g
\tilde{u}_j|^2+|\tilde{u}_j|^2\right)d\mu_g\\
&\leq K_{\rm max}^{2/p}C\frac{1}{\varepsilon^n}\int_{\mathcal {M}}
\left(\varepsilon^2|\nabla_g u_j^{+}|^2+|u_j^{+}|^2\right)d\mu_g\\
&\quad +K_{\rm max}^{2/p}C\frac{1}{\varepsilon^n}
\int_{B_g(q_j^{\varepsilon}, r_1(\varepsilon))\backslash
P_j^{\varepsilon}}
\left(\varepsilon^2|\nabla_g \tilde{u}_j|^2+|\tilde{u}_j|^2\right)d\mu_g.
\end{aligned}
\end{equation}
Moveover
\begin{equation} \label{eq:4.c}
\int_{B_g(q_j^{\varepsilon}, r_1(\varepsilon))\backslash
P_j^{\varepsilon}} |\tilde{u}_j|^2d\mu_g
\leq\int_{B_g(q_j^{\varepsilon}, r_1(\varepsilon))\backslash
P_j^{\varepsilon}} |u^{+}|^2d\mu_g,
\end{equation}
and
\begin{equation} \label{eq:4.d}
\begin{aligned}
&\int_{B_g(q_j^{\varepsilon}, r_1(\varepsilon))\backslash
P_j^{\varepsilon}}\varepsilon^2|\nabla_g \tilde{u}_j|^2d\mu_g\\
&=\int_{B_g(q_j^{\varepsilon}, r_1(\varepsilon))\backslash P_j^{\varepsilon}}\varepsilon^2\left|\nabla_g
\left(u^{+}(x)\chi_{\varepsilon}(|x-q_j^{\varepsilon}|)\right)\right|^2d\mu_g\\
&\leq 2\int_{B_g(q_j^{\varepsilon}, r_1(\varepsilon))\backslash P_j^{\varepsilon}}\varepsilon^2\left(|\nabla_g
u^{+}|^2\chi^2_{\varepsilon}(|x-q_j^{\varepsilon}|)+\left(\chi'_{\varepsilon}(|x-q_j^{\varepsilon}|)\right)^2
|u^{+}|^2\right)d \mu_g\\
&\leq 2\int_{B_g(q_j^{\varepsilon}, r_1(\varepsilon))\backslash P_j^{\varepsilon}}\left(\varepsilon^2|\nabla_g
u^{+}|^2+\Theta^2|u^{+}|^2\right)d \mu_g.
\end{aligned}
\end{equation}
Substituting (\ref{eq:4.c}) and (\ref{eq:4.d}) into (\ref{eq:4.b}),
we get
\begin{align*}
\Big((\frac{1}{\varepsilon^n}\int_{P_j^{\varepsilon}}K(x)|u_j^{+}|^p\,
d\mu_g\Big)^{2/p}
&\leq K_{\rm max}^{2/p}C\frac{1}{\varepsilon^n}\int_{\mathcal {M}}
\left(\varepsilon^2|\nabla_g u_j^{+}|^2+|u_j^{+}|^2\right)d\mu_g\\
&\quad +K_{\rm max}^{2/p}CC'\frac{1}{\varepsilon^n}
\int_{\mathcal {M}}\left(\varepsilon^2|\nabla_g
u^{+}|^2+|u^{+}|^2\right)d\mu_g,
\end{align*}
where $C'=\max\{2, 2\Theta^2+1\}$. Hence,
\begin{equation} \label{eq:4.e}
\begin{aligned}
&\sum_{j\in \Lambda_{\varepsilon}}
\Big(\frac{1}{\varepsilon^n}\int_{P_j^{\varepsilon}}K(x)|u_j^{+}|^p
\,d\mu_g\Big)^{2/p}\\
&\leq K_{\rm max}^{2/p}C\sum_{j\in \Lambda_{\varepsilon}}\frac{1}{\varepsilon^n}\int_{\mathcal {M}}\left(\varepsilon^2|\nabla_g
u_j^{+}|^2+|u_j^{+}|^2\right)d\mu_g \\
&\quad +K_{\rm max}^{2/p}CC'N_{\mathcal {M}}\frac{1}{\varepsilon^n}\int_{\mathcal {M}}\left(\varepsilon^2|\nabla_g
u^{+}|^2+|u^{+}|^2\right)d\mu_g\\
&\leq K_{\rm max}^{2/p}C(C'+1)N_{\mathcal {M}}\frac{1}{\varepsilon^n}\int_{\mathcal {M}}\left(\varepsilon^2|\nabla_g
u^{+}|^2+|u^{+}|^2\right)d\mu_g\\
&\leq K_{\rm max}^{2/p}C(C'+1)N_{\mathcal {M}}\max\left\{1,\frac{1}{\nu}\right\}\frac{1}{\varepsilon^n}\int_{\mathcal {M}}
\left(\varepsilon^2|\nabla_gu|^2+V(x)|u|^2\right)d\mu_g
\end{aligned}
\end{equation}
From (\ref{eq:4.a}) and (\ref{eq:4.e}) we have
\begin{align*}
\max_{j}\Big\{\Big(\frac{1}{\varepsilon^n}\int_{P_j^{\varepsilon}}K(x)|u^{+}|^p\,d\mu_{g}\Big)^{\frac{p-2}{p}}\Big\}
&\geq \frac{\frac{1}{\varepsilon^n}\int_{\mathcal
{M}}(\varepsilon^2|\nabla_{g} u(x)|^2+V(x)u^2)\,d\mu_{g}}{\sum_{j\in \Lambda_{\varepsilon}}
\Big(\frac{1}{\varepsilon^n}\int_{P_j^{\varepsilon}}K(x)|u_j^{+}|^p\,d\mu_g\Big)^{2/p}}\\
&\geq \frac{1}{K^{2/p}_{\rm max}C(C'+1)N_{\mathcal
{M}}\max\{1,\frac{1}{\nu}\}}.
\end{align*}
Thus, the proof is completed.
\end{proof}
\begin{lemma}\label{le:4.3}
Let $\sigma$ and $\varepsilon$ be fixed, and
$I_{\varepsilon}^{m_{\varepsilon}+2\sigma}:=\{u\in \mathcal
{N}_{\varepsilon}| I_{\varepsilon}(u)< m_{\varepsilon}+2\sigma\}$,
where $ m_{\varepsilon}$ is defined in (\ref{eq:4.a0}). For any
$u\in \Sigma_{\varepsilon, \sigma}\cap
I_{\varepsilon}^{m_{\varepsilon}+2\sigma}$ there exists
$u_{\sigma}\in \mathcal {N}_{\varepsilon}$ such that
\begin{equation} \label{eq:4.8}
I_{\varepsilon}(u_{\sigma})< I_{\varepsilon}(u), \quad
\||u_{\sigma}-u|\|_{\varepsilon}<4\sqrt{\sigma},
\end{equation}
where $\||u|\|_{\varepsilon}^2=\frac{1}{\varepsilon^n}\int_{\mathcal
{M}}(\varepsilon^2|\nabla_g u|^2+u^2)\,d\mu_g$, and
\begin{equation} \label{eq:4.9}
\big|\nabla|_{\mathcal
{N}_{\varepsilon}}I_{\varepsilon}(u_{\sigma})\big|
<\sqrt{\sigma}\||\xi|\|_{\varepsilon}.
\end{equation}
\end{lemma}
The above result follows by the Ekeland principle, also by the proof
in \cite[Lemma 5.4]{bbm}.
Let $u_k\in \Sigma_{\varepsilon_k, \sigma_k}\cap
I_{\varepsilon_k}^{m_{\varepsilon_k}+2\sigma_k}$, where
$\varepsilon_k, \sigma_k\to 0$ as $k\to\infty$. For all $k$, the map
$\exp_{\eta_k}: T_{\eta_k}\mathcal {M}\to\mathcal {M}$ is a
diffeomorphism on the ball $B_g(\eta_k, R)$. Let $\{\psi_c\}$ be a
partition of unity induced on $\mathcal {M}$ by the cover of balls
of radius $R$. By the compactness of $\mathcal {M}$, we can assume
that there exists $\rho>0$ such that for all $k$
\begin{equation} \label{eq:4.5}
\min\big\{\psi_{B_g(\eta_k,R)}(x)| x\in B_g(\eta_k,
\frac{R}{\rho})\big\}\geq \psi_0>0.
\end{equation}
Let
$$
\varphi_k: B_g\big(\eta_k, \frac{R}{\rho}\big)\to
B\big(0, \frac{R}{\varepsilon_k\rho}\big)\subset \mathbb{R}^n, \quad
\varphi_k:=\frac{\exp_{\eta_k}^{-1}}{\varepsilon_k}
$$
and define $w_k: \mathbb{R}^n \to \mathbb{R}$ by
$$
w_k(z):=\chi_k(z)u_k(\varphi_k^{-1}(z))=\chi_{R}\left(\varepsilon_k|z|\rho\right)
u_k(\exp_{\eta_k}(\varepsilon_kz))
=\chi_{\frac{R}{\rho}}(|\exp_{\eta_k}^{-1}(x)|)u_k(x),
$$
where $x=\exp_{\eta_k}(\varepsilon_kz)\in \Omega$ and
$\chi_k(z):=\chi_{\frac{R}{\varepsilon_k\rho}}(|z|)$. Then, $w_k\in
H_0^1\left(B\left(0,\frac{R}{\varepsilon_k\rho}\right)\right)\subset
H^1(\mathbb{R}^n)$.
\begin{lemma}\label{le:4.5}
There exists $\tilde{w}\in H^1(\mathbb{R}^n)$ such that, up to a
subsequence, $w_k$ tends to $\tilde{w}$ weakly in
$H^1(\mathbb{R}^n)$ and strongly in $L_{loc}^p(\mathbb{R}^n)$. The
limit function $\tilde{w}$ is a ground state solution of the problem
\begin{equation}\label{eq:A}
-\Delta u+V(\eta)u=K(\eta)|u|^{p-2}u, \quad \text{on }\mathbb{R}^n.
\end{equation}
\end{lemma}
\begin{proof} We first show that $w_k$ is bounded in $H^1(\mathbb{R}^n)$.
There holds
$$
I_{\varepsilon_k}(u_k)=\big(\frac{1}{2}-\frac{1}{p}\big)\frac{1}{\varepsilon_k^n}
\int_{\mathcal {M}}\left(\varepsilon^2|u_k|^2+ V(x)u_k^2\right)\,d\mu_g