\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 28, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/28\hfil Liapunov-type integral inequality] {Liapunov-type integral inequalities for certain higher-order differential equations} \author[S. Panigrahi\hfil EJDE-2009/28\hfilneg] {Saroj Panigrahi} \address{Saroj Panigrahi \newline Department of Mathematics and Statistics, University of Hyderabad, Hyderabad 500 046, India} \email{spsm@uohyd.ernet.in, panigrahi2008@gmail.com} \thanks{Submitted October 19, 2008. Published February 5, 2009.} \thanks{Supported by National Board of Higher Mathematics, Department of Atomic Energy, India} \subjclass[2000]{34C10} \keywords{Liapunov-type inequality; oscillatory solution; disconjugacy; \hfill\break\indent higher order differential equations} \begin{abstract} In this paper, we obtain Liapunov-type integral inequalities for certain nonlinear, nonhomogeneous differential equations of higher order with without any restriction on the zeros of their higher-order derivatives of the solutions by using elementary analysis. As an applications of our results, we show that oscillatory solutions of the equation converge to zero as $t\to \infty$. Using these inequalities, it is also shown that $(t_{m+ k} - t_{m}) \to \infty $ as $m \to \infty$, where $1 \le k \le n-1$ and $\langle t_m \rangle $ is an increasing sequence of zeros of an oscillatory solution of $ D^n y + y f(t, y)|y|^{p-2} = 0$, $t \ge 0$, provided that $W(., \lambda) \in L^{\sigma}([0, \infty), \mathbb{R}^{+})$, $1 \le \sigma \le \infty$ and for all $\lambda > 0$. A criterion for disconjugacy of nonlinear homogeneous equation is obtained in an interval $[a, b]$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{example}[theorem]{Example} \section{Introduction} The Russian mathematician A. M. Liapunov \cite{Liapunov} proved the following remarkable inequality: If $y(t)$ is a nontrivial solution of \begin{equation} \label{e1} y'' + p(t)y = 0, \end{equation} with $y(a) = 0 =y(b)$ ($a < b$) and $y(t) \neq 0 $ for $ t \in (a, b)$, then \begin{equation} \label{e2} \frac{4}{b - a} < \int_{a}^{b} |p(t)|dt, \end{equation} where $ p \in L_{\rm loc}^1$. This inequality provides a lower bound for the distance between consecutive zeros of $y(t)$. If $p(t) = p > 0$, then \eqref{e2} yields \[ (b - a ) > 2/{\sqrt p}. \] In \cite{Hartman2}, the inequality \eqref{e2} is strengthened to \begin{equation} \label{e3} \frac{4}{b - a} < \int_{a}^{b} p_{+}(t)dt, \end{equation} where $p_{+}(t) = \max\{p(t), 0\}$. The inequality \eqref{e3} is the best possible in the sense that if the constant 4 in \eqref{e3} is replaced by any larger constant, then there exists an example of \eqref{e1} for which \eqref{e3} no longer holds (see \cite[p. 345]{Hartman2}, \cite{Kowng}). However, stronger results were obtained in \cite{Brown,Kowng}. In \cite{Kowng} it is shown that \[ \int_{a}^{c} p_{+}(t) dt > \frac {1}{c - a}\quad \text{and}\quad \int_{c}^{b} p_{+}(t) dt > \frac{1}{b - c}, \] where $c \in (a, b) $ such that $y'(c) = 0$. Hence \[ \int_{a}^{b} p_{+}(t)dt > \frac{1}{c - a} + \frac{1}{b - c} = \frac{(b - a)}{(c - a)(b - c)} \ge \frac{4}{b - a}. \] In \cite[Corollary 4.1]{Brown}, the authors obtained \[ \frac {4}{b - a} < \big| \int_{a}^{b}p(t)dt \big| \] from which \eqref{e2} can be obtained. The inequality finds applications in the study of boundary value problems. It may be used to provide a lower bound on the first positive proper value of the Sturm-Liouville problems \begin{gather*} y''(t) + \lambda q(t)y = 0 \\ y(c) = 0 = y(d)\quad (c < d) \end{gather*} and \begin{gather*} y''(t) + ( \lambda + q(t))y = 0\\ y(c) = 0 = y(d)\quad (c < d) \end{gather*} by letting $p(t)$ to denote ${\lambda}q(t)$ and $\lambda + q(t)$ respectively in \eqref{e2}. The disconjugacy of \eqref{e1} also depends on \eqref{e2}. Indeed, equation \eqref{e1} is said to be disconjugate if \[ \int_{a}^{b} |p(t)|dt \le 4/(b - a). \] Equation \eqref{e1} is said to be disconjugate on $[a, b]$ if no non-trivial solution of \eqref{e1} has more than one zero. Thus \eqref{e2} may be regarded as a necessary condition for conjugacy of \eqref{e1}. Inequality \eqref{e2} has lots of applications in eigenvalue problems, stability, etc. A number of proofs are known and generalizations and improvements have also been given (see \cite{Hartman2,Levin,patula,Willet,Wong}. Inequality \eqref{e3} was generalized to the condition \begin{equation} \label{e4} \int_{a}^{b} (t-a)(b-t)p_{+}(t)dt > (b-a) \end{equation} by Hartman and Wintner \cite{Hartman}. An alternate proof of the inequality \eqref{e4}, due to Nihari \cite{Nihari}, is given in \cite[Theorem 5.1 Ch XI]{Hartman2}. For the equation \begin{equation} \label{e5} y''(t) + q(t)y' + p(t)y = 0, \end{equation} where $p, q \in C([0, \infty), R)$, Hartman and Wintner \cite{Hartman} established the inequality \begin{equation} \label{e6} \int_{a}^{b} (t-a)(b-t)p_{+}(t)dt + \max\Big\{\int_{a}^{b}(t-a)|q(t)|, \int_{a}^{b}(b-t)|q(t)|dt\Big\} > (b-a) \end{equation} which reduces to \eqref{e4} when $q(t) = 0$. In particular, \eqref{e6} implies the \emph{de la vallee Poussin inequality} \cite{Reid}. In \cite{Galbrith}, Galbraith has shown that if $a$ and $b$ are successive zeros of \eqref{e1} with $p(t) \ge 0 $ a linear function, then \[ (b-a)\int_{a}^{b}p(t)dt \le \pi^{2}. \] This inequality provides an upper bound for two successive zeros of an oscillatory solution of \eqref{e1}. Indeed, if $p(t) = p > 0$, then $(b-a) \le \pi/(p)^{1/2}$. Fink \cite{Fink}, obtained both upper and lower bounds of $(b-a)\int_{a}^{b}p(t)dt$, where $p(t) \ge 0$ is linear. Indeed, he showed that \[ {\frac{9}{8}}\lambda_{0}^{2} \le (b-a)\int_{a}^{b}p(t)dt \le \pi^{2} \] and that these are the best possible bounds, where $\lambda_{0}$ is the first positive zero of $J_{1/3}$ and $J_{n}$ is the Bessel function. The constant ${\frac{9}{8}}\lambda_{0}^{2} = 9.478132\dots $ and $\pi^{2} = 9.869604\dots $, so that it gives a delicate test for the spacing of the zeros for linear $p$. Fink \cite{Fink2} investigated the behaviour of the functional $(b-a)\int_{a}^{b}p(t)dt$, where $p$ is in a certain class of sub or supper functions. Eliason \cite{Eliason,Eli1} obtained upper and lower bounds of the functional $(b-a)\int_{a}^{b}p(t)dt$, where $p(t)$ is concave or convex. St Marry and Eliason \cite{Marry} considered the same problem for \eqref{e5}. Bailey and Waltman \cite{Baily} applied different techniques to obtain both upper and lower bounds for the distance between two successive zeros of solution of \eqref{e5}. They also considered nonlinear equations. In a recent paper, Brown and Hinton \cite{Brown} used Opial's inequality to obtain lower bounds for the spacing of the zeros of a solution of \eqref{e1} and lower bounds of the spacing $\beta - \alpha$, where $y(t)$ is a solution of \eqref{e1} satisfying $y(\alpha) = 0 = y'(\beta)$ and $y'(\alpha) = 0 = y(\beta) (\alpha < \beta)$. Inequality \eqref{e2} is generalized to second order nonlinear differential equation by Eliason \cite{Eli1}, to delay differential equations of second order in \cite{Eli2,Eli3} and by Dahiya and Singh \cite{Dahya}, and to higher order differential equation by Pachpatte \cite{Pach}. In a recent work \cite{Parhi1}, the authors have obtained a Liapunov-type inequality for third order differential equations of the form \begin{equation} \label{e7} y''' + p(t)y = 0, \end{equation} where $p \in L_{\rm loc}^1$. The inequality is used to study many interesting properties of the zeros of an oscillatory solution of \eqref{e7} (see \cite[Theorems 5, 6]{Parhi1}). Indeed, Pachpatte derived Liapunov-type inequalities for the equation of the form \begin{equation} \label{e8} \begin{gathered} D^n[ r(t)D^{n-1}(p(t)g(y'(t))) ] + y(t) f(t,y(t)) = Q(t), \\ D^n[ r(t)D^{n-1}(p(t)h(y(t))y'(t)) ] + y(t) f(t,y(t)) = Q(t), \\ D^n[ r(t)D^{n-1}(p(t)h(y(t))g(y'(t))) ] + y(t) f(t,y(t)) = Q(t), \end{gathered} \end{equation} under appropriate conditions, where $n \ge 2$ is an integer and $ D= d^n/dt^n$. It is clear that the results in \cite{Pach} are not applicable to odd order equations. Furthermore, he has taken the restriction on the zeros of higher order derivatives \cite[Theorem 1]{Pach}. We may observe that in \cite[p.530, Example]{Pach}, $y'''(3\pi/4) \ne 0$ because $y'''(t) = 2e^{-t}(\cos t - \sin t)$. On the other hand, $y'''(\pi/4) = 0$ but $ \pi/4 \notin (\pi/2, 3\pi/2) $ and $y'''(5\pi/4) = 0$ but $5\pi/4 < \pi$. Although this example does not illustrate \cite[Theorem 1]{Pach}, it has motivated us to remove the restriction on the zeros of higher order derivatives of the solution of \eqref{e5}. The objective of this paper is to obtain Liapunov-type integral inequality for the nth-order differential equation \begin{equation} \label{e9} \Big(\frac {1}{r_{n-1}(t)} \dots \Big(\frac{1}{r_{2}(t)}\Big(\frac{1}{r_1(t)}|y'(t)|^{p-2}y'(t)\Big)'\Big)' \dots \Big)' + |y(t)|^{p-2}f(t,y(t))y = Q(t), \end{equation} under appropriate assumptions on $ r_{i}(t)$, $1\le i\le n-1, f$ and $Q$. Here $n\ge 2, p > 1$ are even and odd integers. In this work we remove this restriction on the zeros of higher order derivatives. Further, we show that every oscillatory solution of \eqref{e9} converges to zero as $ t\to \infty$ with the help of Liapunov-type inequality. We also generalize a theorem of Patula \cite[Theorem 2]{patula} to higher order equations. A criteria for diconjugacy of nonlinear homgeneous equation is obtained in an interval $[a, b]$ by the help of the inequality. \section{Main results} Equation \eqref{e9} may be written as \begin{equation} \label{e10} D^ny + y f(t, y)|y(t)|^{p-2} = Q(t), \end{equation} where $ n \ge 2$ is an integer, \[ Dy = \frac{1}{r_1(t)}|y'(t)|^{p-2}y'(t),\quad D^{i}y = \frac{1}{r_{i}(t)}(D^{i-1}y)', \] $ 2 \le i \le n $, and $ r_{n}(t) \equiv 1$. We assume that \begin{itemize} \item[(C1)] $r_{i}: I \to \mathbb{R}$ is continuous and $r_{i}(t) > 0, 1 \le i \le n - 1 $ and $Q:I \to \mathbb{R} $ is continuous, where $I$ is a real interval. \item[(C2)] $f : I\times \mathbb{R}\to \mathbb{R}$ is continuous such that $ |f(t, y)| \le W(t, |y|)$, where $W : I \times \mathbb{R^ {+}} \to \mathbb{R}^{+}$ is continuous, $W(t, u) \le W(t, v)$ for $0 \le u \le v$ and $\mathbb{R}^{+} = [0, \infty]$. \end{itemize} We define \begin{align*} &E(t,r_{2}(t), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2});z(s_{n-1}) ) \\ &= r_{2}(t) \int_{\alpha_1}^{t}r_{3}(s_{2})\ \int _{\alpha_{2}}^{s_{2}}r_{4}(s_{3}) \dots\\ &\quad \int_{\alpha_{n-3}}^{s_{n-3}}r_{n-1}(s_{n-2}) \int_{\alpha_{n-2}}^{s_{n-2}}z(s_{n-1})ds_{n-1}ds_{n-2}\dots ds_{2}, \end{align*} where $z(t)$ is a real valued continuous function defined on $[a, b] \subset I(a < b)$ and $ \alpha_1, \alpha_{2},\dots ,\alpha_{n-2} $ are suitable points in $[a, b]$, and \begin{align*} &\overline{E}(t,r_{2}(t), r_{3}(s_{2}), \dots , r_{n-1}(s_{n-2});z(s_{n-1}) ) \\ &= r_{2}(t) \Big|\int_{\alpha_1}^{t}r_{3}(s_{2})\Big| \int _{\alpha_{2}}^{s_{2}}r_{4}(s_{3}) \dots \Big|\int_{\alpha_{n-3}}^{s_{n-3}}r_{n-1}(s_{n-2}) \Big|\int_{\alpha_{n-2}}^{s_{n-2}}z(s_{n-1})ds_{n-1} \Big|ds_{n-2}\Big|\\ &\quad \dots \Big|ds_{2}\Big|. \end{align*} \begin{theorem} \label{thm1} Suppose that {\rm (C1)-(C2)} hold. Let $\alpha_1, \alpha_{2}, \dots , \alpha_{n-2} \in [a,b]$, where $ \alpha_1, \alpha_{2},\dots , \alpha_{n-2}$ are the zeros of $D^{2}y(t), D^{3}y(t), \dots ,D^{n-2}y(t), D^{n-1}y(t)$ respectively, $ [a, b] \subset I(a < b) $ and $y(t)$ is a nontrivial solution of \eqref{e10} with $y(a) = 0 = y(b)$. If $c$ is a point in $(a, b)$ where $|y(t)|$ attains maximum and $ M = \max\{|y(t)| : t\in [a,b]\} = |y(c)|$, then \begin{equation} \label{e11} \begin{aligned} 1 &< \big(\frac {1}{2}\big)^p\Big(\int_{a}^{b}( r_1(s_1))^{1/(p-1)}ds_1\Big)^{p-1}\Big(\int _{a}^{b} \big[\overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}), \dots , r_{n-1}(s_{n-2});\\ &\quad W(s_{n-1}, M)) + \frac {1}{M^{p-1}}\overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}), \dots , r_{n-1}(s_{n-2});|Q(s_{n-1})|)\big] ds_1\Big), \end{aligned} \end{equation} for $ n \ge 3 $ and \begin{equation} \label{e12} 1 < \big(\frac {1}{2}\big)^p\Big(\int_{a}^{b}( r_1(t))^{1/(p-1)}dt\Big)^{p-1} \Big[\int_{a}^{b} W(t, M) dt + \frac {1}{M^{p-1}} \int_{a}^{b} |Q(t)| dt\Big], \end{equation} for $n = 2$. \end{theorem} \begin{proof} Let $ n \ge 3 $. Integrating \eqref{e10} from $\alpha_{n-2}$ to $t \in [a, b]$, we obtain \begin{align*} &D^{n-1}y(t) + \int_{\alpha_{n-2}}^{t}y(s_{n-1})f(s_{n-1}, y(s_{n-1}))|y(s_{n-1})|^{p-2}ds_{n-1} \\ &= \int_{\alpha_{n-2}}^{t} Q(s_{n-1})ds_{n-1}; \end{align*} that is, \begin{align*} &(D^{n-2}y(t))' + r_{n-1}(t) \int_{\alpha_{n-2}}^{t}y(s_{n-1})f(s_{n-1}, y(s_{n-1})) |y(s_{n-1})|^{p-2}ds_{n-1} \\ &= r_{n-1}(t) \int_{\alpha_{n-2}}^{t} Q(s_{n-1}) ds_{n-1}. \end{align*} Further integration from $\alpha_{n-3}$ to $t \in [a, b]$ yields \begin{align*} &D^{n-2}y(t) \\ &+\int_{\alpha_{n-3}}^{t} r_{n-1}(s_{n-2})\Big( \int_{\alpha_{n-2}}^{s_{n-2}}y(s_{n-1}) f(s_{n-1}, y(s_{n-1}))|y(s_{n-1})|^{p-2}ds_{n-1}\Big)ds_{n-2} \\ &= \int_{\alpha_{n-3}}^{t} r_{n-1}(s_{n-2})\Big( \int_{\alpha_{n-2}}^{s_{n-2}} Q(s_{n-1}) ds_{n-1}\Big)ds_{n-2}. \end{align*} Proceeding as above we obtain \begin{align*} & D^{2}y(t) + \int_{\alpha_1}^{t}r_{3}(s_{2}) \int _{\alpha_{2}}^{s_{2}}r_{4}(s_{3}) \dots \\ & \int_{\alpha_{n-3}}^{s_{n-3}}r_{n-1}(s_{n-2}) \int_{\alpha_{n-2}}^{s_{n-2}}y(s_{n-1})f(s_{n-1}, y(s_{n-1}))|y(s_{n-1})|^{p-2}ds_{n-1}ds_{n-2} \dots ds_{2}, \\ &= \int_{\alpha_1}^{t}r_{3}(s_{2}) \int _{\alpha_{2}}^{s_{2}}r_{4}(s_{3}) \dots \int_{\alpha_{n-3}}^{s_{n-3}}r_{n-1}(s_{n-2}) \int_{\alpha_{n-2}}^{s_{n-2}}Q(s_{n-1})ds_{n-1}ds_{n-2}\dots ds_{2}; \end{align*} that is, \begin{align*} &(Dy(t))' + E(t, r_{2}(t), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2}); y(s_{n-1})f(s_{n-1}, y(s_{n-1})) |y(s_{n-1})|^{p-2})\\ & = E(t, r_{2}(t), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2}); Q(s_{n-1})). \end{align*} Hence \begin{equation} \label{e13} \begin{aligned} |(Dy(t))'| &\le M^{p-1}\overline{E}(t, r_{2}(t), r_{3}(s_{2}), \dots , r_{n-1}(s_{n-2}); W(s_{n-1}, M)) \\ &\quad + \overline{E}(t, r_{2}(t), r_{3}(s_{2}), \dots , r_{n-1}(s_{n-2}); | Q(s_{n-1})|). \end{aligned} \end{equation} Since \begin{gather*} M = |y(c)| = \Big|\int_{a}^{c} y'(s_1) ds_1\Big| \le \int_{a}^{c}|y'(s_1)| ds_1,\\ M = |y(c)| = \Big|\int_{c}^{b} y'(s_1) ds_1\Big| \le \int_{c}^{b}|y'(s_1)| ds_1, \end{gather*} it follows that \[ 2M \le \int_{a}^{b} |y'(s_1)|ds_1. \] First, using H\"olders inequality with indices $p$ and $p/(p-1)$ and then integrating by parts we obtain \begin{equation} \begin{aligned} M^p &\le \big(\frac {1}{2}\big)^p\Big(\int_{a}^{b}|y'(s_1)|ds_1\Big)^p \\ & = \big(\frac {1}{2}\big)^p\Big(\int_{a}^{b}(r_1(s_1))^{1/p} (r_1(s_1))^{-1/p} |y'(s_1)|ds_1\Big)^p \\ &\le \big(\frac {1}{2}\big)^p\Big(\int_{a}^{b}(r_1(s_1))^{1/(p-1)}ds_1 \Big)^{p-1} \Big(\int_{a}^{b}(r_1(s_1))^{-1} |y'(s_1)|^pds_1\Big) \\ &= \big(\frac {1}{2}\big)^p\Big(\int_{a}^{b}(r_1(s_1))^{1/(p-1)} ds_1\Big)^{p-1} \Big([(r_1(s_1))^{-1}|y'(s_1)|^{p-2}y'(s_1) y(s_1)]_{a}^{b} \\ &\quad - \int_{a}^{b}[(r_1(s_1))^{-1}|y'(s_1)|^{p-2}y'(s_1)]' y(s_1) ds_1\Big)\\ &= - \big(\frac {1}{2}\big)^p\Big(\int_{a}^{b}(r_1(s_1))^{1/(p-1)} ds_1\Big)^{p-1} \int_{a}^{b}(Dy)'(s_1)y(s_1)ds_1 \\ &\le \big(\frac {1}{2}\big)^p\Big(\int_{a}^{b}(r_1(s_1))^{1/(p-1)} ds_1\Big)^{p-1} \int_{a}^{b}|(Dy)'(s_1)||y(s_1)|ds_1. \end{aligned} \label{e14} \end{equation} Using \eqref{e13}, \begin{align*} M^p &< \big(\frac{1}{2}\big)^p\Big(\int_{a}^{b}(r_1(s_1)) ^{1/(p-1)}ds_1\Big)^{p-1}\\ &\quad\times \Big[M^p\int_{a}^{b}\overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2}); W(s_{n-1}, M))ds_1\\ &\quad + M \int_{a}^{b}\overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2});| Q(s_{n-1})|)ds_1\Big]; \end{align*} that is, \begin{align*} 1 &< \big(\frac{1}{2}\big)^p\Big(\int_{a}^{b}(r_1(s_1))^{1/(p-1)} ds_1\Big)^{p-1}\\ &\quad\times \Big[\int_{a}^{b}\overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2}); W(s_{n-1}, M))ds_1\\ &\quad + \frac{1}{M^{p-1}} \int_{a}^{b}\overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}), \dots , r_{n-1}(s_{n-2});| Q(s_{n-1})|)ds_1\Big]. \end{align*} When $ n = 2 $, \eqref{e10} has the form \[ (Dy)'(t) + y(t) f(t, y(t))|y(t)|^{p-2} = Q(t). \] Hence \eqref{e14} yields \[ M^p < \big(\frac{1}{2}\big)^p\Big(\int_{a}^{b}(r_1(s_1))^{1/(p-1)}ds_1\Big)^{p-1}\Big[\int_{a}^{b}|y(t)|^p |f(t, y(t))|dt + \int_{a}^{b}|y(t)||Q(t)|dt \Big]; \] that is, \[ 1 < \big(\frac{1}{2}\big)^p\Big(\int_{a}^{b}(r_1(t))^{1/(p-1)}dt\Big)^{p-1}\Big[\int_{a}^{b}W(t,M) dt + \frac{1}{M^{p-1}}\int_{a}^{b}|Q(t)|dt\Big ]. \] Thus the proof is complete. \end{proof} \subsection*{Remarks} If $r_{i}(t) = 1; i = 1, 2, \dots , n-1$; $p = 2$; $f(t, y) = p(t)$ and $n = 2, 3$; then inequalities \eqref{e12} and \eqref{e11} reduce respectively, to the inequalities \eqref{e2} and \[ \int_{a}^{b}|p(t)|dt > 4/(b-a)^{2}. \] This inequality provides a lower bound of the distance between consecutive zeros of the solution $y(t)$. For the various applications of this inequality one can see \cite{Parhi1}. Liapunov-type integral inequalities for \eqref{e8} can be obtained under suitable assumptions on $g$ and $h$. If $r_{i}(t) = 1$; $i = 1, 2, \dots ,n-1$; $n = 3$, $p = 2$, $f(t, y) = q(t)|y(t)|^{\beta - 1}$ and $Q(t) = 0$, then \eqref{e10} reduces to \begin{equation} \label{e15} y'''(t) + q(t)|y(t)|^{\beta - 1}y = 0,\quad t \ge 0, \end{equation} where $\beta$ is a positive constant and $q : [0, \infty) \to [0,\infty) $ is a continuous function is called an \emph{Emden-Fowler} equations of third order. If $y(t)$ is a solution of \eqref{e15} with $y(a) = 0 = y(b)$, $(a < b)$ and $y(t) \ne 0$ for $t \in (a, b)$, then the spacing between zeros of solutions of \eqref{e15} may be computed by using \eqref{e11}. \begin{example} \label{exa1} \rm Consider \begin{equation} \label{e16} y'''(t) + y^{2}(t) = \sin^{2}t - \cos t,\quad t \ge 0. \end{equation} Clearly, $y(t) = \sin t$ is a solution of \eqref{e16} with $ y(0) = 0 = y(\pi)$, $y''(0) = 0 = y''(\pi)$. $M = \max_ {t \in [0, \pi]} | \sin t |= 1$. From Theorem \ref{thm1} it follows that \[ 1 < \frac{\pi}{4}\int_{0}^{\pi}[\overline{E}(s_1, r_{2}(s_1), W(s_{2}, M)) + \frac{1}{M} \overline{E}(s_1, r_{2}(s_1),|Q(s_{2})|)]ds_1, \] where \begin{gather*} \overline{E}(s_1, r_{2}(s_1), W(s_{2}, M)) = \Big|\int_{0}^{s_1}M ds_{2}\Big| = \begin{cases} s_1, & s_1 > 0,\\ - s_1, & s_1 < 0, \end{cases} \\ \overline{E}(s_1, r_{2}(s_1),|Q(s_{2})|) = \Big|\int_{0}^{s_1}\Big|\sin^{2}s_{2} - \cos s_{2}\Big| ds_{2}\Big| = \begin{cases} 2s_1, & s_1 > 0 ,\\ - 2s_1, & s_1 < 0 . \end{cases} \end{gather*} Hence \begin{gather*} \int_{0}^{\pi}\overline{E}(s_1, r_{2}(s_1), W(s_{2}, M))ds_1 =\begin{cases} \pi^{2}/2, & s_1 > 0,\\ - \pi^{2}/2, & s_1 < 0, \end{cases} \\ \int_{0}^{\pi}\overline{E}(s_1, r_{2}(s_1),|Q(s_{2})|)ds_1 = \begin{cases} \pi^{2}, & s_1 > 0 ,\\ - \pi^{2}, & s_1 < 0 . \end{cases} \end{gather*} As $\overline{E} > 0$, then $s_1 > 0$ and \begin{gather*} \int_{0}^{\pi}\overline{E}(s_1, r_{2}(s_1), W(s_{2}, M))ds_1 = \pi^{2}/2, \\ \int_{0}^{\pi}\overline{E}(s_1, r_{2}(s_1),|Q(s_{2})|)ds_1 = \pi^{2}. \end{gather*} Thus by Theorem \ref{thm1}, $1 < 3\pi^{3}/8 $ or $ 3\pi^{3} > 8 $, which is obviously true. \end{example} \begin{theorem} \label{thm2} Suppose that {\rm (C1)-(C2)} hold. Let $ \alpha_1, \alpha_{2},\dots , \alpha_{n-3}, \alpha_{n-2}$ be the zeros of $D^{2}y(t), D^{3}y(t), \dots ,D^{n-2}y(t), D^{n-1}y(t)$ respectively, in $ [a, b] \subset I(a < b)$, where $y(t)$ is a nontrivial solution of \[ D^ny + y f(t, y)|y(t)|^{p-2} = 0 \] with $y(a) = 0 = y(b)$. If $c$ is a point in $(a, b)$, where $|y(t)|$ attains a maximum, then the point `$c$' cannot be very close to `$a$' as well as `$b$'. \end{theorem} \begin{proof} Let $ M = \max\{|y(t)|: t\in [a, b]\} = |y(c)|$. Then $y'(c) = 0$. Since \[ y(c) = \int_{a}^{c}y'(t)dt, \] using H\"olders inequality with indices $p$ and $p/(p-1)$ and then integrating by parts we obtain \begin{align*} &M^p \\ &\le \big(\frac {1}{2}\big)^p\Big(\int_{a}^{c}|y'(t)|dt\Big)^p\\ & = \big(\frac {1}{2}\big)^p\Big(\int_{a}^{c}r_1(t)^{1/p} r_1(t)^{-1/p}|y'(t)|dt\Big)^p \\ &\le \big(\frac {1}{2}\big)^p\Big(\int_{a}^{c}r_1(t)^{1/(p-1)}\Big)^{p-1} \Big(\int_{a}^{c} r_1(t)^{-1}|y'(t)|^pdt\Big) \\ &= \big(\frac {1}{2}\big)^p\Big(\int_{a}^{c}r_1(t)^{1/(p-1)}\Big)^{p-1} \Big(\Big[r_1(t)^{-1}|y'(t)|^{p-2}y'(t)y(t)\Big]_{a}^{c} - \int_{a}^{c}(Dy)'(t)y(t)dt\Big) \\ &\le \big(\frac {1}{2}\big)^p\Big(\int_{a}^{c}r_1(t)^{1/(p-1)}\Big)^{p-1} \Big(\int_{a}^{c}|(Dy)'(t)||y(t)|dt \Big). \end{align*} Proceeding as Theorem \ref{thm1} we obtain \[ |(Dy)'(t)| \le M^{p-1} \overline{E}(t, r_{2}(t), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2}); W(s_{n-1}, M)). \] Hence \begin{align*} 1 &< \big(\frac {1}{2}\big)^p\Big(\int_{a}^{c}r_1(t)^{1/(p-1)}\Big)^{p-1}\\ &\quad\times \Big(\int_{a}^{c}\overline{E}(t, r_{2}(t), r_{3}(s_{3}), \dots ,r_{n-1}(s_{n-2}); W(s_{n-1}, M)) dt\Big); \end{align*} that is, \begin{equation} \label{e17} \begin{aligned} &\Big[\Big(\int_{a}^{c}r_1(t)^{1/(p-1)}\Big)^{p-1}\Big]^{-1} \\ &< \big(\frac{1}{2}\big)^p \Big(\int_{a}^{c}\overline{E}(t, r_{2}(t), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2}); W(s_{n-1}, M))dt\Big) <\infty. \end{aligned} \end{equation} Thus `$c$' cannot be very close to `$a$' because \[ \lim _{c \to a+}\Big[\Big(\int_{a}^{c}r_1(t)^{1/(p-1)}\Big)^{p-1}\Big]^{-1} = \infty. \] Next we have to show that `$c$' cannot be very close to `$b$'. Since \[ |y(c)| = \Big|\int_{a}^{c}y'(t)dt\Big|, \] then proceeding as above to obtain \begin{align*} M^p &\le \big(\frac {1}{2}\big)^p\Big(\int_{c}^{b}|y'(t)|dt\Big)^p \\ &= \big(\frac {1}{2}\big)^p\Big(\int_{c}^{b}r_1(t)^{1/(p-1)}\Big)^{p-1} \Big(\Big[\int_{c}^{b} r_1(t)^{p-1}|y'(t)|^{p-2}y'(t)y(t)\Big]_{c}^{b}\\ &\quad - \int_{c}^{b}(Dy)'(t)y(t)dt\Big) \\ &\le \big(\frac {1}{2}\big)^p\Big(\int_{c}^{b}r_1(t)^{1/(p-1)}\Big)^{p-1} \int_{c}^{b}|(Dy)'(t)||y(t)|dt \\ &< M^p \big(\frac {1}{2}\big)^p\Big(\int_{c}^{b}r_1(t)^{1/(p-1)}\Big)^{p-1}\\ &\quad \times \Big(\int_{c}^{b} \overline{E}(t, r_{2}(t), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2});W(s_{n-1}, M))dt\Big). \end{align*} Hence \begin{align*} &\Big[\Big(\int_{c}^{b}r_1(t)^{1/(p-1)}\Big)^{p-1}\Big]^{-1} \\ &<\big(\frac{1}{2}\big)^p \Big(\int_{c}^{b}\overline{E}(t, r_{2}(t), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2}); W(s_{n-1}, M))dt\Big) <\infty. \end{align*} Thus `$c$' cannot be very close to `$b$' because \[ \lim _{c \to b-}\Big[\Big(\int_{c}^{b}r_1(t)^{1/(p-1)}\Big)^{p-1}\Big]^{-1} = \infty. \] This completes the proof of the theorem. \end{proof} We remark that Theorem \ref{thm2} need not hold if $\alpha_{i} \notin [a, b] $ for some $ i \in \{1, 2, \dots , n-2\}$. \section{Applications} In this section we present some of the applications of the Liapunov-type inequality obtained in Theorem \ref{thm1} to study the asymptotic behaviour of oscillatory solution of \eqref{e10}. \noindent\textbf{Definition.} A solution $y(t)$ of \eqref{e10} is said to be \emph{oscillatory} if there exists a sequence $\subset [0,\infty)$ such that $y(t_{m}) = 0$, $m \ge 1$ and $t_{m} \to \infty $ as $ m \to \infty $. \begin{theorem} \label{thm3} Suppose that {\rm (C1)-(C2)} hold. Let $W(t,\lambda) \in L^{\sigma}([0,\infty), \mathbb{R}^{+})$ for all $\lambda > 0$, where $ 1 \le \sigma < \infty$. Let $r_{i}(t) \le K $ for $t \ge 0 $ and $1 \le i \le n - 1$, where $K > 0 $ is a constant. If $< t_{m} > $ is an increasing sequence of zeros of an oscillatory solution $y(t)$ of \[ D^ny + yf(t, y)|y(t)|^{p-2} = 0 \quad t \ge 0, \] such that $\alpha_1, \alpha_{2}, \dots ,\alpha_{n-2} \in (t_{m}, t_{m + k})$, $1 \le k \le n-1$, for every large $ m $, then $ (t_{m + k} - t_{m}) \to \infty$, as $ m \to \infty$, where $\alpha_1, \dots ,\alpha_{n-2} $ are the zeros of $ D^2y(t)$, $D^{3}y(t)$, \dots, $D^{n-2}y(t)$, $D^{n-1}y(t)$, respectively. \end{theorem} \begin{proof} If possible, let there exist a subsequence $ \langle t_{m_{i}} \rangle $ of $ \langle t_{m} \rangle$ such that $(t_{m_{i}+k} - t_{m_{i}})\le M $ for every $i$, where $ M > 0 $ is a constant. Let $M_{m_{i}} = \max\{|y(t)|: t \in [t_{m_{i}}, t_{m_{i}+k}]\} = |y(s_{m_{i}})|$, where $s_{m_{i}} \in (t_{m_{i}}, t_{m_{i}+k})$. Since $ W(t, \lambda) \in L^{\sigma}([0, \infty), \mathbb{R}^{+})$ for all $\lambda> 0 $, then \[ \int_{0}^{\infty}W^{\sigma}(t, \lambda)dt < \infty, \quad \text{for all } \lambda > 0. \] Hence \[ \int_{t}^{\infty}W^{\sigma}(t, \lambda) dt \to 0\quad\text{as } t \to \infty. \] Thus, for $1 < \sigma <\infty$, we may have \[ \int_{t_{m_i}}^{\infty}W^{\sigma}(t, \lambda)dt < [K^{n-1}M^{n - 1 + \frac{1}{\mu}}]^{-1} \] for large $i$, where $\frac{1}{\mu} + \frac{1}{\sigma} = 1$. From \eqref{e17} we obtain \[ \Big[\int_{t_{m_i}}^{s_{i}}((r_1(t)^{1/(p-1)})^{p-1}\Big]^{-1} < \big(\frac{1}{2}\big)^p K^{n-2}\big(t_{m_{i}+k} - t_{m_{i}}\big)^{n-2} \int_{t_{m_{i}}}^{t_{m_{i}+k}}W(t, M_{m_{i}})dt; \] that is, \[ 1 < \big(\frac{1}{2}\big)^p K^{n-1}\big(t_{m_{i}+k} - t_{m_{i}}\big)^{n-1} \int_{t_{m_{i}}}^{t_{m_{i}+k}}W(t, M_{m_{i}})dt. \] The use of H\"older's inequality yields \begin{align*} 1 &< \big(\frac{1}{2}\big)^pK^{n-1}\big(t_{m_{i}+k} - t_{m_{i}}\big)^{n-1} \big(t_{m_{i}+k} - t_{m_{i}}\big)^{1/\mu} \Big[\int_{t_{m_{i}}}^{t_{m_{i}+k}}W^{\sigma}(t, M_{m_{i}})dt\Big] ^{1/\sigma} \\ &\le \big(\frac{1}{2}\big)^pK^{n-1}\big(t_{m_{i}+k} - t_{m_{i}}\big)^{n-1 + \frac {1}{\mu}} \Big[\int_{t_{m_{i}}}^{\infty}W(t, M_{{m_{i}}})dt\Big]^{1/\sigma} \\ &< \big(\frac{1}{2}\big)^pK^{n-1}M^{{n-1} + {\frac{1}{\mu}}} \Big[K^{n-1}M^{n-1+{\frac{1}{\mu}}}\Big]^{-1} = {\frac {1}{2^p}}, . \end{align*} a contradiction. For $\sigma = 1$, we can choose $i$ large enough such that \[ \int_{t_{m_{i}}}^{\infty}W(t, M_{m_{i}}) < [ K^{n-1}M^{n-1}]^{-1} \] and \begin{align*} 1 &< \big(\frac{1}{2}\big)^pK^{n-1}(t_{{m_{i} + k}} - t_{{m_{i}}})^{n-1}\int_{t_{m_{i}}}^{t_{m_{i} + k }} W(t, M_{m_{i}})dt\\ &< \big(\frac{1}{2}\big)^p K^{n-1} M^{n-1}[K^{n-1} M^{n-1}]^{-1} = {\frac{1}{2^p}},{\hspace*{0.55in}} \end{align*} a contradiction. Hence the Theorem is proved. \end{proof} \begin{theorem} \label{thm4} Suppose that {\rm (C1)-(C2)} hold with $I = [0, \infty)$. Let there exist a continuous function $H: I \to \mathbb{R}^{+}$ such that $W(t,L) \le H(t)$ for every constant $ L > 0 $. Let \[ \int_{0}^{\infty}r_1(t)^{1/(p-1)}ds_1 < \infty. \] If \begin{gather*} \int_{0}^{\infty}\overline{E}(t, r_{2}(t), r_{3}(s_{2}), \dots , r_{n-1}(s_{n-2}); |Q(s_{n-1})|)dt < {\infty}, \\ \int_{0}^{\infty}\overline{E}(t, r_{2}(t), r_{3}(s_{2}), \dots , r_{n-1}(s_{n-2}); H(s_{n-1}))dt < \infty, \end{gather*} for $ n \ge 3 $, and \[ \int_{0}^{\infty}H(t)dt < \infty, \quad \int_{0}^{\infty}|Q(t)|dt < \infty \] for $n = 2$; then every oscillatory solution of \eqref{e10} converges to zero as $t \to \infty$. \end{theorem} \begin{proof} Let $y(t)$ be an oscillatory solution of \eqref{e10} on $[T_{y} , \infty),T_{y} \ge 0 $. Hence $\lim inf_{t \to \infty}|y(t)| = 0 $. To complete the proof of the theorem it is sufficient to show that $lim sup_ {t \to \infty}|y(t)| = 0$. If possible, let $lim sup_{t \to \infty}|y(t)| = \lambda > 0$. Choose $0 < d < \lambda/2$. From the given assumptions it follows that it is possible to choose a large $T_{0} > 0 $ such that, for $t \ge T_{0}$, \begin{gather*} \int_{t}^{\infty}r_1(s_1)^{1/(p-1)}ds_1 < 2^{p/(p-1)}, \\ \int_{t}^{\infty}\overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}),\dots ,r_{n-1}(s_{n-2}); |Q(s_{n-1})|)ds_1 < d^{p-1}, \\ \int_{t}^{\infty}\overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}),\dots ,r_{n-1}(s_{n-2}); H(s_{n-1}))ds_1 < 1 \end{gather*} for $ n \ge 3 $, and \[ \int_{t}^{\infty}H(s) ds < d^{p-1}, \quad \int_{t}^{\infty}|Q(s)|ds < d \] for $ n = 2 $. Since $y(t)$ is oscillatory, we can find a $t_1 > T_{0}$ such that $y(t_1) = 0$. Let $T_{0}^{*} > t_1 $ be such that $ \alpha_1, \alpha_{2}, \dots , \alpha_{n-3}, \alpha_{n-2} \in [t_1, T_{0}^{*}]$, where $\alpha_1, \alpha_{2}, \dots , \alpha_{n-3}, \alpha_{n-2} $ are the zeros, respectively, of $ D^{2}y(t), \dots ,D^{n-2}y(t)$. Further, $\limsup_{t \to \infty}|y(t)| > 2d$ implies that we can find a $T^{**} > t_1$ such that $\sup\{|y(t): t \in [t_1, T_{0}^{**}]\} > d$. Let $T_1 = max\{T_{0}^{*}, T_{0}^{**} \}$. Let $t_{2} > T_1$ such that $y(t_{2}) = 0$. Let $M = \max\{|y(t)|: t\in [t_1, t_{2}]\}$, then $ M > d$. From Theorem \ref{thm1} we obtain \eqref{e11} for $n \ge 3$ and \eqref{e12} for $ n = 2$, with $ a = t_1$ and $b = t_{2}$. Hence, For $ n \ge 3$, \begin{align*} 1 &< \big(\frac {1}{2}\big)^p\Big(\int_{t_1}^{\infty}(( r_1(s_1))^{1/(p-1)}ds_1\Big)^{p-1}\\ &\quad\times \int_{t_1}^{\infty} \Big[\overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}), \dots , r_{n-1}(s_{n-2}); H(s_{n-1})) \\ &\quad + \frac {1}{M^{p-1}}\overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}), \dots , r_{n-1}(s_{n-2});|Q(s_{n-1})|)\Big] ds_1\\ &< \big(\frac{1}{2}\big)^p\big(2^{p/(p-1)}\big)^{p-1}\big[1 + \big(\frac{d}{M}\big)^{p-1}\big] < 2, \end{align*} a contradiction. Hence $\limsup _{t\to \infty}|y(t)| = 0$. Thus the proof of the theorem is complete. \end{proof} \begin{example} \label{exa2} \rm Consider \begin{equation} \label{e18} (e^{t}(e^{t}y^{2}y')')' + y^{3} = e^{-4t}(8cos^{3}t + 13 sin^{3}t + 10 \cos t - 6 \sin t ) + e^{-6t} \sin^{3}t, \end{equation} where $t \ge 0$. Thus $ r_1(t) = e^{-t}$, $r_{2}(t) = e^{-t}$, $f(t, y) = 1$, and hence $H(t) = 1$. Clearly, $y(t) = e^{-2t}\sin t$ is a solution of \eqref{e18} with $y(0) = 0 $ and $(e^{t}y^{2}(t)y'(t))' = 0$ for $t = 0,\pi$. Hence $ \alpha_1 = 0, \pi$. Let $ \alpha_1 = 0$. Since \begin{gather*} \overline{E}(s_1, r_{2}(s_1); H(s_{2})) = s_1e^{-s_1}\quad \text{for } s_1 > 0, \\ \overline{E}(s_1, r_{2}(s_1); |Q(s_{2})|) \le 38 s_1e^{-s_1}\quad \text{for } s_1 > 0, \end{gather*} it follows that \begin{gather*} \int_{0}^{\infty}\overline{E}(s_1, r_{2}(s_1); H(s_{2}))ds_1 = 1, \\ \int_{0}^{\infty}\overline{E}(s_1, r_{2}(s_1); |Q(s_{2})|)ds_1 \le 38. \end{gather*} Again taking $\alpha_1 = \pi$, we obtain \begin{gather*} \overline{E}(s_1, r_{2}(s_1); H(s_{2})) = (s_1 - \pi)e^{-s_1}\quad\text{for } s_1 > \pi,\\ \overline{E}(s_1, r_{2}(s_1); |Q(s_{2})|) \le 38( s_1 - \pi)e^{-s_1}\quad\text{for } s_1\,. > \pi, \end{gather*} Then \begin{gather*} \int_{\pi}^{\infty}\overline{E}(s_1, r_{2}(s_1); H(s_{2}))ds_1 = e^{-\pi}, \\ \int_{\pi}^{\infty}\overline{E}(s_1, r_{2}(s_1); |Q(s_{2})|)ds_1 \le 38e^{-\pi}. \end{gather*} From Theorem \ref{thm4} it follows that every oscillatory solution of \eqref{e18} tends to zero as t tends to infinity. \end{example} \begin{theorem} \label{thm5} If \begin{equation} \label{e19} \begin{aligned} &\big(\frac{1}{2}\big)^p\Big(\int_{a}^{b}r_1(s_1)^{1/(p-1)}ds_1\Big)^{p-1}\\ &\times \int_{a}^{b} \overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2}); |p(s_{n-1})|ds_1 \le 1, \end{aligned} \end{equation} then \begin{equation} \label{e20} D^ny + p(t)y|y|^{p-2} = 0 \end{equation} is disconjugate on $[a, b]$, where $p(t)$ is a real-valued continuous function on $[a, b]$. \end{theorem} \noindent\textbf{Definition.} Equation \eqref{e20} is said to be disconjugate in $[a, b]$ if no non-trivial solution of \eqref{e20} has more than $n-1$ zeros (counting multiplicities). \begin{proof}[Proof of Theorem \ref{thm5}] Indeed, if \eqref{e20} is not disconjugate on $[a, b]$, then it admits a nontrivial solution $y(t)$ has $n$ zeros in $[a, b]$. Let these zeros be given by $ a \le a_1 < a_{2} <\dots < a_{n-1} < a_{n} \le b$. Then $D^{2}y(t), D^{3}y(t), \dots ,D^{n-1}y(t)$ have zeros in $[a_1, a_{n}]$. From Theorem \ref{thm1}, it follows that \begin{align*} 1 &< \big(\frac{1}{2}\big)^p\Big(\int_{a_1}^{a_n} r_1(s_1)^{1/(p-1)}ds_1\Big)^{p-1}\\ &\quad\times \int_{a_1}^{a_{n}} \overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}), \dots , r_{n-1}(s_{n-2}); |p(s_{n-1}|)ds_1\\ &\le \big(\frac{1}{2}\big)^p\Big(\int_{a}^{b}r_1(s_1)^{1/(p-1)}ds_1\Big)^{p-1}\\ &\quad\times \int_{a}^{b} \overline{E}(s_1, r_{2}(s_1), r_{3}(s_{2}), \dots ,r_{n-1}(s_{n-2}); |p(s_{n-1}|)ds_1, \end{align*} a contradiction. Hence \eqref{e20} is disconjugate on $[a, b]$. \end{proof} \noindent\textbf{Remark.} If $r_{i}(t) = 1; i = 1, 2, \dots ,n - 1$; $p = 2, n = 3$, then \eqref{e19} reduces to \[ \int_{a}^{b}|p(t)|dt \le 4/(b-a)^{2}. \] Thus the above inequality may be regarded as a sufficiency condition for the disconjugacy of the equation \eqref{e7}. As a final remark, we note that the results obtained in this paper generalize the results by Pachpatte \cite{pach}. \subsection*{Acknowledgements} The author would like to thank the anonymous referee for his/her valuable suggestions. \begin{thebibliography}{99} \bibitem{Baily} P. Baily and P. Waltman; \emph{On the distance between consecutive zeros for second order differential equations}, J. Math. Anal. Appl. {\bf 14} (1996), 23 - 30. \bibitem{Brown} R. C. Brown and D. B. Hinton; \emph{Opial's inequality and oscillation of 2nd order equations}, Proc. Amer. Math. Soc. {\bf 125} (1997), 1123 -1129. \bibitem{Dahya} R. S. Dahiya and B. Singh; \emph{A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equation}, J. Math. Phys. Sci. {\bf 7} (1973), 163 - 170. \bibitem{Eliason} S. B. Eliason; \emph{The integral $T \int_{-T/2}^{T/2}p(t)dt$ and the boundary value problem $x''(t) + p(t)x = 0, x(\frac{-T}{2}) = x(\frac{T}{2}) = 0$}, J. Diff. Equations. {\bf 4} (1968), 646 - 660. \bibitem{Eli1} S. B. Eliason; \emph{A Liapunov inequality for a certain second order nonlinear differential equation}, J. London Math. Soc. {\bf 2} (1970), 461 - 466. \bibitem{Eli2} S. B. Eliason; \emph{Liapunov-type inequality for certain seond order functional differential equations}, SIAM J. Appl. Math. {\bf 27} (1974), 180 - 199. \bibitem{Eli3} S. B. Eliason; \emph{Distance between zeros of certain differential equations having delayed arguments}, Ann. Mat. Pura Appl. {\bf 106} (1975), 273 - 291. \bibitem{Fink} A. M. Fink; \emph{On the zeros of $y''(t) + p(t)y = 0 $ with linear covex and concave $p$}, J. Math. Pures et Appl. {\bf 46} (1967), 1 -10. \bibitem{Fink2} A. M. Fink; \emph{Comparison theorem for $ \int_{a}^{b} p $ with $p$ an admissible sub or super function}, J. Diff. Eqs. {\bf 5} (1969), 49 - 54. \bibitem{Galbrith} A. Galbraith; \emph{On the zeros of solutions of ordinary differential equations of the second order}, Proc. Amer. Math. Soc. {\bf 17} (1966), 333 - 337. \bibitem{Hartman} P. Hartman and A. Wintner; \emph{On an oscillation criterion of de la valee Poussion }, Quart. Appl. Math. {\bf 13} (1955), 330 - 332. MR 17 - 484. \bibitem{Hartman2} P. Hartman; \emph{Ordinary Differential Equations}, Wiley, New York, 1964 an Birkhauser, Boston, 1982. MR 30, $\sharp$ 1270. \bibitem{Kowng} M. K. Kowng; \emph{On Liapunov's inequality for disfocality}, J. Math. Anal. Appl. {\bf 83}(1981), 486-494. \bibitem{Levin} A. Levin; \emph{A comparision principle for second order differential equations}, Dokl. Akad. NauuSSSR {\bf 135} (1960), 783 - 786 (Russian)( Translation, Sov. Math. Dokl. {\bf 1} (1961), 1313 - 1316. \bibitem{Liapunov} A. M. Liapunov; \emph{Probleme general de la stabilitie du mouvement}, Ann. of Math. Stud. Vol. {\bf 17}, Princeton Univ. Press, Princeton, NJ, 1949. \bibitem{Marry} D. F. St. Marry and S. B. Eliason; \emph{Upper bounds $T\int_{-T/2}^{T/2}p(t)dt$ and the differential equation $x''(t) + p(t)x = 0,$} J. diff. Eqs {\bf 6} (1969), 154 - 160. \bibitem{Nihari} Z. Nihari; \emph{On the zeros of solutions of second order linear differential equations}, Amer. J. Math. {\bf 76} (1954), 689 - 697. MR 16 - 131. \bibitem{Pach} B. G. Pachpatte; \emph{On Liapunov-type inequalities for certain higher order differential equations}, J. Math. Anal. Appl. {\bf 195} (1995), 527 - 536. \bibitem{pach} B. G. Pachpatte; \emph{Inequalities related to the zeros of solutions of certain second order differential equations}, Facta Universitatis Ser. Math. Inform. 16 (2001), 35 - 44. \bibitem{Parhi1} N. Parhi and S. Panigrahi; \emph{On Liapunov-type inequality for third order differential equations}, J. Math. Anal. Appl. {\bf 233} (1999), 445 - 460. \bibitem{Parhi2} N. Parhi and S. Panigrahi; \emph{On distance between zeros of solutions of third order differential equations}, Annal. Polon. Math. {\bf 27} (2001), 21 - 38. \bibitem{patula} W.T. Patul; \emph{On the distance between zeros}, Proc. Amer. Math. Soc. {\bf 52} (1975), 247-251. \bibitem{Reid} W. T. Reid; \emph{``Sturmian Theory for Ordinary Differential Equations,} Springer - Verlag, Newyork, 1980. \bibitem{Willet} D. Willet; \emph{Generalized de la vallee Poussin disconjugacy test for linear differential equations}, Canad. Math. Bull. {\bf 14} (1971), 419 - 428. \bibitem{Wong}P. K. Wong; \emph{Lecture Notes}, Michigan State University. \end{thebibliography} \end{document}