\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 46, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/46\hfil Weak almost periodic solutions] {Weak almost periodic and optimal mild solutions of fractional evolution equations} \author[A. Debbouche, M. M. El-Borai \hfil EJDE-2009/46\hfilneg] {Amar Debbouche, Mahmoud M. El-Borai} % in alphabetical order \address{Amar Debbouche \newline Faculty of Science, Guelma University, Guelma, Algeria} \email{amar\_debbouche@yahoo.fr} \address{Mahmoud M. El-Borai \newline Faculty of Science, Alexandria University, Alexandria, Egypt} \email{m\_m\_elborai@yahoo.com} \thanks{Submitted March 10, 2009. Published March 30, 2009.} \subjclass[2000]{34G10, 26A33, 35A05, 34C27, 35B15} \keywords{Linear fractional evolution equation; Optimal mild solution; \hfill\break\indent weak almost periodicity; analytic semigroup} \begin{abstract} In this article, we prove the existence of optimal mild solutions for linear fractional evolution equations with an analytic semigroup in a Banach space. As in \cite{n2}, we use the Gelfand-Shilov principle to prove existence, and then the Bochner almost periodicity condition to show that solutions are weakly almost periodic. As an application, we study a fractional partial differential equation of parabolic type. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \section{Introduction} The object of this paper is to study the fractional evolution equation \begin{equation} \label{e1.1} \frac{d^\alpha u(t)}{dt^\alpha} + (A-B(t))u(t) = f(t), \quad t>t_{0} \end{equation} in a Banach space $X$, where $0<\alpha\leq1$, $u$ is an $X$-valued function on $\mathbb{R}^{+}=[0,\infty)$, and $f$ is a given abstract function on $\mathbb{R}^{+}$ with values in $X$. We assume that -$A$ is a linear closed operator defined on a dense set $S$ in $X$ into $X$, $\{ B(t): t\in \mathbb{R}^{+}\}$ is a family of linear bounded operators defined on $X$ into $X$. It is assumed that -$A$ generates an analytic semigroup $Q(t)$ such that $\| Q(t)\|\leq M$ for all $t\in \mathbb{R}^{+}$, $Q(t)h\in S$, $\| AQ(t)h\|\leq\frac{M}{t}\| h\|$ for every $h\in X$ and all $t\in (0,\infty)$. Let $ X $ be a uniformly convex Banach space equipped with a norm $\| \cdot\|$ and $X^{*}$ its topological dual space. N'Guerekata \cite{n2} gave necessary conditions to ensure that the so-called optimal mild solutions of $ u'(t)=Au(t)+f(t) $ are weakly almost periodic. Following Gelfand and Shilov \cite{g1}, we define the fractional integral of order $\alpha > 0 $ as $$ I^{\alpha}_{a}f(t) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} (t-s)^{\alpha-1} f(s)ds, $$ also, the fractional derivative of the function $f$ of order $ 0<\alpha<1$ as $$ _{a}D^{\alpha}_{t}f(t)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{dt} \int_{a}^{t}{f(s)}{(t-s)^{-\alpha}}ds, $$ where $ f $ is an abstract continuous function on the interval $[a,b]$ and ${\Gamma(\alpha)}$ is the Gamma function, see \cite{m2,p1}. \begin{definition} \label{def1} \rm By a solution of \eqref{e1.1}, we mean a function $u$ with values in $X$ such that: \begin{enumerate} \item $ u $ is continuous function on $ \mathbb{R}^{+} $ and $ u(t)\in D(A) $, \item $ \frac{d^{\alpha}u}{dt^{\alpha}} $ exists and continuous on $ (0,\infty) $, $ 0<\alpha<1 $, and $ u $ satisfies \eqref{e1.1} on $ (0,\infty) $. \end{enumerate} \end{definition} It is suitable to rewrite equation \eqref{e1.1} in the form \begin{equation} u(t)=u(t_{0})+\frac{1}{\Gamma(\alpha)}\int_{t_{0}}^{t}(t-s)^{\alpha -1} [(B(s)-A)u(s)+ f(s)]ds.\label{e1.2} \end{equation} According to \cite{e1,e2,e3,e4,e5}, a solution of equation \eqref{e1.2} can be formally represented by \begin{equation} \begin{aligned} u(t) &= \int_{0}^{\infty}\zeta_{\alpha}(\theta)Q((t-t_{0})^{\alpha} \theta)u(t_{0})d\theta\\ &\quad + \alpha\int_{t_{0}}^{t}\int_{0}^{\infty}\theta(t-s)^{\alpha-1} \zeta_{\alpha}(\theta)Q((t-s)^{\alpha}\theta)F(s)d\theta ds, \end{aligned} \label{e1.3} \end{equation} where $ F(t)=B(t)u(t)+f(t) $ and $ \zeta_{\alpha} $ is a probability density function defined on $ (0,\infty) $ such that its Laplace transform is given by $$ \int_{0}^{\infty}e^{-\theta x}\zeta_{\alpha}(\theta)d\theta =\sum_{j=0}^{\infty}\frac{(-x)^{j}}{\Gamma(1+\alpha j)}, \quad 0<\alpha\leq1, x>0, $$ A continuous solution of the integral equation \eqref{e1.3} is called a mild solution of \eqref{e1.1}. The theory of almost periodic functions with values in a Banach space was developed by Bohr, Bochner, von Neumann, and others \cite{a1,b2}. See also \cite{b1,d1,m1,n2,n3,y1}. \begin{definition} \label{def1.2} \rm A function $ f:\mathbb{R} \to X $ is called (Bochner) almost periodic if \begin{itemize} \item[(i)] $f$ is strongly continuous, and \item[(ii)] for each $ \epsilon >0 $ there exists $ l(\epsilon)>0 $, such that every interval $ I $ of length $ l(\epsilon) $ contains a number $ \tau $ such that $\sup_{t\in \mathbb{R}}\| f(t+\tau)-f(t)\|<\epsilon $. \end{itemize} \end{definition} \section{Optimal mild solutions} As in N'Guerekata \cite{n2}, let $ \Omega_{f} $ denote the set of mild solutions $ u(t) $ of \eqref{e1.1} which are bounded over $\mathbb{R}$; that is \begin{equation} \mu(u)=\sup_{t\in\mathbb{R}}\| u(t)\|<\infty, \label{e2.1} \end{equation} where $\mathbb{R}=(-\infty,\infty)$. We assume here that $ \Omega_{f}\neq\emptyset $, and recall that a bounded mild solution $\tilde{u}(t) $ of \eqref{e1.1} is called optimal mild solution of \eqref{e1.1} if \begin{equation} \mu(\tilde{u})\equiv\mu^{*}=\inf_{u\in\Omega_{f}}\mu(u). \label{e2.2} \end{equation} \begin{theorem} \label{thm2.1} Assume that $ \Omega_{f}\neq\emptyset $ and $ f:\mathbb{R}\to X $ is a nontrivial strongly continuous function, then \eqref{e1.1} has a unique optimal mild solution. \end{theorem} Compare with \cite[Theorem 1.1, p.138]{z3} and \cite[Theorem 1. p. 673]{n2}. Our proof is based on the following lemma. \begin{lemma}[{\cite[Corollary 8.2.1]{l1}}] \label{lem2.2} If $ K $ is a non-empty convex and closed subset of a uniformly convex Banach space $ X $ and $ v\notin K $, then there exists a unique $ k_{0}\in K $ such that $ |v-k_{0}|=\inf_{k\in K}|v-k| $. \end{lemma} \begin{proof}[Proof of Theorem \ref{thm2.1}] It suffices to prove that $ \Omega_{f} $ is a convex and closed set because the trivial solution $ 0\notin \Omega_{f} $, then we use lemma \ref{lem2.2} to deduce the uniqueness of the optimal mild solution, see \cite{n2}. For the convexity of $ \Omega_{f} $, we consider two distinct bounded mild solutions $ u_{1}(t) $ and $ u_{2}(t) $, and a real number $ 0\leq\lambda\leq1 $ and let $ u(t)=\lambda u_{1}(t)+(1-\lambda)u_{2}(t), t\in \mathbb{R}$. For every $ t_{0}\in \mathbb{R} $, $ u(t) $ is continuous and ( see \cite{n2}) has the integral representation \begin{equation} u(t)=T(t-t_{0})u(t_{0})+\int_{t_{0}}^{t}S(t-s)F(s)ds, \quad t\geq t_{0}, \label{e2.3} \end{equation} where $$ T(t)=\int_{0}^{\infty}\zeta_{\alpha}(\theta)Q(t^{\alpha}\theta)d\theta , \quad S(t)=\alpha\int_{0}^{\infty}\theta t^{\alpha-1}\zeta_{\alpha}(\theta) Q(t^{\alpha}\theta)d\theta. $$ We have $ u(t_{0})=\lambda u_{1}(t_{0})+(1-\lambda)u_{2}(t_{0}) $, then $ u(t) $ is a mild solution of \eqref{e1.1}. We note that $ u(t) $ is bounded over $\mathbb{R}$ since $ \mu(u)=\sup_{t\in\mathbb{R}}\| u(t)\|\leq\lambda \mu(u_{1})+(1-\lambda)\mu(u_{2})<\infty $, we conclude that $ u(t)\in \Omega_{f} $. Now we show that $ \Omega_{f} $ is closed. Let $ u_{n}\in \Omega_{f} $ a sequence such that $ \lim_{n\to\infty}u_{n}(t)=u(t), t\in \mathbb{R} $. For all $ t_{0}\in \mathbb{R} $ and $ t\geq t_{0} $ we have \begin{equation} u_{n}(t)=T(t-t_{0})u_{n}(t_{0}) +\int_{t_{0}}^{t}S(t-s)[B(s)u_{n}(s)+f(s)]ds, \label{e2.4} \end{equation} It is clearly that $ T(t-t_{0}) $ and $ S(t-s) $ are continuous operators, then for every fixed $ t $ and $ t_{0} $ with $ t\geq t_{0} $, we have \begin{align*} \lim_{n\to\infty}T(t-t_{0})u_{n}(t_{0}) &= \lim_{n\to\infty}\int_{0}^{\infty}\zeta_{\alpha}(\theta)Q((t-t_{0})^{\alpha}\theta)u_{n}(t_{0})d\theta\\ &= \int_{0}^{\infty}\zeta_{\alpha}(\theta)Q((t-t_{0})^{\alpha}\theta)d\theta\lim_{n\to\infty}u_{n}(t_{0})\\ &= T(t-t_{0})\lim_{n\to\infty}u_{n}(t_{0})\\ &= T(t-t_{0})u(t_{0}). \end{align*} Similarly we have \begin{align*} \lim_{n\to\infty}\int_{t_{0}}^{t}S(t-s)[B(s)u_{n}(s)+f(s)]ds &= \int_{t_{0}}^{t}S(t-s)[\lim_{n\to\infty}B(s)u_{n}(s)+f(s)]ds\\ &= \int_{t_{0}}^{t}S(t-s)F(s)ds. \end{align*} Then we deduce that $$ u(t)=T(t-t_{0})u(t_{0})+\int_{t_{0}}^{t}S(t-s)F(s)ds, $$ for all $ t_{0}\in \mathbb{R}, t\geq t_{0} $, which means that $ u(t) $ is a mild solution of \eqref{e1.1}. Finally we show that $ u(t) $ is bounded over $ \mathbb{R}$. We can write \eqref{e2.3} as \begin{align*} u(t)&= T(t-t_{0})u(t_{0})+\int_{t_{0}}^{t}S(t-s)F(s)ds-u_{n}(t)+u_{n}(t)\\ &= T(t-t_{0})[u(t_{0})-u_{n}(t_{0})]+\int_{t_{0}}^{t}S(t-s)(B(u-u_{n}))(s)ds+u_{n}(t), \end{align*} for $ n=1,2,\dots, $ and every $ t_{0}\in \mathbb{R} $ such that $ t\geq t_{0} $. Since $ \int_{0}^{\infty}\zeta_{\alpha}(\theta)d\theta=1$, it follows that $\| T(t)\|\leq M$, again, since $ \int_{0}^{\infty}\theta\zeta_{\alpha}(\theta)d\theta=1$ (see \cite[p. 54]{e5}), it follows that $ \| S(t)\|\leq\alpha M t^{\alpha-1} $. Let $\| B\|\leq C$. These estimates lead to $$ \| u(t)\|\leq M\| u(t_{0})-u_{n}(t_{0})\| +\alpha MC\int_{t_{0}}^{t}( t-s)^{\alpha-1}\| u(s)-u_{n}(s)\| ds +\| u_{n}(t)\|. $$ Choose $ n $ large enough, for every $ \epsilon_{1}, \epsilon_{2}>0 $ we get $$ \mu(u)\leq\epsilon_{1}+\epsilon_{2}+\mu(u_{n})<\infty . $$ Thus $ u\in\Omega_{f} $. This completes the proof. \end{proof} \section{Weak almost periodic solutions} To formulate a property of almost periodic functions, which is equivalent to Definition \ref{def1.2}, we discuss the concept of normality of almost periodic functions. Namely, let $f(t)$ be almost periodic in $ t\in \mathbb{R} $, then for every sequence of real numbers $ (s'_{n}) $ there exists a subsequence $ (s_{n}) $ such that $ f(t+s_{n}) $ is uniformly convergent in $t\in \mathbb{R}$. see Hamaya \cite[p. 188]{h1}. It is well known \cite{n1,n2,z2,z3} that: $ f:\mathbb{R}\to X $ is weakly almost periodic if for every sequence of real numbers $ (s'_{n}) $ there exists a subsequence $ (s_{n}) $ such that every $ (f(t+s_{n})) $ is convergent in the weak sense, uniformly in $t\in \mathbb{R}$. In other words, for every $ u^{*}\in X^{*} $, the sequence $ (\langle u^{*},f(t+s_{n})\rangle) $ is uniformly convergent in $t\in \mathbb{R}$, where $ \langle\cdot,\cdot\rangle$ denotes duality $\langle X^{*},X\rangle $. For each $ Q(t), t\in \mathbb{R}^{+} $, $ Q^{*}(t) $ denotes the adjoint operator of $ Q(t) $. \begin{theorem} \label{thm3.1} Let $ f:\mathbb{R}\to X $ be almost periodic and a nontrivial strongly continuous function, also assume that $ f\in L^{1}(R) $ and $ Q^{*}(t)\in L(X^{*}) $ for every $ t\in \mathbb{R}^{+} $, then the optimal mild solution of \eqref{e1.1} is weakly almost periodic. \end{theorem} \begin{proof} As in N'Guerekata \cite{n2}, let $u(t) $ be the unique optimal mild solution of \eqref{e1.1}, by Theorem \ref{thm2.1} $$ u(t)=T(t-t_{0})u(t_{0})+\int_{t_{0}}^{t}S(t-s)F(s)ds, $$ for all $ t_{0}\in \mathbb{R}$, $t\geq t_{0} $. Let $ (s'_{n}) $ be an arbitrary sequence of real numbers. Since $ f $ is almost periodic, we can extract a subsequence $ (s_{n})\subset(s'_{n}) $ such that $ \lim_{n\to \infty}f(t+s_{n})=g(t) $ uniformly in $t\in \mathbb{R}$. We note that $ g(t) $ is also strongly continuous. For fixed $ t_{0}\in \mathbb{R} $, we can obtain a subsequence of $ (s_{n}) $, which again we will denote $ (s_{n}) $, such that $$ \mathop{\rm weak\text{-}lim}_{n\to \infty}u(t_{0}+s_{n})=v_{0}\in X. $$ Since $ X $ is a reflexive Banach space, then the function $$ y(t)=T(t-t_{0})v_{0}+\int_{t_{0}}^{t}S(t-s)(Bu+g)(s)ds, $$ is strongly continuous. It is a mild solution of $$ \frac{d^{\alpha}u(t)}{dt^{\alpha}}+(A-B(t))u(t)=g(t),\quad t\in \mathbb{R}. $$ \end{proof} We need the following lemmas. \begin{lemma} \label{lem3.2} For each $ t\in \mathbb{R} $, we have $$ \mathop{\rm weak\text{-}lim}_{n\to \infty}u(t+s_{n})=y(t). $$ \end{lemma} \begin{proof} We can write $$ u(t+s_{n})=T(t-t_{0})u(t_{0}+s_{n})+\int_{t_{0}}^{t}S(t-s)[(Bu)(s) +f(s+s_{n})]ds, $$ $ n=1,2,\dots $ (see for instance \cite[p. 721]{z1}). Let $ u^{*}\in X^{*} $, then we have $$ \langle u^{*},T(t-t_{0})u(t_{0}+s_{n})\rangle -\langle u^{*},T(t-t_{0})v_{0}\rangle = \langle T^{*}(t-t_{0})u^{*},u(t_{0}+s_{n})-v_{0} \rangle, $$ for every $ n=1,2,\dots, $ we deduce that the sequence $ (T(t-t_{0})u(t_{0}+s_{n})) $ converges to $ T(t-t_{0})v_{0} $ in the weak sense. Also we have \begin{align*} &\int_{t_{0}}^{t}S(t-s)[(Bu)(s)+f(s+s_{n})]ds - \int_{t_{0}}^{t}S(t-s)[(Bu)(s)+g(s)]ds\\ &\leq \|\int_{t_{0}}^{t}S(t-s)[f(s+s_{n})-g(s)]ds\|\\ &\leq \alpha M\int_{t_{0}}^{t}(t-s)^{\alpha-1}\| f(s+s_{n})-g(s)\| ds. \end{align*} This leads to $$ \lim_{n\to \infty}\int_{t_{0}}^{t}S(t-s)[(Bu)(s)+f(s+s_{n})]ds =\int_{t_{0}}^{t}S(t-s)[(Bu)(s)+g(s)]ds, $$ in the strong sense, then consequently in the weak sense in $ X $. \end{proof} \begin{lemma} \label{lem3.3} $\mu(y)=\mu(u)=\mu^{*}$. \end{lemma} \begin{proof} Since $ u(t) $ is an optimal mild solution of \eqref{e1.1}, we have $ \mu^{*}=\mu(u)=\sup_{t\in\mathbb{R}}\| u(t)\|$. Let $ u^{*}\in X^{*} $, then by lemma \ref{lem3.2} we obtain $$ \lim_{n\to\infty}\langle u^{*},u(t+s_{n})\rangle =\langle u^{*},y(t)\rangle, $$ for every $ t\in \mathbb{R} $. For each $ n=1,2,\dots$, we have $$ \|\langle u^{*},u(t+s_{n})\rangle\|\leq\| u^{*}\| \| u(t+s_{n})\| \leq\| u^{*}\|\mu^{*} . $$ Therefore, $ \|\langle u^{*},y(t)\rangle\|\leq\| u^{*}\|\mu^{*} $ for every $ t\in \mathbb{R} $, and consequently $ \| y(t)\|\leq\mu^{*} $ for every $ t\in \mathbb{R} $, so that $ \mu(y)<\mu^{*} $. We suppose that $ \mu(y)<\mu^{*} $. Note that $ \lim_{n\to\infty}g(t-s_{n})=f(t) $ uniformly in $t\in \mathbb{R}$ because $ f(t) $ is almost periodic. Since $X$ is a reflexive Banach space, we can extract from the sequence $ (s_{n}) $, a subsequence which we still denote $ (s_{n}) $ such that $ (y(t_{0}-s_{n})) $ is weakly convergent to $ z\in X $. We have $$ \lim_{n\to \infty}y(t-s_{n})=T(t-t_{0})z+\int_{t_{0}}^{t}S(t-s)F(s)ds $$ in the weak sense for every $ t\in \mathbb{R} $. Now we consider the function $$ Z(t)=T(t-t_{0})z+\int_{t_{0}}^{t}S(t-s)F(s)ds. $$ It is a bounded mild solution of equation \eqref{e1.1}. Similarly as above, we have $ \mu(Z)\leq\mu(y) $; therefore, $ \mu(Z)<\mu^{*} $, which is absurd by definition of $ \mu^{*} $. \end{proof} \begin{lemma} \label{lem3.4} $\mu(y)=\inf_{v\in \Omega_{g}}\mu(v)$; i.e., $ y(t) $ is an optimal mild solution of the equation \begin{equation} \frac{d^{\alpha}u(t)}{dt^{\alpha}}+(A-B(t))u(t)=g(t), \quad t\in \mathbb{R}.\label{e3.1} \end{equation} \end{lemma} \begin{proof} By lemma \ref{lem3.3}, $ y(t) $ is bounded over $\mathbb{R}$. Also $ y(t) $ is a mild solution of \eqref{e3.1} which implies $ y(t)\in \Omega_{g} $. It remains to prove that $ y(t) $ is optimal. Suppose it is not. Since $ \Omega_{g}\neq\emptyset $, by Theorem \ref{thm2.1}, there exists a unique optimal solution $ v(t) $ of \eqref{e3.1}. We have $ \mu(v)<\mu(y) $ and $$ v(t)=T(t-t_{0})v(t_{0})+\int_{t_{0}}^{t}S(t-s)(Bu+g)(s)ds, $$ for all $ t_{0}\in \mathbb{R}, t\geq t_{0} $. We can find a subsequence $ (s_{n_{k}})\subset(s_{n}) $ such that $$ \mathop{\rm weak\text{-}lim}_{k\to\infty}v(t-s_{n_{k}}) =T(t-t_{0})z+\int_{t_{0}}^{t}S(t-s)F(s)ds\equiv V(t). $$ Noting that $ V(t)\in \Omega_{f} $ and $ \mu(V)\leq\mu(v)<\mu(y) $, which is absurd. Therefore, $ y(t) $ is an optimal mild solution of \eqref{e3.1}, and in fact the only one by Theorem \ref{thm2.1}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm3.1}] To prove that $ u(t) $ is weakly almost periodic, it suffices to show that $$ \mathop{\rm weak\text{-}lim}_{n\to\infty}u(t+s_{n})=y(t) $$ uniformly in $ t\in \mathbb{R} $. Suppose that this does not hold; then there exists $ u^{*}\in X^{*} $ such that $$ \lim_{n\to\infty}\langle u^{*},u(t+s_{n})\rangle = \langle u^{*},y(t)\rangle $$ is not uniform in $ t\in \mathbb{R} $. Consequently, we can find a number $ \gamma>0 $, and a sequence $ (t_{k}) $ with two subsequences $ (s'_{k}) $ and $ (s''_{k}) $ of $ (s_{n}) $ such that \begin{equation} |\langle u^{*},u(t+s'_{k})-u(t+s''_{k})\rangle|>\gamma \label{e3.2} \end{equation} for all $ k=1,2,\dots $. Again, let us extract two subsequences of $ (s'_{k}) $ and $ (s''_{k}) $ respectively, with the same notation, such that \[ \lim_{k\to\infty}f(t+t_{k}+s'_{k})=g_{1}(t), \quad{text}\quad \lim_{k\to\infty}f(t+t_{k}+s''_{k})=g_{2}(t) \] both uniformly in $t\in \mathbb{R}$, because $ f $ is almost periodic. As we did previously, we may obtain $$ \mathop{\rm weak\text{-}lim}_{k\to\infty}f(t+t_{k}+s'_{k})=T(t-t_{0})z_{1} +\int_{t_{0}}^{t}S(t-s)[(Bu)(s)+g_{1}(s)]ds\equiv y_{1}(t), $$ and $$ \mathop{\rm weak\text{-}lim}_{k\to\infty}f(t+t_{k}+s''_{k}) =T(t-t_{0})z_{2}+\int_{t_{0}}^{t}S(t-s)[(Bu)(s)+g_{2}(s)]ds\equiv y_{2}(t) $$ for each $ t\in \mathbb{R} $, where $ y_{1}(t) $ and $ y_{2}(t) $ are optimal mild solutions in $ \Omega_{g_{1}} $ and $ \Omega_{g_{2}} $, respectively. Since $ \lim_{k\to\infty}f(t+t_{k}+s_{k}) $ exists uniformly in $t\in \mathbb{R}$, and $ (s'_{k}), (s''_{k}) $ are two subsequences of $ (s_{k}) $, we will get $$ \sup_{s\in \mathbb{R}}\| f(s+s'_{k})-f(s+s''_{k})\|<\epsilon $$ if $ k\geq k_{0}(\epsilon) $ and consequently $$ \sup_{s\in \mathbb{R}}\| f(t+t_{k}+s'_{k})-f(t+t_{k}+s''_{k})\|<\epsilon $$ for $ k\geq k_{0}(\epsilon) $, which shows that $ g_{1}(s)=g_{2}(s) $ for all $ s\in \mathbb{R} $. By the uniqueness of the optimal mild solution we get $ y_{1}(t)=y_{2}(t)$, $t\in \mathbb{R} $. But $ y_{1}(0)=\mathop{\rm weak\text{-}lim}_{k\to\infty}u(t_{k}+s'_{k})$ and $ y_{2}(0)=\mathop{\rm weak\text{-}lim}_{k\to\infty}u(t_{k}+s''_{k})$. Clearly $y_{1}(0)=y_{2}(0)$ contradicts the inequality \eqref{e3.2} above. This completes the proof. \end{proof} \section{Application} Consider the partial differential equation of fractional order \begin{equation} \frac{\partial^{\alpha}u(x,t)}{\partial t^{\alpha}} +\sum_{\vert q\vert\leq2m}a_{q}(x)D^{q}_{x}u(x,t) =\int_{\mathbb{R}^{n}}K(x,\eta,t)u(\eta,t)d\eta+f(x,t), \label{e4.1} \end{equation} where $t\in \mathbb{R}^{+}$, $x\in \mathbb{R}^{n}$, $D^{q}_{x}=D^{q_{1}}_{x_{1}}\dots D^{q_{n}}_{x_{n}}$, $D_{x_{i}}=\frac{\partial}{\partial x_{i}}$, $q=(q_{1},\dots,q_{n})$ is an $n$-dimensional multi-index, $\vert q\vert=q_{1}+\dots+q_{n}$. Let $L_{2}(\mathbb{R}^{n})$ be the set of all square integrable functions on $\mathbb{R}^{n}$. We denote by $C^{m}(\mathbb{R}^{n})$ the set of all continuous real-valued functions defined on $\mathbb{R}^{n}$ which have continuous partial derivatives of order less than or equal to $m$. By $C^{m}_{0}(\mathbb{R}^{n})$ we denote the set of all functions $f\in C^{m}(\mathbb{R}^{n})$ with compact supports. Let $H^{m}_{0}(\mathbb{R}^{n})$ be the completion of $C^{m}_{0}(\mathbb{R}^{n})$ with respect to the norm $$ \| f\|^{2}_{m}=\sum_{\vert q\vert\leq m} \int_{\mathbb{R}^{n}}\vert D^{q}_{x}f(x)\vert^{2}dx. $$ It is supposed that \noindent(i) The operator $A=-\sum_{\vert q\vert=2m}a_{q}(x)D^{q}_{x}$ is uniformly parabolic on $\mathbb{R}^{n}$. In other words, all the coefficients $a_{q}, \vert q\vert=2m$, are continuous and bounded on $\mathbb{R}^{n}$ and $$(-1)^{m}\sum_{\vert q\vert=2m}a_{q}(x)\xi^{q}\geq c\vert\xi\vert^{2m}, \quad c>0, $$ for all $x\in \mathbb{R}^{n}$ and all $\xi\ne0, \xi\in \mathbb{R}^{n}$, where $\xi^{q}=\xi^{q_{1}}_{1}\dots\xi^{q_{n}}_{n}$ and $\vert\xi\vert^{2}=\xi^{2}_{1}+\dots+\xi^{2}_{n}$. \noindent(ii) All the coefficients $a_{q}, \vert q\vert=2m$, satisfy a uniform H\"older condition on $\mathbb{R}^{n}$, $\int_{\mathbb{R}^{n}}K^{2}(x,\eta,t)d\eta<\infty$. It's proved, see \cite[p. 438]{e1}, that the operator $A$ defined by (i) with domain of definition $S=H^{2m}(\mathbb{R}^{n})$ generates an analytic semigroup $Q(t)$ defined on $L_{2}(\mathbb{R}^{n})$, and that $H^{2m}(\mathbb{R}^{n})$ is dense in $X=L_{2}(\mathbb{R}^{n})$. Which achieves the proof of the existence of (bounded) mild solutions of the equation \eqref{e4.1}. \noindent(iii) $f$ is a nontrivial strongly continuous function defined on $\mathbb{R}^{n}\times \mathbb{R}^{+}$ satisfying: For every $\epsilon>0$ there exists $\beta>0$ such that every interval $[a,a+\beta]$ contains at least a point $\tau$ such that $$ \int_{\mathbb{R}^{n}}\vert f(x,t+\tau)-f(x,t)\vert^{2}dx<\epsilon, $$ for all $t\in \mathbb{R}^{+}$ and all $x\in \mathbb{R}^{n}$. Applying Theorems \ref{thm2.1}, \ref{thm3.1}, stated above, we deduce that \eqref{e4.1} has a unique optimal mild solution which is weakly almost periodic. \subsection*{Acknowledgements} The authors are grateful to the anonymous referee for his or her carefully reading of the original manuscript and for the valuable suggestions. \begin{thebibliography}{00} \bibitem{a1} L. Amerio, and G. Prouse; \emph{Almost periodic functions and functional equations}, Van Nostrand-Reinhold, New York,(1971). \bibitem{b1} M. Bahaj, O. Sidki; \emph{Almost periodic solutions of semilinear equations with analytic semigroup in Banach spaces}, Electron. J. Ddiff. Eqns., Vol 2002(2002), No.98, pp. 1-11. \bibitem{b2} S. Bochner and J. V. Neumann; \emph{Almost periodic in a group}, II, Trans. Amer. Math. Soc. 37(1935), 21-50. \bibitem{d1} T. T. Dat; \emph{On the existence of almost periodic, periodic and quasi-periodic solutions of neutral differential equations with piecewise constant arguments}, IJEE Vol.1, N0.2,(2005) pp. 29-44. \bibitem{e1} M. M. El-Borai; \emph{Some probability densities and fundamental solutions of fractional evolution equations}, Chaos, Solitons and Fractals, 14(2002), 433-440. \bibitem{e2} M. M. El-Borai; \emph{Semigroup and some nonlinear fractional differential equations}, Appl. Math. and Computations, 149(2004), 823-831. \bibitem{e3} M. M. El-Borai; \emph{The fundamental solutions for fractional evolution equations of parabolic type}, J. Appl. Math. and Stoch. Analysis, 3(2004), 197-211. \bibitem{e4} M.M. El-Borai; \emph{On some fractional evolution equations with nonlocal conditions}, Int. J. Pure and Appl. Math., Vol.24, No.3 (2005), 405-413. \bibitem{e5} M. M. El-Borai; \emph{On Some Stochastic Fractional Integro-Differential Equations}, Advances in Dyn. Sys. App. ISSN 0973-5321 Vol.1, No.1 (2006) 49-57. \bibitem{g1} I. M. Gelfand, G. E. Shilov; \emph{In: Generalized functions}, Vol. 1. Moscow: Nauka;(1959). \bibitem{h1} Y. Hamaya; \emph{On the existence of almost periodic solutions of a nonlinear Volterra difference equation}, IJDE, ISSN 0973-6069 Vol.2, No.2 (2007), pp. 187-196. \bibitem{l1} R. Larsen; \emph{Functional Analysis}, Decker Inc., New York(1973). \bibitem{m1} N.V. MINH; \emph{Almost periodic solutions of c-well-posed evolution equations}, Math. J. Okayama Univ. 48 (2006), 145-157. \bibitem{m2} J. Munkhammar; \emph{Riemann-Liouville Fractional Derivatives and the Taylor-Riemann series}, U.U.D.M. project report (2004). \bibitem{n1} G. N'Guerekata; \emph{Almost automorphic and almost periodic functions in abstract spaces}, Kluwer Academic/Plenum Publishers, New York(2001). \bibitem{n2} G. N'Guerekata; \emph{On weak-almost periodic mild solutions of some linear abstract differential equations}, PFICDSDE, 27(2002), Wilmington. NC. USA, pp.672-677. \bibitem{n3} H. Ni and F. Lin; \emph{The Existence of Almost Periodic Solutions of Several Classes of Second Order Differential Equations}, IJNS, ISSN 1479-3889 (print), 1479-3897 (online) Vol.2, No.2 (2006) pp. 83-91. \bibitem{p1} I. Podlubny; \emph{Fractional Differential Equations}, Math. in Science and Eng., Technical University of Kosice, Slovak Republic Vol.198(1999). \bibitem{y1} T. Yoshizawa; \emph{Stability theory and the existence of periodic solutions and almost periodic solutions}, Springer-Verlag, New York(1975). \bibitem{z1} S. Zaidman; \emph{Weak almost periodicity for some vector-valued functions}, Istituto Lombardo Accad. di Science e'Lettere. 104,(1970), 720-725. \bibitem{z2} S. Zaidman; \emph{Abstract differential equations}, Pitman Publishing, San Francisco- London-Melbourne(1979). \bibitem{z3} S. Zaidman; \emph{Topics in abstract differential equations}, Pitman Research Notes in Math. Ser.II, John Wiley and Sons, New York(1995). \end{thebibliography} \end{document}