\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 66, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/66\hfil Multiple nonnegative solutions] {Multiple nonnegative solutions for second-order boundary-value problems with sign-changing nonlinearities} \author[S. Xi, M. Jia, H. Ji \hfil EJDE-2009/66\hfilneg] {Shouliang Xi, Mei Jia, Huipeng Ji} % in alphabetical order \address{College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China} \email[S.Xi]{xishouliang@163.com} \email[M.Jia]{jiamei-usst@163.com} \email[H.Ji]{jihuipeng1983@163.com} \thanks{Submitted December 8, 2008. Published May 14, 2009.} \thanks{Supported by grant 05EZ53 from the Foundation of Educational Commission of Shanghai.} \subjclass[2000]{34B10, 34B18} \keywords{Nonnegative solutions; fixed-point theorem in double cones; \hfill\break\indent integral kernel; integral boundary conditions} \begin{abstract} In this paper, we study the existence of multiple nonnegative solutions for second-order boundary-value problems of differential equations with sign-changing nonlinearities. Our main tools are the fixed-point theorem in double cones and the Leggett-Williams fixed point theorem. We present also the integral kernel associated with the boundary-value problem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} Boundary-value problems with nonnegative solutions describe many phenomena in the applied science, and they are widely used in fields, such as chemistry, biological, etc.; see for example \cite{c2,g1,j1,j2,j3,k1}. Problems with integral boundary conditions have been applied in heat conduction, chemical engineering, underground water flow-elasticity, etc. The existence of nonnegative solutions to these problems have received a lot of attention; see \cite{f1,k1,k2,k3,k4,k5} and reference therein. Recently, by constructing a special cone and using the fixed point index theory, Liu and Yan \cite{k2} proved the existence of multiple solutions to the singular boundary-value problem \begin{gather*} (p(t)x'(t))'+\lambda f(t,x(t),y(t))=0\\ (p(t)y'(t))'+\lambda g(t,x(t),y(t))=0\\ \alpha x(0)-\beta x'(0)=\gamma x(1)+\delta x'(1)=0\\ \alpha y(0)-\beta y'(0)=\gamma y(1)+\delta y'(1)=0, \end{gather*} where the parameter $\lambda$ in $\mathbb{R}^+$, $p\in C([0,1],\mathbb{R}^+)$, $\alpha, \beta, \gamma, \delta \geq 0$, $\beta\gamma+\alpha\delta+\alpha\gamma>0$, $f\in C((0,1) \times \mathbb{R}^+ \times \mathbb{R}, \mathbb{R}^+)$, $g\in C((0,1) \times \mathbb{R}^+ \times \mathbb{R}, \mathbb{R})$, but $g$ must be controlled by $f$. By using fixed point index theory in a cone, Yang \cite{k3} studied the existence of positive solutions to a system of second-order nonlocal boundary value problems \begin{gather*} -u''=f(t,u,v)\\ -v''=g(t,u,v)\\ u(0)=v(0)=0\\ u(1)=H_1 \Big(\int_0^1 u(\tau)d\alpha (\tau)\Big)\\ v(1)=H_2 \Big(\int_0^1 v(\tau)d\beta (\tau)\Big), \end{gather*} where $\alpha$ and $\beta$ are increasing nonconstant functions defined on $[0, 1]$ with $\alpha (0)=0=\beta (0)$ and $f, g\in C((0,1) \times \mathbb{R}^+ \times \mathbb{R}^+, \mathbb{R}^+)$, $H_i\in C(\mathbb{R}^+, \mathbb{R}^+)$. By using fixed point theory in a cone, Feng \cite{k5} studied positive solutions for the boundary-value problem, with integral boundary conditions in Banach spaces, \begin{equation*} x''+f(t,x)=0\\ \end{equation*} with \begin{equation*} x(0)=\int_0^1 g(t)x(t)dt, \quad x(1)=0\\ \end{equation*} or \begin{equation*} x(0)=0, x(1)=\int_0^1 g(t)x(t)dt, \end{equation*} where $f\in C([0,1]\times P, P), g\in L^1[0,1]$, and $P$ is a cone of $E$. All of these, we can find the nonlinear term $f$ is nonnegative. In this paper, by using the fixed point theorem in double cones and the Leggett-Williams fixed point theorem, we study the existence of multiple nonnegative solutions to the \ boundary value problem \begin{equation} \label{e1.1} \begin{gathered} u_1''(t)+f_1(t,u_1(t),u_2(t))=0\\ u_2''(t)+f_2(t,u_1(t),u_2(t))=0\\ u_1(0)=u_2(0)=0\\ u_1(1)=\int_0^1 g_1(s)u_1(s)ds,u_2(1)=\int_0^1 g_2(s)u_2(s)ds, \end{gathered} \end{equation} where $f_1, f_2\in C((0,1) \times \mathbb{R}^+ \times \mathbb{R}^+, \mathbb{R})$, and $g_1, g_2$ are nonnegative functions in $L^1 [0,1]$. In this paper we assume that the following conditions: \begin{itemize} \item[(H1)] $f_i\in C((0,1) \times \mathbb{R}^+ \times \mathbb{R}^+, \mathbb{R})$, $g_i\in L^1 [0,1]$ is nonnegative, $i=1,2$; \item[(H2)] $1-\int_0^1sg_i(s)ds>0$; \item[(H3)] $f_1(t,0,u_2(t))\geq 0(\not\equiv0)$, $f_2(t,u_1(t),0)\geq 0(\not\equiv0)$, $t\in[0,1]$. \end{itemize} \section{Preliminaries} Let $X$ be a Banach space with norm $\|\cdot\|$ and $K\subset X$ be a cone. For a constant $r>0$, denote $K_r=\{x\in K: \|x\|a, \alpha(x)a>0$ such that \begin{itemize} \item[(C1)] $\|Tx\|b$ for $x\in \partial K'(b)$; \item[(C3)] $Tx=T^*x$, for $x\in K'_{a}(b)\cap\{u:T^*u=u\}$. \end{itemize} Then $T$ has at least two fixed points $y_1$ and $y_2$ in $K$, such that $$ 0\leq \|y_1\|a\} \neq \emptyset $ and $\phi (Ax)>a$ for $x\in K(\phi ,a,b)$; \item[(C5)] $\| Ax\| a $ for $x\in K(\phi ,a,c)$ with $\| Ax\| >b$. \end{itemize} Then $A$ has at least three fixed points $x_1$, $x_2$, $x_3$ in $\overline{K_c}$ satisfying \[ \| x_1\| d, \quad \phi (x_3)0$, there exist $P_i (x_i ,y_i )\in X,i=1,2,\dots, m$, such that $$ A D\subset\cup_{i=1}^{m}B(P_i,\epsilon), $$ where $B(P_i,\epsilon):=\{(u_1,u_2)\in K: \|u_1-x_i\|+\|u_2-y_i\|<\epsilon\}$. Then for any $Q^{*}(x^{*}_Q , y^{*}_Q)\in (\theta \circ A)(D)$, there exists $Q(x_Q ,y_Q )\in AD$, such that $$ (x^{*}_Q , y^{*}_Q )=(\max\{x_Q ,0\},\max\{y_Q ,0\}). $$ We choose a $P_i \in \{P_1, P_2,\dots,P_m\}$, such that $$ \|x_Q-x_i\|+\|y_Q-y_i\|<\epsilon. $$ Since $$ \|x^{*}_Q-x^{*}_i\|+\|y^{*}_Q-y^{*}_i\|\leq \|x_Q-x_i\|+\|y_Q-y_i\|<\epsilon, $$ we have $ Q^{*}(x^{*}_Q , y^{*}_Q )\in B(P^{*}_i,\epsilon)$, and so $(\theta \circ A)(D)$ is relatively compact. For each $\epsilon>0$, there exists $\eta>0$, such that $ \|A(x_1,y_1)-A(x_2,y_2)\|<\epsilon$, for $\|x_1-x_2\|+\|y_1-y_2\|<\eta$. Since \begin{align*} &\|(\theta \circ A)(x_1,y_1)-(\theta \circ A)(x_2,y_2)\|\\ &=\|\Big(\max\{A_1(x_1,y_1),0\}-\max\{A_1(x_2,y_2),0\}, \\ &\quad \max\{A_2(x_1,y_1),0\}-\max\{A_2(x_2,y_2),0\}\Big)\|\\ &\leq\|A(x_1,y_1)-A(x_2,y_2)\|<\epsilon. \end{align*} We have $\|(\theta \circ A)(x_1,y_1)-(\theta \circ A)(x_2,y_2)\|<\epsilon$, for $\|x_1-x_2\|+\|y_1-y_2\|<\eta.$ Hence, $\theta \circ A$ is continuous in $K$ and $\theta \circ A$ is completely continuous. The proof is complete. \end{proof} Since $f_i$ is continuous, it is clear that $A:K\to X$ and $T^{*}:K '\to X$ are completely continuous. From Lemmas \ref{lem2.6} and \ref{lem2.5}, we have $T:K\to K$ and $T^*:K'\to K'$ are completely continuous. \begin{lemma}\label{lem2.7} If $(u_1,u_2)$ is a fixed point of $T$, then $(u_1,u_2)$ is a fixed point of $A$. \end{lemma} \begin{proof} Suppose $(u_1,u_2)$ is a fixed point of $T$, obviously, we just need to prove that $A_i (u_1,u_2)(t)\geq 0$, $i=1,2$, for $t\in [0,1]$. If there exist $t_0\in (0,1)$ and an $i$ ($i=1,2$) such that $u_i(t_0)=T_i (u_1,u_2)(t_0)=0$ but $A_i(u_1,u_2)(t_0)<0$. Without loss of generalization, let $i=1$ and $(t_1,t_2)$ be the maximal interval and contains $t_0$ such that $A_1(u_1,u_2)(t)<0$ for all $t\in(t_1,t_2)$. Obviously, $(t_1,t_2)\neq(0,1)$. Or else, $T_1(u_1,u_2)(t)=u_1(t)=0$, for all $t\in [0,1]$. This is in contradiction with (H3). \textbf{Case i:} If $t_2<1$, then $A_1(u_1,u_2)(t_2)=0$. Thus, $A_1'(u_1,u_2)(t_2)\geq 0$, We obtain $$ A_1''(u_1,u_2)(t)=-f_1(t,0,u_2)\leq 0, \quad\text{for } t\in (t_1,t_2). $$ So $$ A_1'(u_1,u_2)(t)\geq 0, \quad\text{for } t\in [t_1,t_2] $$ We obtain $t_1=0$, and $A_1'(u_1,u_2)(0)\geq 0$, $A_1(u_1,u_2)(0)<0$. This is in contradiction with $A_1(u_1,u_2)(0)=0$. \textbf{Case ii:} If $t_1>0$, we have $A_1(u_1,u_2)(t_1)=0$. Thus $A_1'(u_1,u_2)(t_1)\leq 0$. We obtain $$ A_1''(u_1,u_2)(t)=-f_1(t,0,u_2)\leq 0, \quad\text{for } t\in (t_1,t_2). $$ So $$ A_1'(u_1,u_2)(t)<0, \quad\text{for } t\in [t_1,t_2]. $$ We obtain $t_2=1, A_1'(u_1,u_2)(1)\leq 0$. On the other hand, $A_1(u_1,u_2)(t)<0$, for $t\in (t_1,t_2), A_1'(u_1,u_2)(1)\leq 0$ imply $ A_1(u_1,u_2)(1)<0$. By (H1), $A_1(u_1,u_2)(1)=\int_0^1 g_1(s)u_1(s)ds\geq 0$. This is a contradiction. The proof is complete. \end{proof} \section{Main result} Denote $$ M_i=\max_{t\in[0,1]}\int_{0}^{1}H_i(t,s)ds,\quad m_i=\min_{t\in[\delta,1-\delta]}\int_{\delta}^{1-\delta}H_i(t,s)ds, i=1, 2 $$ \begin{theorem}\label{thm3.1} Suppose that condition {\rm (H1)--(H3)} hold. Assume that there exist positive numbers $\delta, a, b, \lambda_i, \mu_i$, $i=1, 2$, such that $\delta\in (0,\frac{1}{2})$, $01$, and satisfy \begin{itemize} \item[(H4)] $f_i(t,u_1,u_2)\geq0$, for $t\in[0,1], u_1+u_2\in[0,b]$; \item[(H5)] $f_i(t,u_1,u_2)<\frac{\lambda_ia}{M_i}$, for $t\in [0,1], u_1+u_2\in[0,a]$; \item[(H6)] $f_i(t,u_1,u_2)\geq\frac{\mu_i\delta b}{m_i}$, for $t\in[\delta,1-\delta], u_1+u_2\in[\delta b, b]$. \end{itemize} Then, \eqref{e1.1} has at least two nonnegative solutions $(u_1,u_2)$ and $(u_1^{*},u_2^{*})$ such that $0\leq \|(u_1,u_2)\|\delta b. \end{align*} Therefore (C2) of Theorem \ref{thm2.1} is satisfied. Finally, we show that (C3) of Theorem \ref{thm2.1} is satisfied. Let $(u_1,u_2)\in K'_a(\delta b)\cap\{(u_1,u_2): T^*(u_1,u_2)=(u_1,u_2)\}$, we have $$ \alpha(u_1,u_2)<\delta b, \|(u_1,u_2)\|>a. $$ From Lemma \ref{lem2.5}, we know that \begin{gather*} \|(u_1,u_2)\|\leq \frac{1}{\delta}\alpha(u_1,u_2)0$, $i=1, 2$, such that $01$, and {\rm (H5), (H6)} hold, and satisfy \begin{itemize} \item[(H7)] $f_i(t,u_1,u_2)\geq 0$, for $t\in[0,1]$, $u_1+u_2\in[\delta b,b]$. \item[(H8)] $f_i(t,u_1,u_2)\leq \frac{\lambda_ib}{M_i}$, for $t\in [0,1], u_1+u_2\in[0,b]$. \end{itemize} Then, \eqref{e1.1} has at least three nonnegative solutions $(u_1,u_2)$, $(u_1^*,u_2^*)$, $(u_1^{**},u_2^{**})$, such that $0\leq \|(u_1,u_2)\|\delta b\}\neq \emptyset. $$ Assume $(u_1,u_2)\in K(\phi, \delta b, b)$, for any $t\in [\delta,1-\delta]$, we have $\delta b\leq u_1+u_2\leq b$. From (H6) and (H7) we obtain \begin{align*} \phi(T(u_1,u_2)) &=\min_{t\in[\delta,1-\delta]} \Big(\int_0^1H_1(t,s)f_1(s,u_1(s),u_2(s))ds\Big)^{+}\\ &\quad +\min_{t\in[\delta,1-\delta]} \Big(\int_0^1H_2(t,s)f_2(s,u_1(s),u_2(s))ds\Big)^{+}\\ &\geq \min_{t\in[\delta,1-\delta]}\int_{0}^{1} H_1(t,s)f_1(s,u_1(s),u_2(s))ds\\ &\quad +\min_{t\in[\delta,1-\delta]}\int_{0}^{1} H_2(t,s)f_2(s,u_1(s),u_2(s))ds\\ &\geq \min_{t\in[\delta,1-\delta]}\int_{\delta}^{1-\delta}H_1(t,s)f_1(s,u_1(s),u_2(s))ds\\ &\quad +\min_{t\in[\delta,1-\delta]}\int_{\delta}^{1-\delta}H_2(t,s)f_2(s,u_1(s),u_2(s))ds\\ &\geq \frac{\mu_1\delta b}{m_1}\min_{t\in[\delta,1-\delta]}\int_{\delta}^{1-\delta} H_1(t,s)ds+\frac{\mu_2\delta b}{m_2}\min_{t\in[\delta,1-\delta]}\int_{\delta}^{1-\delta} H_2(t,s)ds\\ &=\mu_1\delta b+\mu_2\delta b>\delta b. \end{align*} Finally, for $(u_1,u_2)\in K(\phi, \delta b, b)$ and $\|T(u_1,u_2)\|>b$, it is easy to prove that \[ \phi(T(u_1,u_2))\geq \delta \|T(u_1,u_2)\|>\delta b. \] Then (C6) of Theorem \ref{thm2.2} is satisfied. Therefore from Theorem \ref{thm2.2} and Lemma \ref{lem2.7} we know that \eqref{e1.1} has at least three nonnegative solutions $(u_1,u_2)$, $(u_1^*,u_2^*)$, $(u_1^{**},u_2^{**})$, such that \[ 0\leq \|(u_1,u_2)\|