\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 81, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/81\hfil Existence of weak solutions] {Existence of weak solutions for nonlinear systems involving several p-Laplacian operators} \author[S. A. Khafagy, H. M. Serag\hfil EJDE-2009/81\hfilneg] {Salah A. Khafagy, Hassan M. Serag} % in alphabetical order \address{Salah A. Khafagy \newline Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt} \email{el\_gharieb@hotmail.com} \address{Hassan M. Serag \newline Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt} \email{serraghm@yahoo.com} \thanks{Submitted December 9, 2008. Published July 10, 2009.} \subjclass[2000]{74H20, 35J65} \keywords{Existence of weak solution; nonlinear system, p-Laplacian} \begin{abstract} In this article, we study nonlinear systems involving several p-Laplacian operators with variable coefficients. We consider the system \[ -\Delta _{p_i}u_i=a_{ii}(x)|u_i|^{p_i-2}u_i -\sum_{j\neq i}^{n}a_{ij}(x)|u_i|^{\alpha _i}|u_j|^{\alpha_j}u_j+f_i(x), \] where $\Delta _{p}$ denotes the $p$-Laplacian defined by $\Delta_{p}u\equiv \mathop{\rm div} [|\nabla u|^{p-2}\nabla u]$ with $p>1$, $p\neq 2$; $\alpha _i\geq 0$; $f_i$ are given functions; and the coefficients $a_{ij}(x)$ ($1\leq i,j\leq n$) are bounded smooth positive functions. We prove the existence of weak solutions defined on bounded and unbounded domains using the theory of nonlinear monotone operators. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \section{Introduction} The generalized formulation of many boundary-value problems for partial differential equations leads to operator equations of the form \[ A(u)=f \] on a Banach space $V$. For this operator equation, we have the so-called weak formulation: \begin{quote} Find $u\in V$ such that $(A(u),v)=(f,v)$ for all $v\in V$. \end{quote} Then functional analysis has tools for proving existence of generalized (weak) solutions for a relatively wide class of differential equations that appear in mathematical physics and industry. The existence of weak solutions for $2\times 2$ nonlinear systems involving several $p$-Laplacian operators have been proved, using the method of sub and super solutions in \cite{S2005}, and using the theory of nonlinear monotone operators in \cite{S2006}. Here, we use the theory of nonlinear monotone operators to prove the existence of weak solutions for the following nonlinear systems involving several $p$-Laplacian operators with variable coefficients defined on a bounded domain $\Omega $ of $\mathbb{R}^{N}$ with boundary $\partial \Omega $, \begin{gather*} \begin{aligned} -\Delta _{p_i}u_i &\equiv -\mathop{\rm div} [|\nabla u_i|^{p_i-2}\nabla u_i]\\ &=a_{ii}(x)|u_i|^{p_i-2}u_i-\sum_{j\neq i}^{n}a_{ij}(x)|u_i|^{\alpha _i}|u_j|^{\alpha _j}u_j+f_i(x) \quad \text{in }\Omega , \end{aligned} \\ u_{i}=0,\quad i=1,2,\dots ,n,\quad \text{on }\partial \Omega . \end{gather*} Then, we generalize our results to systems defined on the whole space $\mathbb{R}^{N}$. This article is organized as follow: In section 2 we introduce some technical results and definitions concerning the theory of nonlinear monotone operators. We study the existence of weak solutions for $n\times n$ nonlinear systems defined on a bounded domain in section 3, and on unbounded domains in section 4. \section{Preliminary results} First, we introduce some results concerning the theory of nonlinear monotone operators \cite{F1994}. Let $A:V\to V^{\prime }$ be an operator on a Banach space $V$. We say that the operator $A$ is:\newline \emph{Bounded} if it maps bounded sets into bounded; i.e., for each $r>0$ there exists $M>0$ ($M$ depending on $r$) such that \[ \| u\| \leq r\text{ implies } \| A(u)\| \leq M,\quad \forall u\in V; \] \emph{coercive} if $\lim_{\| u\| \to \infty } \langle A(u),u\rangle / \| u\| =\infty $; \newline \emph{monotone} if $\langle A(u_{1})-A(u_{2}),u_{1}-u_{2}\rangle \geq 0$ for all $u_{1},u_{2}\in V$; \newline \emph{strictly monotone} if $\langle A(u_{1})-A(u_{2}),u_{1}-u_{2}\rangle >0$ for all $u_{1},u_{2}\in V$, $u_{1}\neq u_{2}$; \newline \emph{continuous} if $u_{k}\to u$ implies $A(u_{k})\to A(u)$, for all $\ u_{k},u\in V$; \newline \emph{strongly continuous} if $u_{k}\overset{w}{\to }u$ implies $A(u_{k})\to A(u)$, for all $u_{k},u\in V$; \newline \emph{continuous on finite-dimensional subspaces} if $A:V_{n}\to V_{n}^{\prime }$ is continuous for each subspace $V_{n}$ of finite dimension. \newline \emph{demicontinuous} if $u_{k}\to u$ implies $A(u_{k}) \overset{w}{\to }A(u) $, for all $u_{k},u\in V$; \newline the operator $A$ is said to be satisfy the $M_{0}$-condition if $u_{k} \overset{w}{\to }u$, $A(u_{k})\overset{w}{\to }f$, and $[\langle A(u_{k}),u_{k}\rangle \to \langle f,u\rangle ]$\ imply $A(u)=f$. \begin{remark} \label{rmk1} \rm \begin{itemize} \item[(i)] Strongly continuous operators are continuous, and they are continuous on finite dimensional subspaces. \item[(ii)] Strongly continuous operators are bounded and satisfy the $M_{0}$-condition. \item[(iii)] Strictly monotone operators are monotone operators. \item[(iv)] Monotone and continuous operators satisfy the $M_{0}$-condition. \end{itemize} \end{remark} \begin{theorem} \label{thm2} Let $V$ be a separable reflexive Banach space and $A:V\to V'$ an operator which is: coercive, bounded, continuous on finite-dimensional subspaces and satisfying the $M_{0}-$condition. Then the equation $A(u)=f$ admits a solution for each $f\in V'$. \end{theorem} Next, we introduce the Sobolev space $W^{1,p}(\Omega ),1
0$ which is associated with a positive
eigenfunction $u\geq 0$ a.e. in $\Omega $ normalized by
$\| u\|_{p}=1 $. Moreover, the first eigenvalue is characterized by
\begin{equation}
\lambda _{a}(\Omega )=\inf \big\{\int_{\Omega }|\nabla
u|^{p}:\int_{\Omega }a(x)|u|^{p}=1\big\}. \label{26}
\end{equation}
\end{lemma}
Also, from the characterization of the first eigenvalue given by \eqref{26},
we have
\begin{equation}
\lambda _{a}(\Omega )\int_{\Omega }a(x)|u|^{p}\leq \int_{\Omega }|\nabla
u|^{p}. \label{27}
\end{equation}
\section{Nonlinear systems defined on bounded domains}
Let us consider the nonlinear system
\begin{equation}
\begin{gathered} -\Delta _{p_i}u_i=a_{ii}(x)|u_i|^{p_i-2}u_i-\sum_{j\neq
i}^{n}a_{ij}(x)|u_i|^{\alpha _i}|u_j|^{\alpha _j}u_j+f_i(x) \quad
\text{in }\Omega , \\ u_i=0,\quad i=1,2,\dots ,n, \quad \text{on } \partial
\Omega , \end{gathered} \label{31}
\end{equation}
where $a_{ii}(x)$ is a smooth bounded positive function, $\Omega $ is a
bounded domain of $\mathbb{R}^{N}$, and
\begin{gather}
\alpha _i\geq 0,\quad f_i\in L^{p_i^{\ast }}(\Omega ), \label{32} \\
\frac{1}{p_i}+\frac{1}{p_i^{\ast }}=1,\quad \frac{\alpha _i+1}{p_i}
=\frac{1}{2},\quad i=1,2,\dots ,n. \label{33}
\end{gather}
\begin{theorem} \label{thm4}
For $(f_i)\in \prod_{i=1}^{n}L^{p_i^{\ast }}(\Omega )$, there
exists a weak solution $(u_i)$ in the space
$\prod_{i=1}^{n}W_{0}^{1,p_i}(\Omega )$
for the system \eqref{31}, if
\begin{equation}
\lambda _{a_{ii}}(\Omega )>1,\quad i=1,2,\dots ,n.
\label{34}
\end{equation}
\end{theorem}
\begin{proof}
We transform the weak formulation of (\ref{31}) to the operator form
$(A-B)U=F$, where, $A$, $B$ and $F$ are operators defined on
$\prod_{i=1}^{n}W_{0}^{1,p_i}(\Omega )$ by
\begin{gather}
(AU,\Phi )\equiv (A(u_{1},u_{2},\dots ,u_{n}),(\phi _{1},\phi _{2},\dots
,\phi _{n}))=\sum_{i=1}^{n}\int_{\Omega }|\nabla u_i|^{p_i-2}\nabla
u_i\nabla \phi _i, \label{35} \\
\begin{aligned} (BU,\Phi )
&\equiv (B(u_{1},u_{2},\dots ,u_{n}),(\phi
_{1},\phi _{2},\dots ,\phi _{n}))\\
&=\sum_{i=1}^{n}[\int_{\Omega
}a_{ii}(x)|u_i|^{p_i-2}u_i\phi _i-\sum_{j\neq i}^{n}\int_{\Omega
}a_{ij}(x)|u_i|^{\alpha _i}|u_j|^{\alpha _j}u_j\phi _i], \end{aligned}
\label{36} \\
(F,\Phi )\equiv ((f_{1},f_{2},\dots ,f_{n}),(\phi _{1},\phi _{2},\dots ,\phi
_{n}))=\sum_{i=1}^{n}\int_{\Omega }f_i\phi _i. \label{37}
\end{gather}
Now, consider the operator $J$ defined by
\begin{equation}
(J(u),\phi )=\int_{\Omega }|\nabla u|^{p-2}\nabla u\nabla \phi . \label{38}
\end{equation}
This operator is bounded: Since
\[
| (J(u),\phi )| \leq \int_{\Omega }|\nabla u|^{p-1}| \nabla \phi | ,
\]
using H\"{o}lder's inequality, we obtain
\[
| (J(u),\phi )| \leq \Big[ \int_{\Omega }|\nabla u|^{p}\Big] ^{\frac{p-1}{p}}%
\Big[ \int_{\Omega }|\nabla \phi |^{p} \Big] ^{1/p}=\| u\|
_{W_{0}^{1,p}(\Omega )}^{p-1}\| \phi \| _{W_{0}^{1,p}(\Omega )}.
\]
Also, we can prove that $J$ is continuous, let us assume that $u_{k}\to u$
in $W_{0}^{1,p}(\Omega )$. Then $\|u_{k}-u\| _{W_{0}^{1,p}(\Omega )}\to 0$,
so that $\| \nabla u_{k}-\nabla u\| _{L^{p}(\Omega )}\to 0$. Applying
Dominated Convergence Theorem, we obtain
\[
\| (|\nabla u_{k}|^{p-2}\nabla u_{k}-|\nabla u|^{p-2}\nabla u)\|
_{L^{p}(\Omega )}\to 0,
\]
and hence
\[
\| J(u_{k})-J(u)\| _{_{L^{p}(\Omega )}}\leq \| (|\nabla u_{k}|^{p-2}\nabla
u_{k}-|\nabla u|^{p-2}\nabla u)\| _{L^{p}(\Omega )}\to 0.
\]
Finally, $J$ is strictly monotone:
\begin{align*}
(J(u_{1})-J(u_{2}),u_{1}-u_{2}) &= \int_{\Omega }|\nabla u_{1}|^{p-2}\nabla
u_{1}\nabla u_{1}+\int_{\Omega }|\nabla u_{2}|^{p-2}\nabla u_{2}\nabla u_{2}
\\
&\quad-\int_{\Omega }|\nabla u_{1}|^{p-2}\nabla u_{1}\nabla
u_{2}-\int_{\Omega }|\nabla u_{2}|^{p-2}\nabla u_{2}\nabla u_{1};
\end{align*}
using H\"{o}lder's inequality, we obtain
\begin{align*}
&(J(u_{1})-J(u_{2}),u_{1}-u_{2}) \\
&\geq \int_{\Omega }|\nabla u_{1}|^{p}+\int_{\Omega }|\nabla u_{2}|^{p}-
\Big[ \int_{ \Omega }|\nabla u_{1}|^{p}\Big] ^{\frac{p-1}{p}}
\Big[ \int_{\Omega }|\nabla u_{2}|^{p}\Big] ^{\frac{1}{p}} \\
&\quad -\Big[ \int_{\Omega }|\nabla u_{2}|^{p}\Big] ^{\frac{p-1}{p}}
\Big[ \int_{\Omega }|\nabla u_{1}|^{p}\Big] ^{1/p} \\
&= \| u_{1}\| _{W_{0}^{1,p}(\Omega )}^{p}+\| u_{2}\| _{W_{0}^{1,p}(\Omega
)}^{p}-\| u_{1}\| _{W_{0}^{1,p}(\Omega )}^{p-1}\|
u_{2}\|_{W_{0}^{1,p}(\Omega )} -\| u_{2}\| _{W_{0}^{1,p}(\Omega )}^{p-1}\|
u_{1}\| _{W_{0}^{1,p}(\Omega )},
\end{align*}
and hence,
\begin{align*}
&(J(u_{1})-J(u_{2}),u_{1}-u_{2}) \\
&\geq (\| u_{1}\|_{W_{0}^{1,p}(\Omega )}^{p-1}-\| u_{2}\|
_{W_{0}^{1,p}(\Omega )}^{p-1})(\| u_{1}\| _{W_{0}^{1,p}(\Omega )}-\| u_{2}\|
_{W_{0}^{1,p}(\Omega)}) >0.
\end{align*}
Now, $AU$ can be written as the sum of $J_{1}(u_{1}),J_{2}(u_{2}),\dots
,J_{n}(u_{n})$ where
\[
(J_i(u_i),\phi _i)=\int_{\Omega }|\nabla u_i|^{p_{_i}-2}\nabla u_i\nabla
\phi _i,\quad i=1,2,\dots ,n,
\]
and as above, the operators $J_{1}$, $J_{2},\dots $ and $J_{n}$ are bounded,
continuous and strictly monotone; so their sum, the operator $A$, will be
the same.
For the operator $B$,
\[
B\colon \prod_{i=1}^{n}W_{0}^{1,p_i}(\Omega )\to
\prod_{i=1}^{n}L^{p_i}(\Omega ),
\]
we can prove that it is a strongly continuous operator. To prove that, let
us assume that $u_{ik}\overset{w}{\to }u_i$ in $W_{0}^{1,p_i}(\Omega )$,
$i=1,2,\dots ,n$. Then, using (\ref{23}), $(u_{ik})\to (u_i)$ in
$\prod_{i=1}^{n}L^{p_i}(\Omega)$. By the Dominated Convergence Theorem,
\begin{gather*}
a_{ii}(x)| u_{ik}| ^{p_i-2}u_{ik}\to a_{ii}(x)| u_i| ^{p_i-2}u_i \quad
\text{in }L^{p_i}(\Omega ), \\
-a_{ij}(x)| u_{ik}| ^{\alpha _i}| u_{jk}| ^{\alpha _j}u_{jk}\to
-a_{ij}(x)| u_{_i}| ^{\alpha _i}| u_j| ^{\alpha _j}u_j\quad \text{in }
L^{p_j}(\Omega ),
\end{gather*}
Since
\begin{align*}
(BU_{k}-BU,W) &= (B(u_{1k},u_{2k},\dots ,u_{nk})-B(u_{1},u_{2},\dots
,u_{n}),(w_{1},w_{2},\dots ,w_{n})) \\
&= \sum_{i=1}^{n}\Big[\int_{\Omega }a_{ii}(x)(| u_{ik}| ^{p_i-2}u_{ik}-|
u_i| ^{p_i-2}u_i)w_i \\
&\quad-\sum_{j\neq i}^{n}\int_{\Omega }a_{ij}(x)(| u_{ik}| ^{\alpha _i}|
u_{jk}| ^{\alpha _j}u_{jk}-| u_{_i}| ^{\alpha _i}| u_j| ^{\alpha
_j}u_j)w_i\Big],
\end{align*}
it follows that
\begin{align*}
\| BU_{k}-BU\|
&\leq \sum_{i=1}^{n}\Big[\| a_{ii}(x)(| u_{ik}|
^{p_i-2}u_{ik}-| u_i| ^{p_i-2}u_i)\| _{L^{p_i}(\Omega )} \\
&\quad +\sum_{j\neq i}^{n}\| a_{ij}(x)(| u_{ik}| ^{\alpha _i}| u_{jk}|
^{\alpha _j+1}-| u_{_i}| ^{\alpha _i}| u_j| ^{\alpha _j+1})\Big)\|
_{L^{p_i}(\Omega )}]\to 0.
\end{align*}
This proves that $B$ is a strongly continuous operators. According to Remark
\ref{rmk1}, the operator $A-B$ satisfies the $M_{0}$-condition. Now, to
apply Theorem \ref{thm2}, it remains to prove that $A-B$ is a coercive
operator
\begin{align*}
&((A-B)U,U) \\
&= \sum_{i=1}^{n}\int_{\Omega }|\nabla u_i|^{p_i}-\sum_{i=1}^{n}
\Big[\int_{\Omega }a_{ii}(x)| u_i| ^{p_i}-\sum_{j\neq i}^{n}\int_{\Omega
}a_{ij}(x)| u_{_i}| ^{\alpha _i+1}| u_j| ^{\alpha _j+1}\Big] \\
&\geq \sum_{i=1}^{n}\int_{\Omega }|\nabla
u_i|^{p_i}-\sum_{i=1}^{n}\int_{\Omega }a_{ii}(x)| u_i| ^{p_i}.
\end{align*}
Using (\ref{27}), we obtain
\begin{align*}
((A-B)U,U) &\geq \sum_{i=1}^{n}\int_{\Omega }|\nabla
u_i|^{p_i}-\sum_{i=1}^{n}\frac{1}{\lambda _{a_{ii}}(\Omega )} \int_{\Omega
}| \bigtriangledown u_i|^{p_i} \\
&=\sum_{i=1}^{n}(1-\frac{1}{\lambda _{a_{ii}}(\Omega )} )\int_{\Omega }|
\bigtriangledown u_i| ^{p_i},
\end{align*}
and hence,
\[
((A-B)U,U)\geq k\sum_{i=1}^{n}\| u_i\| _{W_{0}^{1,p_i}(\Omega )}^{p_i}=k\|
(u_i)\| _{\prod_{i=1}^{n}W_{0}^{1,p_i}(\Omega )}.
\]
So that
\[
((A-B)U,U)\to \infty \quad \text{as }\| (u_i)\|
_{\prod_{i=1}^{n}W_{0}^{1,p_i}(\Omega )}\to \infty .
\]
This proves the coercivity condition and so, the existence of a weak
solution for systems \eqref{31}.
\end{proof}
\section{Nonlinear systems defined on $\mathbb{R}^{N}$}
We consider the nonlinear system
\begin{equation}
\begin{gathered} -\Delta _{p_i}u_i=a_{ii}(x)|u_i|^{p_i-2}u_i-\sum_{j\neq
i}^{n}a_{ij}(x)|u_i|^{\alpha _i}|u_j|^{\alpha _j}u_j+f_i(x), \quad
x\in \mathbb{R}^{N}, \\ \lim_{| x| \to \infty }u_i(x)=0,\quad i=1,2,\dots
,n,\quad x\in \mathbb{R}^{N}. \end{gathered} \label{41}
\end{equation}
We assume that $1