\documentclass[reqno]{amsart}
\usepackage{hyperref}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2009(2009), No. 87, pp. 1--10.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2009 Texas State University - San Marcos.}
\vspace{9mm}}
\begin{document}
\title[\hfilneg EJDE-2009/87\hfil Existence of solutions]
{Existence of solutions to p-Laplace equations with
logarithmic nonlinearity}
\author[J. Mo, Z. Yang\hfil EJDE-2009/87\hfilneg]
{Jing Mo, Zuodong Yang} % in alphabetical order
\address{Jing Mo \newline
Institute of Mathematics, School of Mathematics Science,
Nanjing Normal University,
Jiangsu Nanjing 210097, China}
\email{jingshuihailang@163.com}
\address{Zuodong Yang \newline
Institute of Mathematics, School of Mathematics Science,
Nanjing Normal University,
Jiangsu Nanjing 210097, China. \newline
College of Zhongbei, Nanjing Normal University, Jiangsu Nanjing
210046, China}
\email{zdyang\_jin@263.net}
\thanks{Submitted February 23, 2009. Published July 10, 2009.}
\thanks{Supported by grants 10871060 from the National Natural Science
Foundation of China \hfill\break\indent
and 08KJB110005 from the
Natural Science Foundation of Educational Department,
\hfill\break\indent
Jiangsu Province, China}
\subjclass[2000]{35B20, 35B65, 35J65}
\keywords{Existence; logarithmic
nonlinearity; supersolution; subsolution}
\begin{abstract}
This article concerns the the nonlinear elliptic equation
$$
-\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)
=\log u^{p-1}+\lambda f(x,u)
$$
in a bounded domain $\Omega \subset \mathbb{R}^{N}$ with $N\geq 1$
and $u=0$ on $\partial\Omega$. By means of a double
perturbation argument, we obtain a nonnegative solution.
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\section{Introduction}
In this paper we consider the existence of solutions
to the problem
\begin{equation}
\begin{gathered}
-\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)
=\log{u^{p-1}}+\lambda f(x,u),\quad\text{in } \Omega,\\
u>0,\quad\text{in } \Omega,\\
u=0,\quad\text{on } \partial\Omega,
\end{gathered} \label{eq1.1}
\end{equation}
where $\Omega$ is a bounded $C^2$ domain in $\mathbb{R}^N$, $N\geq
2$, $1
2$ are called dilatant fluids and those
with $p<2$ are called pseudo-plastics. If $p=2$, they are Newtonian
fluids. When $p=2$, the existence of bounded positive solutions were
proved by Deng [3]. When $p\not =2$, the problem becomes more
complicated since certain nice properties inherent to the case $p=2$
seem to be lost or at least difficult to be verified. The main
differences between $p=2$ and $p\neq 2$ can be found in [8,9]. In
recent years, the existence and uniqueness of the positive solutions
for the quasilinear eigenvalue problem
\begin{equation}
\begin{gathered}
\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)+\lambda
f(x,u)=0 \quad\text{in }\Omega ,\\
u(x)=0 \quad\text{on }\partial\Omega,
\end{gathered} \label{eq1.2}
\end{equation}
with $\lambda>0$, $p>1$ on a bounded domain $\Omega \subset
\mathbb{R}^N$, $N\geq 2$ have been studied by many authors see
[9,10,19] and the references therein when $f$ is strictly increasing
on $\mathbb{R}^{+}$, $f(0)=0,\lim_{s\to 0^{+}}{f(s)/{s^{p-1}}}=0$
and $f(s)\leq\alpha_{1}+\alpha_{2}{s^{\mu}}$, $0<\mu0$. It was shown in [10] that there
exists at least two positive solutions for equation (1.2) when
$\lambda>0$ is sufficiently large. If $\liminf_{s \to
0^{+}}(f(s)/(s^{p-1}))> 0,f(0)=0$ and the monotonicity hypothesis
$(f(s)/(s^{p-1}))^{'}< 0$ holds for all $s>0$, it was proved in [9]
that the problem (1.2) has a unique positive solution when $\lambda$
is sufficiently large.
For $p=2$, some results to a semilinear elliptic equation with
logarithmic nonlinearity
\begin{equation}
\begin{gathered}
-{\Delta u}=\log u +h(x)u^{q},\quad\text{in } B_{R},\\
u>0,\quad\text{in } B_{R},\\
u=0,\quad\text{on } \partial B_{R};
\end{gathered} \label{eq1.3}
\end{equation}
and
\begin{equation}
\begin{gathered}
-{\Delta u}=\chi_{\{u>0\}}(\log u+\lambda\ f(x,u)),\quad\text{in } \Omega,\\
u\geq 0, \quad\text{in};\; \Omega,\\
u=0, \quad\text{on } \partial\Omega,
\end{gathered}\label{eq1.4}
\end{equation}
have been extensively studied. (See, for example, [15,19] and their
references.) In [19], the authors obtained a positive radial
solution $u\in C^{2}(\overline{B}_{R}\backslash \{0\})\bigcap
C(\overline{B}_{R})$ of (1.3) by means of a double perturbation
argument. In [15], the authors study the problem (1.4), which obtain
a maximal solution $u_\lambda\geq 0$ for every $\lambda>0$ and prove
its global regularity $C^{1,\gamma}(\overline{\Omega})$. Motivated
by the results of the above cited papers, we shall attempt to treat
such equation \eqref{eq1.1}, the results of the semilinear equations
are extended to the quasilinear ones. We can find the related
results for $p=2$ in [15]. In this paper, the authors obtained the
maximal solution $u_{\lambda}\geq 0$ for every $\lambda>0$ and
proved its global regularity $C^{1,\gamma}(\overline{\Omega})$. Our
strategy in the study of (1.1) is to use the sub-super solution
method and the mountain pass lemma.
The paper is organized as follows. In section 2, we obtain a
subsolution of (1.1) by adopting a double perturbation argument.
Section 3 is dedicated to prove the existence of a supersolution of
(1.1) by the mountain pass lemma. In section 4, we shall use the
results of Section 2 and 3 to obtain a solution for the problem
(1.1) by using the sub-super solution method which proves our main
result. Some regularity properties of the solution of (1.1) are
studied in section 5.
In this problem, the function $f$ satisfies the following
hypothesis:
\begin{itemize}
\item[(H1)] $f:\Omega\times[0,+\infty)$ is measurable in $x\in\Omega$
with $f$ is continuous;
\item[(H2)] $f$ is nondecreasing, $f\neq0$;
\item[(H3)] $\lim_{s\to \infty}{f(x,s)/{s^\beta}}=0$,
$f(x,s)/{s^\beta}$ is decreasing where $0<\beta0$, such that
$\sup_{0<\varepsilon<1}{\|u^{\varepsilon}\|_{L^{\infty}}}\leq
C_{1}$.
\end{lemma}
\begin{proof} We denote
$$
h_{\varepsilon}(s)=\log{\frac{s^{p}+\varepsilon
s+\varepsilon}{s+\varepsilon}}.
$$
Assume by contradiction that there exists a sequence
$\varepsilon_{j}\to 0$ as $j\to \infty$, and $\|u^{\varepsilon
j}\|_{L^{\infty}}\to \infty$ as $j\to \infty$, where $u^{\varepsilon
j}$ solves (2.1), for each $j\in \mathbb{N}$,
we set
$$
\alpha_{j}=\|u^{\varepsilon j}\|_{L^{\infty}},\quad
\beta_{j}=\inf_{s\geq 0}h_{\varepsilon j}(s),\quad
\Omega_{j}=|\beta_{j}|\Omega, \quad
\widetilde{x}=x/|\beta_{j}|
$$
and define
$$
U^{\varepsilon j}(x)=u^{\varepsilon
j}(\widetilde{x})/\alpha_{j}, \quad x\in\Omega_{j},
$$
clearly,
$\|U^{\varepsilon j}\|_{L^{\infty}(\Omega_{j})}=1$ for all
$j\in \mathbb{N}$. On the other hand
$$
-\mathop{\rm div}(|\nabla U^{\varepsilon
j}(\widetilde{x})|^{p-2}\nabla U^{\varepsilon
j}(\widetilde{x}))=\frac{h_{\varepsilon j}(u^{\varepsilon
j}(\widetilde{x}))+\lambda f(\widetilde{x},u^{\varepsilon
j}(\widetilde{x}))}{(\alpha_{j})^{p-1}|\beta_{j}|^{p-1}}
$$
As a result, $\|U^{\varepsilon j}\|_{C(\overline{\Omega}_{j})}\to
0$ as $j\to \infty$, which contradicts $\|U^{\varepsilon
j}\|_{L^{\infty}(\Omega_{j})}=1$.
\end{proof}
We shall prove that (2.1) has a solution.
First we find a supersolution which is independent on $\varepsilon$.
Clearly $\underline{u}=0$ is a subsolution of (2.1). Then our
solution $u^{\varepsilon}\geq 0$.
\begin{lemma} \label{lem2.3}
Suppose $f$ satisfies {\rm (H1)--(H3)}, then for each $\lambda>0$,
there is a supersolution $\bar{u}$ of (2.1) for $0<\varepsilon<1$.
\end{lemma}
\begin{proof}
First consider the solution $Y$ of the problem
\begin{equation}
\begin{gathered}
-\mathop{\rm div}(|\nabla Y|^{p-2}\nabla
Y)=1,\quad\text{in } \Omega,\\
Y=0,\quad\text{on } \partial\Omega,
\end{gathered} \label{eq2.2}
\end{equation}
Since $Y$ is bounded in $\Omega$, we choose $\theta>0$ such that
$\theta\|Y\|_{L^{\infty}}\leq1$, next we fix $M>0$ and $c_{1}>0$ in
a such way that (see $(H_{3}))$, $f(x,u)\leq\theta u^{\beta} $ for
all $u\geq M$ and $f(x,u)\leq c_{1}$ for all $u\leq M$. In fact we
may choose $\theta<\frac{\beta+1}{2pC(N,p)^{\beta+1}}$. We fix $k>0$
such that
$$
k^{p-1}-\log(k^{p-1}\|Y\|_{L^{\infty}}^{p-1}+1)
\geq \lambda\theta k^{p-1}\|Y\|_{L^{\infty}}^{p-1}
$$
and
$$
k^{p-1}-\log(M^{p-1}+1)\geq c_{1},
$$
setting $\bar{u^{\varepsilon}}=\bar{u}=kY$, we obtain a
supersolution of (2.1) for all $0<\varepsilon<1$. Indeed, recall the
definition of $h_{\varepsilon}$, if $u\geq M$, we have
\begin{align*}
-\Delta_{p}\bar{u}-h_{\varepsilon}(\bar{u})
&=k^{p-1}-h_{\varepsilon}(\bar{u})\\
&\geq k^{p-1}-\log(\bar{u}^{p-1}+1) \\
&=k^{p-1}-\log(k^{p-1}Y^{p-1}+1)\\
&\geq k^{p-1}-\log(k^{p-1}\|Y\|_{L^{\infty}}^{p-1}+1)\\
& \geq
\lambda\theta k^{p-1}\|Y\|_{L^{\infty}}^{p-1}\\
&\geq \lambda\theta\bar{u}^{p-1}
\geq\lambda\theta\bar{u}^{\beta}\\
&\geq \lambda f(x,\bar{u}).
\end{align*}
Whenever $\bar u\leq M$, we obtain
\begin{align*}
-\Delta_{p}\bar{u}-h_{\varepsilon}(\bar{u})
&= k^{p-1}-h_{\varepsilon}(\bar{u}) \geq
k^{p-1}-\log(\bar{u}^{p-1}+1)\\
&\geq k^{p-1}-\log(M^{p-1}+1) \geq c_{1}\\
&\geq \lambda f(x,\bar{u}).
\end{align*}
Consequently, $\bar{u}^{\varepsilon}=kY$ is a supersolution of
\eqref{eq2.1} for all $\varepsilon>0$.
\end{proof}
\begin{lemma} \label{lem2.4}
Let $0<\varepsilon<\varepsilon_{0}$ and $\lambda>0$ be fixed. Then
the problem (2.1) has a solution $u^{\varepsilon}>0$.
\end{lemma}
\begin{proof} Let $\varepsilon>0$ be fixed and
$$
F_{\varepsilon}(x,u)=\log{\frac{u^{p}+\varepsilon
u+\varepsilon}{u+\varepsilon}}+\lambda f(x,u)+a_{\varepsilon} u
$$
where the constant $a_{\varepsilon}$ is fixed in such a way that
$u\to F_{\varepsilon}(x,u)$ is increasing on
$[\underline{u}^{\varepsilon},\bar{u}^{\varepsilon}]$ uniformly in
$x\in \Omega$. Starting with $u_{0}=\bar{u}^{\varepsilon}$, we
define the sequence $\{u_{n}\}$ of (unique) solution of the problem
\begin{equation}
\begin{gathered}
-\mathop{\rm div}(|\nabla u_{n}|^{p-2}\nabla
u_{n})+a_{\varepsilon}u_{n}=F_{\varepsilon}(x,u_{n-1}),
\quad\text{in } \Omega,\\
u_{n}=0,\quad\text{on } \partial\Omega,
\end{gathered}\label{eq2.3}
\end{equation}
Then we have $\underline{u}^{\varepsilon}\leq
\ldots,\leq u_{n+1}\leq u_{n}\ldots \leq
u_{0}=\bar{u}^{\varepsilon}$.
In fact, it follows by the comparison principle in lemma 2.1 applied
to the problem
\begin{equation}
\begin{gathered}
-\mathop{\rm div}(|\nabla u_{0}|^{p-2}\nabla
u_{0})+a_{\varepsilon}u_{0}\geq -\mathop{\rm div}(|\nabla
u_{1}|^{p-2}\nabla
u_{1})+a_{\varepsilon}u_{1},\quad\text{in } \Omega,\\
u_{0}\geq u_{1},\quad\text{on } \partial\Omega,
\end{gathered} \label{eq2.4}
\end{equation}
that $u_{0}\geq u_{1}\geq 0$. Similarly, $u^{\varepsilon}\leq u_{1}$
in $\Omega$. There is a function $u^{\varepsilon}$ defined by
pointwise limit
$$
u^{\varepsilon}(x)=\lim_{n\to \infty}u_{n}(x),x\in \Omega.
$$
By a standard bootstrap argument, we may take the $\lim n \to
\infty$, so we conclude that $u$ satisfies (2.1).
\end{proof}
\begin{lemma} \label{lem2.5}
The pointwise $ u(x)=\lim_{\varepsilon\to 0}u^{\varepsilon}(x)(x\in
\Omega)$ is the subsolution of (1.1), in other words
\begin{equation}
\int_{\Omega}|\nabla u|^{p-2}\nabla u\nabla\varphi dx
+\int_{\Omega}(-\log u^{p-1})\varphi dx
\leq \int_\Omega \lambda f(x,u)\varphi dx\label{eq2.5}
\end{equation}
for all $\varphi\in C_{0}^{\infty}(\Omega)$ with $\varphi\geq 0$ in
$\Omega$.
\end{lemma}
\begin{proof}
Let $\varphi\in C_{0}^{\infty}(\Omega)$ with
$\varphi\geq 0$ in $\Omega$, $\lambda>0$ and recall the definition
of $h_{\varepsilon}$. For each $0<\varepsilon<\varepsilon_{0}$, we
have
\begin{equation}
\int_{\Omega}|\nabla u^{\varepsilon}|^{p-2}\nabla
u^{\varepsilon}\nabla\varphi
dx=\int_{\Omega}h(u^{\varepsilon})\varphi+\int_{\Omega}\lambda
f(x,u^{\varepsilon})\varphi dx \label{eq2.6}
\end{equation}
The dominated convergence theorem implies
\begin{equation}
\lim_{\varepsilon \to 0}\int_{\Omega}\lambda f(x,u^{\varepsilon})\psi
dx=\int_\Omega \lambda f(x,u)\varphi dx \label{eq2.7}
\end{equation}
Analogously,
\begin{equation}
\lim_{\varepsilon \to 0}\int_{\Omega}|\nabla
u^{\varepsilon}|^{p-2}\nabla u^{\varepsilon}\nabla\varphi
dx=\int_{\Omega}|\nabla u|^{p-2}\nabla u \nabla \varphi dx
\label{eq2.8}
\end{equation}
Since
$$
\liminf_{\varepsilon\to
0}{-h_{\varepsilon}(u^{\varepsilon})}\geq -\log
(u^{\varepsilon})^{p-1},
$$
from the Fatou's Lemma, it follows that
\begin{equation}
\liminf_{\varepsilon\to 0}\int_{\Omega}{-h_{\varepsilon}
(u^{\varepsilon})\varphi} dx
\geq \int_{\Omega}{-\log (u^{\varepsilon})^{p-1}\varphi} dx
\label{eq2.9}
\end{equation}
Letting $\varepsilon \to 0$ in (2.6) and using
(2.7)-(2.8), we obtain (2.5).
\end{proof}
\section{Supersolutions for (1.1)}
In this section we use that that
\begin{itemize}
\item[(F1)] $\log u^{p-1}\leq u^{q-1}\quad\text{for all }u>0,q>p$.
\end{itemize}
As in lemma 2.3, we only consider the case $u\geq M$ and $f(x,u)\leq
\theta u^{\beta},0<\beta0$ such that
$I(u)\geq a$ if $\|u\|=r$;
\item[(3)] There exists an element $v\in H$
with $\|v\|>r,I(v)\leq 0$.
\end{itemize}
Define
$$
\Gamma:=\{g\in C[0,1]; H:g(0)=0,g(1)=1\}.
$$
Then $c=\inf_{g\in\Gamma}\max_{0\leq t\leq 1}I[g(t)]$
is a critical value of $I$.
\end{lemma}
In the following, we define the space
$D^{1,p}(\Omega)$ as the closure of the set $C_{c}^{\infty}(\Omega)$
with the norm
$$
\|u\|_{D^{1,p}(\Omega)}=\Big(\int_{\Omega}|\nabla u|^{p}
dx\Big)^{1/p}.
$$
\begin{lemma} \label{lem3.2}
There exists a solution $u$ of the problem (3.2).
\end{lemma}
To prove the existence of a solution of (3.2), we will apply the
mountain pass lemma to the energy functional
\begin{equation}
J(u)=\frac{1}{p}\int_{\Omega}|\nabla u|^{p} dx
-\frac{1}{q}\int_{\Omega}u^{q}dx-\frac{\lambda \theta }{\beta+1}
\int_{\Omega}u^{\beta+1}dx \label{eq3.2}
\end{equation}
The facts that $D^{1,p}(\Omega)$ is a Banach space (reflexive) and
that $J \in C^{1}(D^{1,p}(\Omega),\mathbb{R})$ satisfies the
Palais-Smale condition are basic results (see [2]). It remains to
see the two following points to prove that the functional $J$ has a
mountain pass geometry:
\begin{itemize}
\item[(C1)] There exists $R>0$ and $a>0$ such that
$\|u\|_{D^{1,p}(\Omega)}=R$ implies $J(u)\geq a$;
\item[(C2)] There exists $u_{0}\in D^{1,p}(\Omega)$ such that
$\|u_{0}\|_{D^{1,p}(\Omega)}>R$ and $J(u_{0})p>\beta+1).\label{eq3.3}
\end{equation}
So
\begin{align*}
J(u)
&\geq \frac{\varepsilon}{p}-\frac{2\lambda \theta
}{\beta+1}C(N,p)^{\beta+1}\varepsilon ^{\beta+1}\\
&\geq \frac{\varepsilon}{p}-\frac{2\lambda \theta
}{\beta+1}C(N,p)^{\beta+1}\varepsilon\\
&=\varepsilon(\frac{1}{p}-\frac{2\lambda
\theta }{\beta+1}C(N,p)^{\beta+1}).
\end{align*}
Finally, when
$$
\theta<(\beta+1)(2pC(N,p)^{\beta+1})^{-1}
$$
if we take two constant $R=\varepsilon>0$ and
$a=\varepsilon(\frac{1}{p}-\frac{2\lambda \theta
}{\beta+1}C(N,p)^{\beta+1})>0$, the functional $J$ satisfies the
condition (C1).
Let $u\in C_{0}^{\infty}(\Omega)$ fixed such that $u>0$
in $\Omega$, $u\geq 0$ on $\partial \Omega$.
\begin{equation}
J(ku)=\frac{k^{p}}{p}\int_{\Omega}|\nabla u|^{p}
dx-\frac{k^{q}}{q}\int_{\Omega}u^{q}dx-\frac{\lambda \theta
k^{\beta+1} }{\beta+1}\int_{\Omega}u^{\beta+1}dx \label{eq3.4}
\end{equation}
for all $k>0$. As $q>p>1$, we obtain $J(ku)\to -\infty$ when $k\to
\infty$. So putting $u^{0}=ku$, there exists some $k$ great enough
that $\|u^{0}\|_{D^{1,p}(\Omega)}>R$ and $J(u^{0})0,v>0$ on $ \Omega$ be such that
$$
-\Delta_{p}u\leq \psi_{1}(x,u) \mbox{ and }-\Delta_{p}v\geq
\psi_{2}(x,v) \quad\text{on } \Omega .
$$
If $u\leq v$ on
$\partial\Omega$ and $\psi_{1}(x,u)$ (or $\psi_{2}(x,u)$) belongs to
$L^{1}(\Omega)$, then $u\leq v$ on $\Omega$.
\end{lemma}
\begin{lemma} \label{lem4.2}
$\underline{u}<\overline{u}$ in $\Omega$.
\end{lemma}
\begin{proof} From section 2 and section 3, we know that
$$
-\Delta_{p}\underline{u }\leq \log \underline{u}^{p-1}+\lambda
f(x,\underline{u})
$$
and
$$
-\Delta_{p}\overline{u}\geq \log
\overline{u}^{p-1}+\lambda f(x,\overline{u})
$$
in weak sense. From (F1) and (F2), we know that
$$
\log u^{p-1}+\lambda f(x,u)0
$$
where we choose $b$ in such a way that the function $u\mapsto G(x,u)$
is increasing in $u$ on
$[\underline{u },\overline{u}]$ for all $x\in \Omega$.
\end{proof}
\begin{theorem} \label{thm4.3}
There exists a solution for (1.1).
\end{theorem}
\begin{proof} As noted above we start with $u_{0}=\overline{u}$. We
define the sequence $\{u_{n}\}$ of (unique) solution of the
problems
\begin{equation}
\begin{gathered}
-\mathop{\rm div}(|\nabla u_{n}|^{p-2}\nabla
u_{n})+b u_{n}=G(x,u_{n-1}),\quad\text{in } \Omega\\
u_{n}=0,\quad\text{on } \partial\Omega
\end{gathered} \label{eq4.1}
\end{equation}
we apply the comparison principle in lemma 2.1 to the problem
\begin{equation}
\begin{gathered}
-\mathop{\rm div}(|\nabla u_{0}|^{p-2}\nabla u_{0})+b u_{0}\geq
-\mathop{\rm div}(|\nabla u_{1}|^{p-2}\nabla
u_{1})+b u_{1},\quad\text{in } \Omega\\
u_{0}\geq u_{1},\quad\text{on } \partial\Omega\\
\end{gathered} \label{eq4.2}
\end{equation}
it follows that $u_{0}\geq u_{1}\geq 0$, similarly,
$\underline{u}\leq u_{1}$ in $\Omega$.
So $\underline{u }\leq \ldots,\leq u_{n+1}\leq u_{n}\ldots \leq u_{0}
=\bar{u}$. There is a function $u$ defined by
pointwise limits
$$
u(x)=\lim_{n\to \infty}u_{n}(x),x\in \Omega.
$$
We see that $\underline{u}\leq u\leq \overline{u},x\in \Omega$. By a
standard bootstrap argument, we may take the $\lim n \to \infty$.
The function $u(x)$ is in fact a solution of (1.1).
\end{proof}
\section{Regularity Properties of the Solution}
In this section, we study some regularity properties of the
solution to (1.1). Firstly, we state the following lemma, due to
DiBenedetto [5], which is the local regularity for the elliptic
equation.
\begin{lemma} \label{lem5.1}
Let $u\in W^{1,p}_{\rm loc}(\Omega)\bigcap
L^{\infty}_{\rm loc}(\Omega)$ be a local weak solution of
$-\Delta_{p}u=b(x,r)$ in $\Omega$, an open domain in $\mathbb{R}^{N}$,
where $b(x,r)$ is measurable in $x\in \Omega$ and continuous in
$r\in \mathbb{R}$ such that $|b(x,r)|\leq \gamma$ on
$\Omega\times\mathbb{R}$. Given a sub-domain compact
$\Omega'\subset\subset\Omega$, there exists positive constants
$C_{0},C_{1}$ and $\alpha\in(0,1)$, depending only upon
$N,p,\gamma,M=\mbox{ess}\sup_{\Omega'}|u|$ and
$\mathop{\rm dist}(\Omega',\Omega)$ such that $\|\nabla
u(x)\|_{\infty,\Omega'}\leq C_{0}$ and $x\mapsto
\nabla u(x)$ is locally H\"older continuous in $\Omega'$;
i.e.,
\begin{equation}
|u_{x_{i}}(x)-u_{x_{i}}(y)|\leq C_{1}|x-y|^{\alpha},\quad
x,y\in\Omega',i=1,2,\dots ,N\label{eq5.1}
\end{equation}
\end{lemma}
\begin{theorem} \label{thm5.2}
Assume $f$ satisfies {\rm (H1--H2)}. For the solution $u$ of (1.1)
there holds:
\begin{itemize}
\item[(1)] $u\in C^{1,\alpha}(\Omega)$ where $0<\alpha<1$;
\item[(2)] There exists
$\underline{\lambda}>0$ such that, for each $\lambda\geq
\underline{\lambda}$, the solution to (1.1) is positive in $\Omega$;
\item[(3)] Let $\lambda_{1} $ be the first eigenvalue of $-\Delta_{p}$
in $W^{1,p}_{0}(\Omega)$. There exists $\theta>0$ such that, if
$\lambda_{1}(\Omega)<\theta$, then $u>0$ for all $\lambda>0$.
\end{itemize}
\end{theorem}
\begin{proof}
(1) Since we have got the weak solution of (1.1),
$u\in W^{1,p}_{0}(\Omega)$. From the interior $C^{1,\alpha}$
estimate in lemma 5.1, we conclude that $|\nabla u|\in
C^{\alpha}(\Omega)$ for some $\alpha\in(0,1)$ and we find that $u\in
C^{1,\alpha}(\Omega)$ for $\alpha\in(0,1)$.
(2) We just need to find
a strictly positive subsolution. Let $Y$ be the solution of (2.2)
and $\phi$ be the solution of the following problem
\begin{equation}
\begin{gathered}
-\mathop{\rm div}(|\nabla \phi|^{p-2}\nabla \phi)
=\lambda f(x,\delta^{\nu}(x)),\quad\text{in } \Omega,\\
\phi=0,\quad\text{on } \partial\Omega,
\end{gathered} \label{eq5.2}
\end{equation}
where $\delta(x)=\mathop{\rm dist}(x,\partial\Omega)$ is the
distance function independently of $\lambda$, and $\nu>1$ will be
fixed latter. Since $f(x,\delta^{\nu}(x))$ is not identically zero
in $\Omega$, there exists a constant $C>0$ such that $\phi\geq
2C\|Y\|_{L^{\infty}}$. We set $v:=\phi-C\|Y\|_{L^{\infty}}$ and
$\underline{u}:=kv^{\nu}$, where $k>0$ to be fixed accordingly. We
choose $\Omega'\subset\Omega$ and $\eta_{1},\eta_{2}>0$ such that
$$
|\nabla v|^{p}\geq \eta_{1}>0, \quad\text{in}\;\;\;\Omega\backslash
\Omega',\quad v\geq\eta_{2}>0 \quad\text{in }\Omega'.
$$
Since
\begin{align*}
&\log(kv^{\nu})^{p-1}-(k\nu)^{p-1}(\nu-1)(p-1)v^{(\nu-1)(p-1)-1}|\nabla
v|^{p} \\
&\leq \log(kv^{\nu})^{p-1}-(k\nu)^{p-1}(\nu-1)(p-1)v^{(\nu-1)(p-1)-1}
\eta_{1} \\
&\leq 0 \quad\text{in }\Omega\backslash \Omega'.
\end{align*}
we obtain $\underline{u}=kv^{\nu}$ is strictly positive subsolution for
$\underline{\lambda}\leq
(k\nu)^{p-1}\|v\|^{(\nu-1)(p-1)}|_{L^{\infty}}$,
which proves (2).
(3) Similarly as in the above proof, we need to find a positive
subsolution for (1.1) with $\lambda=0$. Thus, let $Y$ be the
solution of (2.2) and $\varphi_{1}$ be the first eigenfunction
associated with $\lambda_{1}$. There exists a constant $C>0$ such
that $\varphi_{1}\geq 2C\|Y\|_{L^{\infty}}$. We set
$v:=\phi-C\|Y\|_{L^{\infty}}$ and $\underline{u}:=kv^{\nu}$, where
$k>0$ to be fixed accordingly. Then if $\nu>1$, we have
\begin{align*}
-\Delta_{p}\underline{u}
&= -(k\nu)^{p-1}(\nu-1)(p-1)v^{(\nu-1)(p-1)-1}|\nabla
v|^{p}\\
&\quad +(k\nu)^{p-1}v^{(\nu-1)(p-1)}\lambda_{1}|v+C\|Y\|_{L^{\infty}}|^{p-2}(v
+C\|Y\|_{L^{\infty}})\\
&\leq -(k\nu)^{p-1}(\nu-1)(p-1)v^{(\nu-1)(p-1)-1}\eta_{1} \\
&\quad +(k\nu)^{p-1}v^{(\nu-1)(p-1)}\lambda_{1}(v+C\|Y\|_{L^{\infty}})^{p-1}\\
&\leq (k\nu)^{p-1}v^{(\nu-1)(p-1)}\big[\lambda_{1}(\|v\|_{L^{\infty}}
+C\|Y\|_{L^{\infty}})^{p-1}-\frac{(\nu-1)(p-1)\eta_{1}}{\|v\|_{L^{\infty}}
+C\|Y\|_{L^{\infty}}}\big].
\end{align*}
Suppose that
$$
\lambda_{1}<\frac{(\nu-1)(p-1)\eta_{1}}{\|v\|_{(L^{\infty}}
+C\|Y\|_{L^{\infty}})^{p}},
$$
then
$$
(k\nu)^{p-1}v^{(\nu-1)(p-1)}[\lambda_{1}(\|v\|_{L^{\infty}}
+C\|Y\|_{L^{\infty}})^{p-1}-\frac{(\nu-1)(p-1)\eta_{1}}{\|v\|_{L^{\infty}}
+C\|Y\|_{L^{\infty}}}]\to -\infty
$$
So
\begin{align*}
&-\mathop{\rm div}(|\nabla\underline{u}|^{p-2}\nabla \underline{u})\\
&\leq (k\nu)^{p-1}v^{(\nu-1)(p-1)}[\lambda_{1}(\|v\|_{L^{\infty}}
+C\|Y\|_{L^{\infty}})^{p-1}-\frac{(\nu-1)(p-1)
\eta_{1}}{\|v\|_{L^{\infty}}+C\|Y\|_{L^{\infty}}}]\\
&\leq \log(kv^{\nu})
\end{align*}
for some $k>0$. The proof is complete.
\end{proof}
\subsection*{Acknowledgments}
The authors want to thank the anonymous the referees for their
comments and suggestions.
\begin{thebibliography}{00}
\bibitem{a1} G. Astrita, G. Marrucci; Principles of Non-Newtonian Fluid
Mechanics, McGraw-Hill, New York, 1974.
\bibitem{c1} K. Chaib; Necessary and sufficient conditions of existence
for a system invdving the $p$-Laplacian($1