\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 88, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/88\hfil Generalized integral operators] {A class of generalized integral operators} \author[S. Bekkara, B. Messirdi, A. Senoussaoui \hfil EJDE-2009/88\hfilneg] {Samir Bekkara, Bekkai Messirdi, Abderrahmane Senoussaoui} % in alphabetical order \address{Samir Bekkara \newline Universit\'{e} des Sciences et de la Technologie d'Oran, Facult\'{e} des Sciences, D\'{e}partement de Math\'{e}matiques, Oran, Algeria} \email{sbekkara@yahoo.fr} \address{Bekkai Messirdi, Abderrahmane Senoussaoui \newline Universit\'{e} d'Oran Es-S\'{e}nia, Facult\'{e} des Sciences, D\'{e}partement de Math\'{e}matiques. B.P. 1524 El-Mnaouer, Oran, Algeria} \email{bmessirdi@univ-oran.dz} \email{senoussaoui.abdou@univ-oran.dz} \thanks{Submitted February 12, 2009. Published July 27, 2009.} \subjclass[2000]{35S30, 35S05, 47A10, 35P05} \keywords{Integral operators; $L^{2}$-boundedness; \hfill\break\indent unbounded Fourier integral operators} \begin{abstract} In this paper, we introduce a class of generalized integral operators that includes Fourier integral operators. We establish some conditions on these operators such that they do not have bounded extension on $L^{2}(\mathbb{R}^{n})$. This permit us in particular to construct a class of Fourier integral operators with bounded symbols in $S_{1,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n})$ and in $\bigcap_{0<\rho <1}S_{\rho ,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n})$ which cannot be extended to bounded operators in $L^{2}( \mathbb{R}^{n})$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} The integral operators of type \begin{equation} A\varphi (x) =\int e^{iS(x,\theta) }a(x,\theta) \mathcal{F}\varphi (\theta) d\theta \label{1.1} \end{equation} appear naturally for solving the hyperbolic partial differential equations and expressing the $C^{\infty }$-solution of the associate Cauchy problem's (see e.g. \cite{MeRaSe,MeSe1}). If we write formally the expression of the Fourier transform $\mathcal{F}\varphi (\theta) $ in \eqref{1.1}, we obtain the following Fourier integral operators, so-called canonical transformations, \begin{equation} A\varphi (x) =\iint e^{i(S(x,\theta ) -y\theta) }a(x,y,\theta) \varphi (y) dyd\theta \label{1.2} \end{equation} in which appear two $C^{\infty }$-functions, the phase function $\phi (x,y,\theta) =S(x,\theta) -y\theta$ and the amplitude $a$ called the symbol of the operator $A$. In the particular case where $S(x,\theta) =x\theta $, one recovers the notion of pseudodifferential operators (see e.g \cite{Ho2,St}). Since 1970, many of Mathematicians have been interested to these type of operators: Duistermaat \cite{Du}, H\"{o}rmander \cite{Ho2,Ho3} Kumano-Go \cite{Ku}, and Fujiwara \cite{AsFu}. We mention also the works of Hasanov \cite{Ha}, and the recent results of Messirdi Senoussaoui \cite{MeSe2} and Aiboudi-Messirdi-Senoussaoui \cite{AiMeSe}. In this paper we study a general class of integral operators including the class of Fourier integral operators, specially we are interested in their continuity on $L^{2}(\mathbb{R}^{n})$. The continuity of the operator $A$ on $L^{2}(\mathbb{R}^{n}) $ is guaranteed if the weight of the symbol $a$ is bounded, if this weight tends to zero then $A$ is compact on $L^{2}(\mathbb{R}^{n}) $ (see eg. \cite{MeSe2}). If the symbol $a$ is only bounded the associated Fourier integral operator $A$ is not necessary bounded on $L^{2}(\mathbb{R}^{n})$. Indeed, in 1998 Hasanov \cite{Ha} constructed an example of unbounded Fourier integral operators on $L^{2}(\mathbb{R}) $. Aiboudi-Messirdi-Senoussaoui \cite{AiMeSe} constructed recently in a class of Fourier integral operators with bounded symbols in the H\"{o}rmander class $\bigcap_{0<\rho <1}S_{\rho ,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n})$ that cannot be extended to be a bounded operator in $L^{2}(\mathbb{R}^{n}) ,n\geq 1$. These results of unboundedness was obtained by using the properties of the operators \begin{equation} B\varphi (x)=\int_{\mathbb{R}^{n}}k(z)\varphi ((b(x)z+a(x))dz \label{1.3} \end{equation} on $L^{2}(\mathbb{R}^{n}) ,n\geq 1$, where $k(z)\in S(\mathbb{R}^{n})$ (the space of $C^{\infty }$-functions on $\mathbb{R}^{n}$, whose derivatives decrease faster than any power of $|x|$ as $|x| \to +\infty )$, $a(x)$ and $b(x)$ are real-valued, measurable functions on $\mathbb{R}^{n}$. Operators of type \eqref{1.3} was considered by Hasanov \cite{Ha} and a slightly different way by Aiboudi Messirdi Senoussaoui \cite{AiMeSe}. We also give in this paper a generalization of these results since we consider a class of integral operators which is general than thus of type \eqref{1.3}: \begin{equation} C\varphi (x)=\int_{\mathbb{R}^{n}}K(x,z)\varphi (F(x,z))dz \label{1.4} \end{equation} where $K(x,z)$ and $F(x,z)$ are real-valued, measurable functions on $\mathbb{R}^{2n}$. The generalized integral operator $C$ includes Hilbert, Mellin and the Fourier-Bros-Iagolnitzer transforms which they has been used by many authors and for many purposes, in particular respectively by H\"{o}rmander \cite{Ho1} for the analysis of linear partial differential operators, Robert \cite{Ro} about the functional calculus of pseudodiffrential operators, Sj\"{o}strand \cite{Sj} in the area of microlocal and semiclassical analysis and Stein \cite{St} for the study of singular integral operators. The operators $C$ appears also in the study of the width of the quantum resonances (see e.g. \cite{Me}). We shall discuss in the second section bounded extension problems for the class of operators type $C$. We give some technical conditions on the functions $K(x,z)$ and $F(x,z)$ such that $C$ do not admit a bounded extension on $L^{2}(\mathbb{R}^{n}) $. We also indicate a connection between transformations $C$ and Fourier integral operators. In the third section, we construct an example of Fourier integral with bounded symbols belongs respectively to $S_{1,1}^{0}(\mathbb{R}^{n}) $, (the case $n=1$ is given in \cite{Ha} and generalized for $n\geq 2$ in \cite{AiMeSe}), and $\cap_{0<\rho <1}S_{\rho ,1}^{0}$ that cannot be extended as a bounded operator on $L^{2}(\mathbb{R}^{n}) $, $n\geq 2$. In the case of the H\"{o}rmander symbolic class $S_{1,1}^{0}( \mathbb{R}^{n}) $ our constructions are direct and technical. \section{Unboundedness of the generalized integral operators} In this section we construct a class of operators $C$ that cannot be extended to be a bounded operator in $L^{2}(\mathbb{R}^{n})$, $n\geq 1$. We have first an easy boundedness criterion of the operator $C$. \begin{proposition}\label{prop2.1} Let $F(x,.)\in C^{1}(\mathbb{R}^{n})$, and $K(x,.)\in L^{2}( \mathbb{R}^{n})$ for all $x\in \mathbb{R}^{n}$. Suppose that there exits a function $g(x)$ such that \begin{gather*} g(x)>0,\quad \forall x\in \mathbb{R}^{n} \\ |\det\big(\frac{\partial F(x,z)}{\partial z}\big) |\geq g(x),\quad \forall x,z\in \mathbb{R}^{n} \\ \| K(x,.)\|_{L^{2}(\mathbb{R}^{n})} \big/ \sqrt{g(x)} \in L^{2}(\mathbb{R}^{n}) \end{gather*} then $C$ is a bounded operator on $L^{2}(\mathbb{R}^{n})$. \end{proposition} \begin{proof} Using H\"{o}lder inequality and the change of variable $y=F(x,z)$, it's inverse is denoted $z=G(x,y)$, we obtain for all $\varphi \in L^{2}(\mathbb{R}^{n})$, \begin{equation} \label{2.1} \begin{aligned} \| C\varphi \| _{L^{2}(\mathbb{R}^{n})}^{2} &= \int_{\mathbb{R}^{n}}\Big| \int_{\mathbb{R}^{n}}K(x,z)\varphi (F(x,z))dz\Big|^{2}dx \\ &\leq \int_{\mathbb{R}^{n}}\Big[ \int_{\mathbb{R}^{n}}| K(x,z)\varphi (F(x,z))|dz\Big] ^{2}dx \\ &\leq \int_{\mathbb{R}^{n}}\Big[ \| K(x,.)\| _{L^{2}( \mathbb{R}^{n})}^{2}\int_{\mathbb{R}^{n}}| \varphi (F(x,z))|^{2}dz\Big] dx \\ &= \int_{\mathbb{R}^{n}}\Big[ \| K(x,.)\| _{L^{2}(\mathbb{ R}^{n})}^{2}\int_{\mathbb{R}^{n}}|\varphi (y)|^{2}\big|\det (\frac{\partial F(x,z)}{\partial z})_{(z=G(x,y))} \big| ^{-1}dy\Big] dx \\ &\leq \| \varphi \| _{L^{2}(\mathbb{R}^{n})}^{2}\int_{ \mathbb{R}^{n}}\frac{\| K(x,.)\| _{L^{2}(\mathbb{R} ^{n})}^{2}}{g(x)}dx \end{aligned} \end{equation} hence $C$ is bounded operator on $L^{2}(\mathbb{R}^{n})$ with $\| C\| \leq M=\| \frac{\| K(x,.)\| _{L^{2}( \mathbb{R}^{n})}}{\sqrt{g(x)}}\| _{L^{2}(\mathbb{R}^{n})}$. \end{proof} Now we give the main result of this paper. We proof that under some conditions the operator $C$ do not admit a bounded extension on $L^{2}( \mathbb{R}^{n})$ . \begin{theorem}\label{MainTheorem} Let $\delta \in ] 0,1[ $ and the operator $C$ defined by \eqref{1.4} on $L^{2}(\mathbb{R}^{n}) $ for $x=(x_{1},\dots ,x_{n})\in ] 0,\delta [ ^{n}$ such that: \begin{itemize} \item[(H1)] For $\varepsilon >0$ and for all $x\in \mathbb{R}^{n}$ \begin{equation*} \{z\in \mathbb{R}^{n}: |F(x,z)| \leq \varepsilon \} =\prod_{i=1}^{n}[a_{i}^{-}(x,\varepsilon ),\; a_{i}^{+}(x,\varepsilon )] \end{equation*} where $a_{i}^{\pm }(x,t)$ are real-measurable functions on $\mathbb{R}^{n}\times ]0,+\infty[$ satisfying \\ 1- for any $p\in \mathbb{N}^{\ast }$ and $i\in \{ 1,\dots ,n\} $, \begin{equation*} \lim_{x_{i}\to 0^{+}}a_{i}^{\pm }(px,x_{i})=\pm \infty \end{equation*} 2- for any $\lambda \in ]0,1[$, $i\in \{ 1,\dots ,n\} $ and $p\in \mathbb{N}^{\ast }$, the functions $a_{i}^{+}(px,\lambda )$ and $a_{i}^{-}(px,\lambda )$ are respectively decreasing and increasing with respect to $x$ in $] 0,\delta[^{n}$. \item[(H2)] There exists a constant $R>0$ such that for any $r\geq R$ and for all $x\in ] 0,\delta [ ^{n}$ \begin{equation*} \big|\int_{[ -r,r]^{n}}K(x,z)dz\big|\geq \delta \end{equation*} \end{itemize} Then the operator $C$ cannot be extended to a bounded operator on $L^{2}(\mathbb{R}^{n}) $. \end{theorem} \begin{proof} Let us define the generalized sequence of functions \begin{equation} \varphi _{\varepsilon }(x)=\begin{cases} 1, &\text{if }x \in [ -\varepsilon ,\varepsilon ]^{n} \\ 0, &\text{otherwise } \end{cases} \label{2.2} \end{equation} then $\varphi _{\varepsilon }\in L^{2}(\mathbb{R}^{n})$ for all $\varepsilon >0$ and we have \begin{equation*} C\varphi _{\varepsilon }(x)=\int_{\prod_{i=1}^{n}[a_{i}^{-}(x,\varepsilon ),a_{i}^{+}(x,\varepsilon )]}K(x,z)dz \end{equation*} Consequently, \begin{equation} C\varphi _{\varepsilon _{j}}(x)=\int_{\prod_{i=1}^{n}[a_{i}^{-}(x,\varepsilon _{j}),a_{i}^{+}(x,\varepsilon _{j})]}K(x,z)dz \label{2.3} \end{equation} where $\varepsilon _{j}\geq 0$ and $\lim_{j\to +\infty }\varepsilon _{j}=0$. By condition $1$ of the the assumption $(H1)$, for any $p\in \mathbb{N} ^{\ast }$ there exists a number $\varepsilon _{p}\geq 0$ such that \begin{equation} a_{i}^{+}(p\Lambda _{p},\varepsilon _{p})\geq R \label{2.4} \end{equation} and \begin{equation} a_{i}^{-}(p\Lambda _{p},\varepsilon _{p})\leq -R \label{2.5} \end{equation} for $\Lambda _{p}=(\varepsilon _{p},\varepsilon _{p},\dots \varepsilon _{p})$, $ p\varepsilon _{p}\leq \delta <1$ and $i\in \left\{ 1,\dots ,n\right\} $. It follows from \eqref{2.4}, \eqref{2.5} and condition $2$ of the assumption (H1) that for $x\in ]0,p\varepsilon _{p}]^{n}$ and $i\in \{ 1,\dots ,n\} $ we have \begin{gather} a_{i}^{+}(x,\varepsilon _{p})\geq a_{i}^{+}(p\Lambda _{p},\varepsilon _{p})\geq R, \label{2.6} \\ a_{i}^{-}(x,\varepsilon _{p})\leq a_{i}^{-}(p\Lambda _{p},\varepsilon _{p})\leq -R \label{2.7} \end{gather} Finally using (H2), \eqref{2.3}, \eqref{2.6} and \eqref{2.7} we deduce \begin{equation} \label{2.8} \| C\varphi _{\varepsilon _{p}}\| _{L^{2}(\mathbb{R}^{n}) }^{2} \geq \int_{]0,p\varepsilon _{p}]^{n}}|C\varphi _{\varepsilon p}(x)|^{2}dx \geq \delta ^{2}p^{n}\varepsilon _{p}^{n} \end{equation} If we consider that $C$ has a bounded extension to $L^{2}(\mathbb{R} ^{n}) $, then by virtue of \eqref{2.1} we obtain for $\varphi =\varphi _{\varepsilon _{p}}\in L^{2}(\mathbb{R}^{n}) $ \begin{equation*} \delta ^{2}p^{n}\varepsilon _{p}^{n}\leq \| C\varphi _{\varepsilon _{p}}\| _{L^{2}(\mathbb{R}^{n}) }^{2}\leq M^{2}\varepsilon _{p}^{n} \end{equation*} and for any $p\in \mathbb{N}^{\ast }$ \begin{equation*} p^{n}\leq \frac{M^{2}}{\delta ^{2}} \end{equation*} This is a contradiction. Consequently $A$ cannot be a bounded operator in $L^{2}(\mathbb{R}^{n}) $. \end{proof} \begin{remark} \label{remk2.3} \rm (1) If in particular $K(x,z)=K(z)$ is independent on $x$ and $ F(x,z)=b(x)\circ z+a(x)$, where $K(z)$ is a real-valued measurable function, $b(x),a(x)\in \mathbb{R}^{n}$ are measurable functions on $\mathbb{R}^{n}$, we obtain the so-called generalized Hilbert transforms introduced in \cite{Ha} (2) The operator $C$ is an Fourier integral operator for an appropriate choice of the functions $K(x,z)$ and $F(x,z)$. \begin{align*} C\varphi (x) &= \int_{\mathbb{R}^{n}}K(x,z)\varphi (F(x,z))dz \\ &= \int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{iz.\xi } \mathcal{F}K(x,\xi )\varphi (F(x,z))d\xi dz, \end{align*} where $\mathcal{F}K(x,\xi )$ is the Fourier transform of the partial function $z\to K(x,z)$. Setting $y=F(x,z)$ and $z=G(x,y)$, we have \begin{equation*} C\varphi (x)=\int_{\mathbb{R}^{n}}\int_{\mathbb{R} ^{n}}e^{iG(x,y).\xi }\mathcal{F}K(x,\xi )\varphi (y)| \det (\frac{ \partial G}{\partial y})|d\xi dy \end{equation*} which is a Fourier integral operator with the phase function $\phi(x,y,\xi )=G(x,y).\xi $ and the symbol $p(x,y,\xi)=\mathcal{F}K(x,\xi )|\det (\frac{\partial G}{\partial y})|$ if $K$ and $G$ are infinitely regular with respect to $x,y$ and $\xi $. \end{remark} \section{A class of unbounded Fourier integral operators on $L^{2}(\mathbb{R}^{n})$} It follows from theorem \ref{MainTheorem} that with an appropriate choice of $K(x,z)$ and $ F(x,z)$ we can construct a class of Fourier integral operators which cannot be extended as bounded operators on $L^{2}(\mathbb{R}^{n}) $. An example of unbounded fourier integral operator with a symbol in $S_{1,1}^{0}(\mathbb{R}\times \mathbb{R})$ and $\bigcap_{0<\rho <1}S_{\rho ,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n}) $ was given respectively in \cite{Ha} and \cite{AiMeSe}, where if $\rho \in \mathbb{R}$, \begin{equation} \label{3.1} \begin{aligned} S_{\rho ,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n}) =\big\{& p\in C^{\infty }(\mathbb{R}^{n}\times \mathbb{R}^{n}) : \forall (\alpha ,\beta )\in \mathbb{N}^{n}\times \mathbb{N}^{n} \exists C_{\alpha ,\beta }>0; \\ &|\partial _{x}^{\alpha }\partial _{\theta }^{\beta }p(x,\theta )|\leq C_{\alpha ,\beta }\lambda ^{-\rho |\beta |+|\alpha |}(\theta ) \end{aligned} \end{equation} \subsection{A class with symbols in $S_{1,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n})$} Hre, we generalize the example given by Hasanov on $\mathbb{R}$ to high dimensions. Namely, in the same spirit of \cite{Ku}. we have easily if we get $K(z)\in \mathcal{S(}\mathbb{R}^{n})$ and $b\in C^{\infty }( \mathbb{R}^{n},\mathbb{R})$. \begin{proposition} \label{proposition} If $K(z)\in \mathcal{S(}\mathbb{R} ^{n})$ and $b\in C^{\infty }(\mathbb{R}^{n},\mathbb{R}) $, then for all $\alpha ,\beta \in \mathbb{N}^{n}$ there exists $C_{\alpha \beta }>0$ such that \begin{equation} |\partial _{x}^{\alpha }\partial _{\xi }^{\beta }K(b(x) \xi) |\leq C_{\alpha \beta }(1+|\xi |) ^{| \alpha |-|\beta |} \label{3.2} \end{equation} for all $(x,\xi) \in [-1,1] ^{n}\times \mathbb{R}^{n}$. \end{proposition} \begin{proof} It suffices to use the fact that $K\in \mathcal{S(}\mathbb{R}^{n})$ and $\beta $ is bounded on $[ -1,1] ^{n}$. \end{proof} Let also $a=(a_{1},a_{2},\dots ,a_{n})\in C^{\infty }(\mathbb{R}^{n}, \mathbb{R}^{n}) $ such that $a,b,K$ satisfy (H1) and (H2), with \begin{equation} \begin{gathered} b(x) >0 \\ a_{i}^{\pm }(x,t)=\frac{\pm t+a_{i}(x)}{b(x) },\quad t>0,\; x\in \mathbb{R}^{n} \end{gathered} \label{3.3} \end{equation} Then, for $q(x,\xi) =K(b(x) \xi) $ defined on $[-1,1] ^{n}\times \mathbb{R}^{n}$, we have \begin{equation*} |\partial _{x}^{\alpha }\partial _{\xi }^{\beta }q(x,\xi) | \leq C_{\alpha \beta }( 1+|\xi ) ^{|\alpha |-|\beta |} \end{equation*} on $[ -1,1] ^{n}\times \mathbb{R}^{n}$, $\alpha ,\beta \in\mathbb{N}^{n}$, $C_{\alpha \beta }$ being constants. Thus, $q\in S_{1,1}^{0}([ -1,1] ^{n}\times \mathbb{R}^{n}) $, in particular $q(x,\xi) $ is a well bounded symbol. Take a function $\eta \in C_{0}^{\infty }(\mathbb{R}^{n}) $ with $\mathop{\rm supp} \eta \subset [-1,1] ^{n}$ and $\eta (x) =1$ for $x\in [-\delta ,\delta] ^{n}$, $\delta <1$. It is now obvious to see that the function $p(x,\xi ) =\eta (x) q(x,\xi) \in S_{1,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n})$. Now the Fourier integral operator defined by \begin{align*} C\varphi (x) &=\int_{\mathbb{R}^{2n}}e^{-i(a(x).\xi +y.\xi) }p(x,\xi) \varphi (\xi) dyd\xi \\ &=\int_{\mathbb{R}^{2n}}e^{-i(a(x) .\xi +y.\xi ) }\eta (x)K(b(x) \xi) \varphi (\xi) dyd\xi \end{align*} is of the type \eqref{1.4}. Indeed, for $s=b(x) \xi $ and $x\in] 0,\delta] ^{n}$ \begin{equation*} C\varphi (x)=\int_{\mathbb{R}^{2n}}e^{-i\frac{(a( x) +t) .s}{\beta (x) }}K(s) \frac{1}{b^{n}(x) }\varphi (y) dyds \end{equation*} Finally, if we pose $\frac{a(x) +y}{b(x)}=z$, we have \begin{equation*} C\varphi (x) =\int \mathcal{F}K(z) \varphi (b(x) z-a(x)) dz \end{equation*} By theorem \ref{MainTheorem}, we conclude that the operator $C$ cannot be extended as a bounded operator on $L^{2}(\mathbb{R}^{n})$. \subsection{A class with symbols in $\bigcap_{0<\protect\rho <1}S_{ \protect\rho ,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n}) $} We describe in this section the results of Aiboudi-Messirdi-Senoussaoui \cite{AiMeSe}, they constructed a class of unbounded Fourier integral operators with a separated variables phase function and a symbol in the H\"{o}rmander class $\bigcap_{0<\rho <1}S_{\rho ,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n})$. Precisely, let $K\in S(\mathbb{R)}$ with $K(t)=1$ on $[-\delta,\delta ]$ and $b(t)$ is continuous function on $[0,1]$ such that \begin{equation} \label{3.4} \begin{gathered} b(t)\in C^{\infty }(]0,1]),\quad b(0)=0,\quad b'(t)>0\text{ in }]0,1] \\ |b^{(k)}(t)|\leq \frac{C_{k}}{t^{k}}\text{ in } ]0,1],\; k\in \mathbb{N}^{\ast },C_{k}>0 \end{gathered} \end{equation} $\chi (x),\psi (\xi )\in C^{\infty }(\mathbb{R}^{n},\mathbb{R)}$ homogeneous of degree $1$. Thus the function \begin{equation} q(x,\xi )=e^{-i\chi (x)\psi (\xi )}\prod_{j=1}^{n}K(b(| x|)|x|\xi _{j}),\quad \xi =(\xi _{1},\dots ,\xi _{n}) \label{3.5} \end{equation} belongs to $C^{\infty }([-1,1]^{n}\times \mathbb{R}^{n})$ and satisfies, as in the proposition \ref{proposition}, the following estimates \begin{proposition} \label{prop3} For all $\alpha ,\beta $ in $\mathbb{N}^{n}$, \begin{equation} |\partial _{x}^{\alpha }\partial _{\xi }^{\beta }q(x,\xi )|\leq C_{\alpha \beta }\frac{(1+|\xi|)^{|\alpha |-|\beta |}}{ b((1+|\xi |)^{-1})^{|\beta |}} \label{3.6} \end{equation} on $[-1,1]^{n}\times \mathbb{R}^{n}$ where $C_{\alpha \beta }>0$. \end{proposition} Now if $\phi (x)$ is a $C_{0}^{\infty }(\mathbb{R)}$-function such that \begin{gather*} \phi (s)=1\quad \text{on }[-\delta ,\delta ],\; \delta <1 \\ \mathop{\rm supp}\phi \subset [ -1,1] \end{gather*} define the global $C^{\infty }$ symbol on $\mathbb{R}^{n}\times \mathbb{R}^{n}$ by \begin{equation} \label{3.7} \begin{gathered} p(x,\xi ) = e^{-i\chi (x)\psi (\xi )}\prod_{j=1}^{n}\phi (x_{j})K(b(|x|)|x|\xi_{j}) \\ x =(x_{1},\dots x_{n}),\quad \xi =(\xi _{1},\dots ,\xi_{n}). \end{gathered} \end{equation} Then $p(x,\xi )\in \cap_{0<\rho <1}S_{\rho ,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n}) $ and the corresponding Fourier integral operator is \begin{equation} \label{3.8} \begin{aligned} C\varphi (x) &= \int_{\mathbb{R}^{n}}e^{i\chi (x)\psi (\xi )}p(x,\xi )\mathcal{F}\varphi (\xi )d\xi \\ &= \prod_{j=1}^{n}\phi (x_{j})\int_{\mathbb{R}^{n}}K(b(|x| )|x|\xi _{j})\mathcal{F}\varphi (\xi )d\xi \end{aligned} \end{equation} By using an adequate change of variable in the integral \eqref{3.8}, we have \begin{equation} C\varphi (x)=\int_{\mathbb{R}^{n}}\varphi (b(| x|)|x| z)\prod_{j=1}^{n}\mathcal{F}K(z_{j})d\xi ,\quad z=(z_{1},\dots ,z_{n}) \label{3.9} \end{equation} which is of the form $C$ in theorem \ref{MainTheorem} where the functions $F(x,z)=b(|x|)|x|z$ and $K(x,z)=\prod_{j=1}^{n}\mathcal{F}K(z_{j})$ satisfy (H1) and (H2). Consequently, the operator $C$ cannot be continuously extended on $L^{2}(\mathbb{R}^{n})$. \begin{thebibliography}{00} \bibitem{AiMeSe} M. Aiboudi, B. Messirdi, A. Senoussaoui; \emph{An exampleof unbounded Fourier integral operator on $L^{2}$ with symbol in $ \bigcap_{0<\rho <1}S_{\rho ,1}^{0}( \mathbb{R}^{n}\times \mathbb{R}^{n}) $}. Int. Journal of Math. Analysis. Vol. 1, 2007, No. 18, 851-860. \bibitem{AsFu} K. Asada, D. Fujiwara; \emph{On some oscillatory transformations in $L^{2}(\mathbb{R}^{n})$}. Japan J. Math. Vol.4(2), 1978, 299-361. \bibitem{Du} J. J. Duistermaat; \emph{Fourier integral operators}. Courant Institute. Lecture Notes, New-York, 1973. \bibitem{Ha} M. Hasanov; \emph{A class of Unbounded Fourier Integral Operators}. Journal of Mathematical Analysis and Applications, 225, 1998, 641-651. \bibitem{Ho1} L. H\"{o}rmander; \emph{The analysis of Linear Partial differential Operators}. Springer-Verlag, 1983. \bibitem{Ho2} L. H\"{o}rmander; \emph{On $L^{2}$ continuity of pseudodifferential operators}. Comm. Pure Appl. Math. 24, 1971, 529-535. \bibitem{Ho3} L. H\"{o}rmander; \emph{Fourier integral operators I}. Acta Math. Vol. 127, 1971, 33-57. \bibitem{Ku} H. Kumano-Go; \emph{A problem of Nirenberg on pseudodifferential operators}. Comm. Pure Appl. Math. 23, 1970, 151-121. \bibitem{Me} B. Messirdi; \emph{Asymptotique de Born-Oppenheimer pour la pr\'{e} dissociation mol\'{e}culaire (cas de potentiels r\'{e}guliers)}. Annales de l'I.H.P, Vol. 61, No. 3, 1994, 255-292. \bibitem{MeRaSe} B. Messirdi-A. Rahmani-A. Senoussaoui; \emph{Probl\`{e}me de Cauchy $C^{\infty }$ pour des syst\`{e}mes d'\'{e}quations aux d\'{e}riv\'{e} es partielles \`{a} caract\'{e}ristiques multiples de multiplicit\'{e} paire}. Bulletin Math. Soc. Sci. Math. Roumanie. Tome19/97, No. 4, 2006, 345-358. \bibitem{MeSe1} B. Messirdi, A. Senoussaoui: \emph{Parametrixe du probl\`{e}me de Cauchy $C^{\infty }$muni d'un syst\`{e}me d'ordre de Leray-Volev\^{\i}c}. Journal for Anal. and its Appl. Vol. 24, 2005, 581-592\ \bibitem{MeSe2} B. Messirdi, A. Senoussaoui: \emph{On the $L^{2}$-boundedness and $L^{2}$-compactness of a class of Fourier integral operators}. Electon. J. Diff. Equa. Vol. 2006 (2006), No. 26, 1-12. \bibitem{Ro} D. Robert: \emph{Autour de l'approximation semi-classique}. Birk\"{a} user, 1987. \bibitem{Sj} J. Sj\"{o}strand; \emph{Singularit\'{e}s analytiques microlocales}. Ast\'{e}risque 95, 1982. \bibitem{St} E. M. Stein; \emph{Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals}. Princeton Mathematical Series 43, Princeton University Press, 1993. \end{thebibliography} \end{document}