\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 05, pp. 1--16.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2010/05\hfil Existence of positive and sign-changing solutions] {Existence of positive and sign-changing solutions for $p$-laplace equations with potentials in $\mathbb{R}^N$} \author[M. Wu, Z. Yang\hfil EJDE-2010/05\hfilneg] {Mingzhu Wu, Zuodong Yang} \address{Mingzhu Wu \newline Institute of Mathematics, School of Mathematical Science\\ Nanjing Normal University, Jiangsu Nanjing 210046, China} \email{wumingzhu\_2010@163.com} \address{Zuodong Yang \newline Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Jiangsu Nanjing 210046, China. \newline College of Zhongbei, Nanjing Normal University, Jiangsu Nanjing 210046, China} \email{zdyang\_jin@263.net} \thanks{Submitted July 23, 2009. Published January 13, 2010.} \thanks{Supported by grants 10871060 from the the NNSF of China and 08KJB110005 from \hfill\break\indent the NSF of the Jiangsu Higher Education Institutions of China} \subjclass[2000]{35J25, 35J60} \keywords{Potential; critical point theory; $p$-Laplace; \hfill\break\indent sign changing solution; multiplicity of solutions; concentration-compactness} \begin{abstract} We study the perturbed equation \begin{gather*} -\varepsilon^{p}\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)+V(x)|u|^{p-2}u=h(x,u)+K(x)|u|^{p^*-2}u,\quad x\in \mathbb{R}^N\\ u(x)\to 0\quad \text{as } |x|\to\infty\,. \end{gather*} where $2\leq p0$ such that the set $\upsilon^{b}={\{x\in \mathbb{R}^N: V(x)0$ and $q0$, $s>p$ and $\mu>p$ such that $H(x,u)\geq a_0|u|^{s}$ and $\mu H(x,u)\leq h(x,u)u$, where $H(x,u)=\int^{u}_{0}h(x,s)ds$. \end{itemize} \item[(S)] V,K and h are Holder continuous, and there is an orthogonal involution $\tau$ such that $V(\tau x)=V(x)$, $K(\tau x)=K(x)$ and $H(\tau x,.)=H(x,.)$ for all $x\in \mathbb{R}^N$. \end{itemize} An example satisfying (H0) is the function $h(x,u)=P(x)|u|^{s-2}u$ with $p0$ independent of $\lambda$ such that if $\lambda\geq 1$, \begin{equation} |u|_{s}\leq \upsilon_{s}\|u\|\leq \upsilon_{s}\|u\|_{\lambda}\quad \text{for all } u\in E\label{e2.1} \end{equation} Set \begin{equation} \label{e2.2} \begin{gathered} g(x,u)=K(x)|u|^{p^*-2}u+h(x,u), \\ G(x,u)=\int^{u}_{0}g(x,s)ds={\frac{1}{p^*}}K(x)|u|^{p^*}+H(x,u) \end{gathered} \end{equation} Consider the functional $$ \Phi_{\lambda}(u)={\frac{1}{p}}\int_{\mathbb{R}^N}(|\nabla u|^{p}+\lambda V(x)|u|^{p})-\lambda\int_{\mathbb{R}^N}G(x,u) ={\frac{1}{p}}\|u\|^{p}_{\lambda}-\lambda\int_{\mathbb{R}^N}G(x,u). $$ Under the assumptions, $\Phi_{\lambda}\in C^{1}(E,R)$ and its critical points are solutions of $(NS)_{\lambda}$. Set $g^{+}(x,u)=g(x,u^{+})$, $G^{+}(x,u)=G(x,u^{+})$ and define, on $E$, $$ \Psi_{\lambda}(u)={\frac{1}{p}}\|u\|^{p}_{\lambda} -\lambda\int_{\mathbb{R}^N}G^{+}(x,u) $$ where as usual $u^{\pm}=\max{\{\pm u,0}\}$. Then $\Psi_{\lambda}\in C^{1}(E,R)$ and critical points of $\Psi_{\lambda}$ are positive solutions of $(NS)_{\lambda}$. Let $\{u_n\}$ denote a $(PS)_c$-sequence. Let $\eta:[0,\infty)\to [0,1]$ be a smooth function satisfying $\eta(t)=1$ if $t\leq 1$, $\eta(t)=0$ if $t\geq 2$. Define $\widetilde{u_j}(x)=\eta(2|x|/j)u(x)$. Then \begin{equation} \|u-\widetilde{u_j}\|\to 0\quad \text{as } j\to\infty \label{e2.3} \end{equation} Set $$ u^{1}_{n}=u_{n}-\widetilde{u_n} $$ Then $u_{n}-u=u^{1}_{n}+(\widetilde{u_n}-u)$ and by \eqref{e2.3}, $u_n\to u$ if and only if $u^{1}_{n}\to 0$. If we can shows that $\lim_{n\to\infty}\Phi_{\lambda}(u^{1}_{n})\leq c-\Phi_{\lambda}(u)$ and $\Phi_{\lambda}'(u^{1}_{n})\to 0$. Note that $$ \Phi_{\lambda}(u^{1}_{n})-{\frac{1}{p}} \Phi_{\lambda}'(u^{1}_{n}){u^{1}_{n}} \geq {\frac{\lambda}{N}}\int_{\mathbb{R}^N}K(x)|u^{1}_{n}|^{p^*} \geq {\frac{\lambda K_{\min}}{N}}\int_{\mathbb{R}^N}|u^{1}_{n}|^{p^*} $$ where $K_{\min}=\inf_{x\in R^N}K(x)>0$, hence \begin{equation} |u^{1}_{n}|^{p^*}_{p^*}\leq {\frac{N(c-\Phi_{\lambda}(u))}{\lambda K_{\min}}}+o(1) \label{e2.4} \end{equation} Let \begin{equation} V_{b}(x)=\max{\{V(x),b}\} \label{e2.5} \end{equation} where $b$ is the positive constant from the assumption (V0). Since the set $\upsilon^{b}$ has finite measure and $u^{1}_{n}\to 0$ in $L^{p}_{loc}$, we see that $$ \int_{\mathbb{R}^N}V(x)|u^{1}_{n}|^{p} =\int_{R^N}V_{b}(x)|u^{1}_{n}|^{p}+o(1). $$ It follows from the definition \eqref{e2.2} of $g(x,u)$ and the assumptions (K0) and (H0) that there exists a constant $\gamma_{b}>0$ such that \begin{equation} g(x,u)u\leq b|u|^{p}+\gamma_{b}|u|^{p^*}\quad \text{for all } (x,u) \label{e2.6} \end{equation} Let $S$ be the best Sobolev constant: $$ S|u|^{p}_{p^*}\leq \int_{R^N}|\nabla u|^{p}\quad \text{for all } u\in W^{1,p}(\mathbb{R}^N) $$ In the following we will find special finite-dimensional subspaces by which we construct sufficiently small minimax levels. Recall that the assumption (V0) implies that there is $x_0\in \mathbb{R}^N$ such that $V(x_0)=\min_{x\in \mathbb{R}^N}V(x)=0$. Without loss of generality we assume from now on that $x_0=0$. Observe that, by (H0), $$ G(x,u)\geq H(x,u)\geq a_0|u|^{s} $$ Define the functional $J_{\lambda}\in C^{1}(E,R)$ by setting $$ J_{\lambda}(u)={\frac{1}{p}}\int_{\mathbb{R}^N}(|\nabla u|^{p}+\lambda V(x)|u|^{p})-a_{0}\lambda\int_{\mathbb{R}^N}|u|^{s} $$ Then $$ \Phi_{\lambda}(u)\leq J_{\lambda}(u)\quad \text{for all } u\in E $$ and it suffices to construct small minimax levels for $J_{\lambda}$. In $W^{1,p}$ for $p>1$ the Sobolev constant is never achieved on any domain $\Omega$ different from $\mathbb{R}^N$. Moreover, that for $u\in C^{\infty}_{0}(\mathbb{R}^N)$ the support of $u$ lies in a fixed compact set $\Omega$ different from $\mathbb{R}^N$. And combined with Lions \cite{l1,l2}. It implies that $$ \inf{\{\int_{\mathbb{R}^N}|\nabla \varphi|^{p}: \varphi\in C^{\infty}_{0}(\mathbb{R}^N),\quad |\varphi|_{s}=1}\}=0. $$ For any $\delta>0$ one can choose $\varphi_{\delta}\in C^{\infty}_{0}(\mathbb{R}^N)$ with $|\varphi_{\delta}|_{s}=1$ and $\mathop{\rm supp}\varphi_{\delta}\subset B_{r_\delta}(0)$ so that $|\nabla \varphi_{\delta}|^{p}_{p}<\delta$. Set \begin{equation} e_{\lambda}(x)=\varphi_{\delta}(\lambda^{1/p}x) \label{e2.7} \end{equation} Then $\mathop{\rm supp} e_{\lambda}\subset B_{\lambda^{1/p}{r_\delta}}(0)$. For $t\geq 0$, \begin{align*} J_{\lambda}(t{e_{\lambda}}) &={\frac{t^p}{p}}\int_{\mathbb{R}^N}|\nabla e_{\lambda}|^{p}+\lambda V(x)|e_{\lambda}|^{p}-{a_0}\lambda t^{s} \int_{\mathbb{R}^N}|e_{\lambda}|^{s}\\ &={\lambda}^{1-{\frac{N}{p}}}({\frac{t^p}{p}}\int_{\mathbb{R}^N}|\nabla \varphi_{\delta}|^{p}+V(\lambda^{-1/p}x)|\varphi_{\delta}|^{p}-{a_0} t^{s}\int_{\mathbb{R}^N}|\varphi_{\delta}|^{s})\\ &={\lambda}^{1-{\frac{N}{p}}}I_{\lambda}(t{\varphi_{\delta}}), \end{align*} where $I_{\lambda}\in C^{1}(E,R)$ defined by $$ I_{\lambda}(u)={\frac{1}{p}}\int_{\mathbb{R}^N}|\nabla u|^{p}+V(\lambda^{-1/p}x)|u|^{p}-{a_0}\int_{\mathbb{R}^N}|u|^{s} $$ and $$ \max_{t\geq 0}I_{\lambda}(t{\varphi_{\delta}}) ={\frac{s-p}{sp(s{a_0})^{p/(s-p)}}}(\int_{\mathbb{R}^N}|\nabla \varphi_{\delta}|^{p}+V(\lambda^{-1/p}x)|\varphi_{\delta}|^{p})^{s/(s-p)}. $$ Since $V(0)=0$ and $\mathop{\rm supp}\varphi_{\delta}\subset B_{r_{\delta}}(0)$, there is $\widehat{\Lambda}_{\delta}>0$ such that $$ V(\lambda^{-1/p}x)\leq {\frac{\delta}{|\varphi_{\delta}|^{p}_{p}}}\quad \text{for all } |x|\leq {r_{\delta}}\quad \text{and}\quad\lambda\geq \widehat{\Lambda}_{\delta}. $$ This implies that \begin{equation} \max_{t\geq 0}I_{\lambda}(t{\varphi_{\delta}})\leq {\frac{s-p}{sp(s{a_0})^{p/(s-p)}}}(2\delta)^{s/(s-p)}. \label{e2.8} \end{equation} Therefore, for all $\lambda\geq \widehat{\Lambda}_{\delta}$, \begin{equation} \max_{t\geq 0}\Phi_{\lambda}(t{e_{\lambda}}) \leq {\frac{s-p}{sp(s{a_0})^{p/(s-p)}}} (2\delta)^{s/(s-p)}{\lambda}^{1-{\frac{N}{p}}}.\label{e2.9} \end{equation} In general, for any $m\in N$, one can choose $m$ functions ${\varphi}^{j}_{\delta}\in C^{\infty}_{0}(\mathbb{R}^N)$ such that $\mathop{\rm supp}\;{\varphi}^{i}_{\delta}\cap \mathop{\rm supp}\;{\varphi}^{k}_{\delta}=\emptyset$ if $i\neq k$, $|{\varphi}^{i}_{\delta}|_{s}=1$ and $|\nabla {\varphi}^{i}_{\delta}|_{p}^{p}<\delta$. Let $r^{m}_{\delta}>0$ be such that $\mathop{\rm supp} {\varphi}^{j}_{\delta}\subset B_{r^{m}_{\delta}}(0)$ for $j=1,\dots,m$. Set $$ e^{j}_{\lambda}(x)={\varphi}^{j}_{\delta}({\lambda}^{1/p}x)\quad \text{for}\quad j=1,\dots,m $$ and $H^{m}_{\lambda\delta}=\text{span}{\{e^{1}_{\lambda}, \dots,e^{m}_{\lambda}}\}$. Observe that for each $u=\Sigma^{m}_{j=1}C_{j}e^{j}_{\lambda}\in H^{m}_{\lambda\delta}$, \begin{gather*} \int_{\mathbb{R}^N}|\nabla u|^{p}=\Sigma^{m}_{j=1}|C_{j}|^{p} \int_{\mathbb{R}^N}|\nabla e^{j}_{\lambda}|^{p},\\ \int_{\mathbb{R}^N}V(x)|u|^{p}=\Sigma^{m}_{j=1}|C_{j}|^{p} \int_{\mathbb{R}^N}V(x)|e^{j}_{\lambda}|^{p},\\ \int_{\mathbb{R}^N}G(x,u)=\Sigma^{m}_{j=1} \int_{\mathbb{R}^N}G(x,C_{j}e^{j}_{\lambda}) \end{gather*} Hence $$ \Phi_{\lambda}(u)=\Sigma^{m}_{j=1}\Phi_{\lambda}(C_{j}e^{j}_{\lambda}) $$ and as before $$ \Phi_{\lambda}(C_{j}e^{j}_{\lambda})\leq {\lambda}^{1-{\frac{N}{p}}}I_{\lambda}(|C_{j}|e^{j}_{\lambda}) $$ Set $$ \beta_{\delta}=\max{\{|\varphi^{j}_{\delta}|^{p}_{p}:j=1,\dots,m}\} $$ and choose $\widehat{\Lambda}_{m\delta}$ so that $$ V(\lambda^{-1/p}x)\leq {\frac{\delta}{\beta_{\delta}}}\quad \text{for all }|x|\leq r^{m}_{\delta} $$ and $\lambda\geq \widehat{\Lambda}_{m\delta}$. As before, one obtains easily that \begin{equation} \sup_{u\in H^{m}_{\lambda\delta}}\Phi_{\lambda}(u)\leq {\frac{s-p}{sp(s{a_0})^{p/(s-p)}}} (2\delta)^{s/(s-p)}{\lambda}^{1-{\frac{N}{p}}} \label{e2.10} \end{equation} for all $\lambda\geq \widehat{\Lambda}_{m\delta}$. \noindent\textbf{Remark.} Let $h(x,u)$ is odd in $u$ and $\tau: \mathbb{R}^N\to \mathbb{R}^N$ be an orthogonal involution. Then $\tau$ induces an involution on E which we denote again by $\tau: E\to E$ as follows $(\tau u)(x)=-u(\tau x)$. If (S) is satisfied, then $\int_{\mathbb{R}^N}G(x,\tau u)=\int_{\mathbb{R}^N}G(x,u)$. This implies that $\Phi_{\lambda}$ is $\tau$-invariant: $\Phi_{\lambda}(\tau u)=\Phi_{\lambda}(u)$ and $\Phi_{\lambda}'$ is $\tau$-equivalent: $\Phi_{\lambda}'(\tau u)=\tau\Phi_{\lambda}'(u)$. In particular, if $\tau u=u$ then $\tau\Phi_{\lambda}'(u)=\Phi_{\lambda}'(u)$. Let $E^{\tau}={\{u\in E:\tau u=u}\}$. It is known that critical points of the restriction of $\Phi_{\lambda}$ on $E^{\tau}$ are solutions of \eqref{NPL} satisfying $u(\tau x)=-u(x)$. We modify the method developed in \cite{d3,r1,s2,t1,w1}, and obtain the following Theorems. \begin{theorem} \label{thmA} Let {\rm (V0), (K0), (H0)} be satisfied. Then for any $\sigma>0$ there is $\omega_{\sigma}>0$ such that if $\varepsilon\leq\omega_{\sigma}$, \eqref{NPE} has at least one positive solution $u_{\varepsilon}$ of least energy satisfying \begin{gather} \label{ethmAi} \frac{\mu-p}{p}\int_{\mathbb{R}^N}H(x,u_{\varepsilon}) +{\frac{1}{N}}\int_{\mathbb{R}^N}K(x)|u_{\varepsilon}|^{p^*}dx\leq \sigma{\varepsilon^{N}},\\ \label{ethmAii} {\frac{\mu-p}{p\mu}}\int_{\mathbb{R}^N}(\varepsilon^{p}|\nabla u_{\varepsilon}|^{p}+V(x)|u_{\varepsilon}|^{p})dx\leq \sigma{\varepsilon^{N}} \end{gather} \end{theorem} \begin{theorem} \label{thmB} Let {\rm (V0), (K0), (H0)} be satisfied. If moreover $h(x,u)$ is odd in $u$, then for any $m\in N$ and $\sigma>0$ there is $\omega_{m\sigma}>0$ such that if $\varepsilon\leq \omega_{m\sigma}$, \eqref{NPE} has at least $m$ pairs of solutions $u_{\varepsilon}$ which satisfy the estimates \eqref{ethmAi} and \eqref{ethmAii}. \end{theorem} \begin{theorem} \label{thmC} Let {\rm (V0), (K0), (H0), (S)} be satisfied. If moreover $h(x,u)$ is odd in $u$, then for any $\sigma>0$ there exists $\omega_{\sigma}>0$ such that if $\varepsilon\leq\omega_{\sigma}$, \eqref{NPE} has at least one pair of solutions which change sign exactly once and satisfy the estimates \eqref{ethmAi} and \eqref{ethmAii}. \end{theorem} \section{Preliminaries} \begin{lemma} \label{lem1} Let $\Omega\subseteq \mathbb{R}^N$ be an open subset, $\{u_n\}\subseteq W_{0}^{1,p}(\Omega)$ be a sequence such that $u_n\rightharpoonup u$ in $W_{0}^{1,p}(\Omega)$ and $p\geq 2$. Then $$ \lim_{n\to\infty}\int_{\Omega}|\nabla u_n|^{p}dx \geq \lim_{n\to\infty}\int_{\Omega}|\nabla u_n-{\nabla u}|^{p}dx+\lim_{n\to\infty}\int_{\Omega}|\nabla u|^{p}dx $$ \end{lemma} \begin{proof} When $p=2$, from Brezis-Lieb Lemma (see \cite[lemma 1.32]{c2}) we have $$ \lim_{n\to\infty}\int_{\Omega}|\nabla u_n|^{2}dx =\lim_{n\to\infty}\int_{\Omega}|\nabla u_n-{\nabla u}|^{2}dx+\lim_{n\to\infty}\int_{\Omega}|\nabla u|^{2}dx $$ when $3\geq p>2$, using the lower semi-continuity of the $L^{p}$-norm with respect to the weak convergence and $u_n\rightharpoonup u$ in $W^{1,p}(\Omega)$, we deduce $$ \langle |\nabla u_n|^{p-2}{\nabla u_n}, {\nabla u_n}\rangle \geq \langle|\nabla u|^{p-2}{\nabla u}, {\nabla u}\rangle +o(1) $$ and \begin{align*} &\lim_{n\to\infty}\langle |{\nabla u_n}-\nabla u|^{p-2}({\nabla u_n}-{\nabla u}),{\nabla u_n}-{\nabla u}\rangle\\ &\geq 0=\lim_{n\to\infty}\langle |{\nabla u_n}-\nabla u|^{p-2}({\nabla u}-{\nabla u}),{\nabla u}-{\nabla u}\rangle \end{align*} So \begin{align*} \lim_{n\to\infty}\langle |{\nabla u_n}-\nabla u|^{p-2}{\nabla u_n},{\nabla u_n}\rangle &\geq \lim_{n\to\infty}\langle |{\nabla u_n}-\nabla u|^{p-2}{\nabla u_n},{\nabla u}\rangle \\ &=\lim_{n\to\infty}\langle |{\nabla u_n}-\nabla u|^{p-2}{\nabla u},{\nabla u_n}\rangle\\ &=\lim_{n\to\infty}\langle |{\nabla u_n}-\nabla u|^{p-2}{\nabla u},{\nabla u}\rangle \end{align*} Then \begin{align*} &\lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p}-|\nabla u|^{p})dx\\ &=\lim_{n\to\infty}\int_{\Omega}|\nabla u_{n}|^{p-2}(|\nabla u_{n}|^{2}-|\nabla u|^{2})dx+\lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p-2}-|\nabla u|^{p-2})|\nabla u|^{2}dx\\ &=\lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p-2}+|\nabla u|^{p-2})(|\nabla u_{n}|^{2}-|\nabla u|^{2})dx\\ &\quad + \lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p-2}|\nabla u|^{2}-|\nabla u|^{p-2}|\nabla u_{n}|^{2})dx. \end{align*} From $u_n\rightharpoonup u$ in $W^{1,p}(\Omega)$, it follows that $$ \lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p-2}|\nabla u|^{2}-|\nabla u|^{p-2}|\nabla u_{n}|^{2})dx=0\,. $$ So that \begin{align*} &\lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p}-|\nabla u|^{p})dx\\ &=\lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p-2}+|\nabla u|^{p-2})(|\nabla u_{n}|^{2}-|\nabla u|^{2})dx\\ &\geq \lim_{n\to\infty}\int_{\Omega}|\nabla u_{n}-\nabla u|^{p-2}(|\nabla u_{n}|^{2}-|\nabla u|^{2}). \end{align*} So we have \begin{align*} &\langle |{\nabla u_n}|^{p-2}{\nabla u_n},{\nabla u_n}\rangle + \langle|{\nabla u_n}-\nabla u|^{p-2}{\nabla u},{\nabla u_n}\rangle + \langle|{\nabla u_n}-\nabla u|^{p-2}{\nabla u_n},{\nabla u}\rangle\\ &\geq \langle |{\nabla u_n}-\nabla u|^{p-2}{\nabla u_n}, {\nabla u_n}\rangle + \langle|{\nabla u_n}-\nabla u|^{p-2}{\nabla u},{\nabla u}\rangle\\ &\quad + \langle|{\nabla u}|^{p-2}{\nabla u},{\nabla u}\rangle +o(1). \end{align*} Then \begin{align*} &\langle |{\nabla u_n}|^{p-2}{\nabla u_n},{\nabla u_n}\rangle\\ &\geq \langle|{\nabla u_n}-\nabla u|^{p-2}{{\nabla u_n}-{\nabla u}}, {\nabla u_n}-{\nabla u}\rangle + \langle|{\nabla u}|^{p-2}{\nabla u},{\nabla u}\rangle +o(1) \end{align*} and \[ \lim_{n\to\infty}\int_{\Omega}|\nabla u_n|^{p}dx\\ \geq \lim_{n\to\infty}\int_{\Omega}|\nabla u_n-{\nabla u}|^{p}dx +\lim_{n\to\infty}\int_{\Omega}|\nabla u|^{p}dx \] when $p>3$, there exist a $k\in N$ that $00$, there exists $r_{\varepsilon}>0$ with $$ \limsup_{j\to\infty}\int_{B_{j}\setminus B_{r}}|u_{n_j}|^{s}dx\leq \varepsilon $$ for all $r\geq r_{\varepsilon}$, where $B_{k}={\{x\in {\bf R }^N:|x|\leq k}\}$. \end{lemma} \begin{proof} Note that for each $j\in N$, $\int_{B_{j}}|u_n|^{s}\to\int_{B_{j}}|u|^{s}$ as $n\to\infty$. There exists $\widehat{n_j}\in N$ such that $\int_{B_{j}}(|u_n|^{s}-|u|^{s})<{\frac{1}{j}}$ for all $n=\widehat{n_j}+i$, $i=1,2,3,\dots$. Without loss of generality we can assume $\widehat{n_{j+1}}\geq \widehat{n_j}$. In particular, for $n_j=\widehat{n_j}+j$ we have $$ \int_{B_{j}}(|u_{n_j}|^{s}-|u|^{s})<{\frac{1}{j}} $$ Observe that there is $r_{\varepsilon}$ satisfying \begin{equation} \int_{\mathbb{R}^N\setminus B_r}|u|^{s}<\varepsilon \label{e3.2} \end{equation} for all $r\geq r_{\varepsilon}$. Since \begin{align*} \int_{B_{j}\setminus B_{r}}|u_{n_j}|^{s} &=\int_{B_{j}} (|u_{n_j}|^{s}-|u|^{s})+\int_{B_{j}\setminus B_{r}}|u|^{s}+\int_{B_{r}}(|u|^{s}-|u_{n_j}|^{s})\\ &\leq {\frac{1}{j}}+\int_{R^N\setminus B_r}|u|^{s}+\int_{B_{r}}(|u|^{s}-|u_{n_j}|^{s}) \end{align*} the lemma follows. \end{proof} Recall that, by (H0), $|h(x,u)|\leq C_{1}(|u|+|u|^{q-1})$ for all $(x,u)$. Let firstly $\{u_{n_j}\}_{j\in N}$ be a subsequence of $\{u_n\}_{n\in N}$ such that Lemma \ref{lem3} holds for $s=2$. Repeating the argument we can then find a subsequence $\{u_{n_{ji}}\}_{i\in N}$ of $\{u_{n_j}\}_{j\in N}$ such that Lemma \ref{lem3} holds for $s=q$. Therefore, for notational convenience, we can assume in the following that Lemma \ref{lem3} holds for both $s=2$ and $s=q$ with the same subsequence. \begin{lemma} \label{lem4} We have $$ \lim_{j\to\infty}|\int_{\mathbb{R}^N}(h(x,u_{n_j}) -h(x,u_{n_j}-\widetilde{u_j})-h(x,\widetilde{u_j}))\varphi|=0 $$ uniformly in $\varphi\in E$ with $\|\varphi\|\leq 1$. \end{lemma} \begin{proof} Note that \eqref{e2.3} and the local compactness of Sobolev embedding imply that, for any $r>0$. $$ \lim_{j\to\infty}|\int_{B_r}(h(x,u_{n_j})-h(x,u_{n_j} -\widetilde{u_j})-h(x,\widetilde{u_j}))\varphi|=0 $$ uniformly in $\|\varphi\|\leq 1$. For any $\varepsilon>0$ it follows from \eqref{e3.2} that $$ \limsup_{j\to\infty}\int_{B_{j}\setminus B_{r}}|\widetilde{u}_{j}|^{s}dx \leq \varepsilon \leq\int_{\mathbb{R}^N\setminus B_r}|u|^{s}<\varepsilon $$ for all $r\geq r_{\varepsilon}$. Using Lemma \ref{lem3} for $s=2,q$ we get \begin{align*} &\limsup_{j\to\infty}|\int_{\mathbb{R}^N}(h(x,u_{n_j}) -h(x,u_{n_j}-\widetilde{u_j})-h(x,\widetilde{u_j}))\varphi|\\ &=\limsup_{j\to\infty}|\int_{B_{j}\setminus B_{r}}(h(x,u_{n_j})-h(x,u_{n_j}-\widetilde{u_j}) -h(x,\widetilde{u_j}))\varphi|\\ &\leq C_{2}\limsup_{j\to\infty}\int_{B_{j}\setminus B_{r}}(|u_{n_j}|+|\widetilde{u}_{j}|)|\varphi| +C_{3}\limsup_{j\to\infty}\int_{B_{j}\setminus B_{r}}(|u_{n_j}|^{q-1}+|\widetilde{u}_{j}|^{q-1})|\varphi|\\ &\leq C_{2}\limsup_{j\to\infty}(|u_{n_j}|_{L^{2}(B_{j}\setminus B_r)}+|\widetilde{u}_{j}|_{L^{2}(B_{j}\setminus B_r)})|\varphi|_{2}\\ &\quad +C_{3}\limsup_{j\to\infty}(|u_{n_j}|^{q}_{L^{q}(B_{j}\setminus B_r)}+|\widetilde{u}_{j}|^{q}_{L^{q}(B_{j}\setminus B_r)})|\varphi|_{q} \\ &\leq C_{4}\varepsilon^{\frac{1}{2}} +C_{5}\varepsilon^{\frac{(q-1)}{q}} \end{align*} the conclusion as required. \end{proof} \begin{lemma} \label{lem5} One has along a subsequence: (1) $\lim_{n\to\infty}\Phi_{\lambda}(u_n-\widetilde{u_n})\leq c-\Phi_{\lambda}(u)$, and (2) $\Phi_{\lambda}'(u_n-\widetilde{u_n})\to 0$. \end{lemma} \begin{proof} From Lemma \ref{lem1} we have \begin{align*} \Phi_{\lambda}(u_n-\widetilde{u_n}) &\leq \Phi_{\lambda}(u_n)-\Phi_{\lambda}(\widetilde{u_n}) +{\frac{\lambda}{p^*}}\int_{R^N}K(x)(|u_n|^{p^*} -|u_n-\widetilde{u_n}|^{p^*}-|\widetilde{u_n}|^{p^*})\\ &\quad +\lambda\int_{\mathbb{R}^N}(H(x,u_n) -H(x,u_n-\widetilde{u_n})-H(x,\widetilde{u_n})) \end{align*} Using \eqref{e2.3} and the Lieb Lemma, we have \begin{gather*} \int_{\mathbb{R}^N}K(x)(|u_n|^{p^*} -|u_n-\widetilde{u_n}|^{p^*}-|\widetilde{u_n}|^{p^*})\to 0\,,\\ \int_{\mathbb{R}^N}(H(x,u_n)-H(x,u_n-\widetilde{u_n}) -H(x,\widetilde{u_n}))\to 0 \end{gather*} This, together with the facts $\Phi_{\lambda}(u_n)\to c$ and $\Phi_{\lambda}(\widetilde{u_n})\to\Phi_{\lambda}(u)$, gives (1). To verify (2), observe that, as $\widetilde{u_n}\to u$ and $u_n\rightharpoonup u$ in $W^{1,p}(\mathbb{R}^N)$ so $u_n-\widetilde{u_n}\rightharpoonup 0$ in $W^{1,p}(\mathbb{R}^N)$, then $$ \int_{\mathbb{R}^N}(|\nabla (u_n-\widetilde{u_n})|^{p-2}\nabla (u_n-\widetilde{u_n})\nabla\varphi+\lambda V(x)|u_n-\widetilde{u_n}|^{p-2}(u_n-\widetilde{u_n})\varphi)=o(1), $$ for any $\varphi\in E$. So for any $\varphi\in E$, \begin{align*} &|\Phi_{\lambda}'(u_n-\widetilde{u_n})\varphi|\\ &\leq |\Phi_{\lambda}'(u_n)\varphi| +|\Phi_{\lambda}'(\widetilde{u_n})\varphi|\\ &\quad +\lambda\int_{\mathbb{R}^N}K(x)(|u_n|^{p^*-2}{u_n} -|u_n-\widetilde{u_n}|^{p^*-2}(u_n-\widetilde{u_n}) -|\widetilde{u_n}|^{p^*-2}{\widetilde{u_n}})\varphi\\ &\quad +\lambda\int_{\mathbb{R}^N}(h(x,u_n)-h(x,u_n-\widetilde{u_n}) -h(x,\widetilde{u_n}))\varphi \end{align*} It follows, again from a standard argument, that $$ \lim_{n\to\infty}\int_{\mathbb{R}^N}K(x)(|u_n|^{p^*} -|u_n-\widetilde{u_n}|^{p^*}-|\widetilde{u_n}|^{p^*})\varphi=0 $$ uniformly in $\|\varphi\|\leq 1$. By Lemma \ref{lem4} we obtain $$ \lim_{n\to\infty}\int_{\mathbb{R}^N}(h(x,u_n) -h(x,u_n-\widetilde{u_n})-h(x,\widetilde{u_n}))\varphi=0 $$ uniformly in $\|\varphi\|\leq 1$, proving (2). \end{proof} \begin{lemma} \label{lem6} Under the assumptions of Lemma \ref{lem2}, there is a constant $\alpha_0>0$ independent of $\lambda$ such that, for any $(PS)_c$-sequence $(u_n)$ for $\Phi_{\lambda}$ with $u_n\rightharpoonup u$, either $u_n\to u$ or $$ c-\Phi_{\lambda}(u)\geq \alpha_{0}\lambda^{1-{\frac{N}{p}}} $$ where $\alpha_{0}=S^{N/p}{\gamma_{b}}^{-N/p}N^{-1}K_{\min}$. \end{lemma} \begin{proof} Assume $u_n$ doesn't tend to $u$. Then $\liminf_{n\to\infty}\|u^{1}_n\|_{\lambda}>0$ and $c-\Phi_{\lambda}(u)>0$. By the Sobolev inequality, \eqref{e2.5} and \eqref{e2.6}, \begin{align*} S|u^{1}_n|^{p}_{p^*} &\leq \int_{\mathbb{R}^N}|\nabla u^{1}_n|^{p}+\lambda V(x)|u^{1}_n|^{p} -\lambda\int_{\mathbb{R}^N}V(x)|u^{1}_n|^{p}\\ &=\lambda\int_{\mathbb{R}^N}g(x,u^{1}_n){u^{1}_n} -\lambda\int_{\mathbb{R}^N}V_{b}(x)|u^{1}_n|^{p}+o(1)\\ &\leq \lambda\int_{\mathbb{R}^N}g(x,u^{1}_n){u^{1}_n} -\lambda b\int_{\mathbb{R}^N}|u^{1}_n|^{p}+o(1) \\ &\leq \lambda \gamma_{b}|u^{1}_n|^{p^*}_{p^*}+o(1). \end{align*} Thus by \eqref{e2.4} \begin{align*} S&\leq \lambda \gamma_{b}|u^{1}_n|^{p^*-p}_{p^*}+o(1)\\ &\leq \lambda \gamma_{b}({\frac{N(c-\Phi_{\lambda}(u))}{\lambda K_{\min}}})^{p/N}+o(1)\\ &=\lambda^{1-{\frac{p}{N}}}\gamma_{b}({\frac{N}{ K_{\min}}})^{p/N}(c-\Phi_{\lambda}(u))^{p/N}+o(1) \end{align*} or $$ \alpha_{0}\lambda^{1-{\frac{p}{N}}}\leq c-\Phi_{\lambda}(u)+o(1) $$ where $$ \alpha_{0}=S^{N/p}{\gamma_{b}}^{-N/p}N^{-1}K_{\min} $$ The proof is complete. \end{proof} \begin{lemma} \label{lem7} Under the assumptions of Lemma \ref{lem2}, $\Psi_{\lambda}$ satisfies the $(PS)_c$ condition for all $c<\alpha_{0}\lambda^{1-{\frac{p}{N}}}$. \end{lemma} \begin{proof} Assume $(u_n)$ is a $(PS)_c$ sequence for $\Psi_{\lambda}$. Then $o(1)\|u^{-}_n\|_{\lambda}\geq {\Psi_{\lambda}}'(u_n)u^{-}_{n}=\|u^{-}_n\|_{\lambda}^{p}$ which implies $\|u^{-}_n\|_{\lambda}\to 0$. In addition, $$ \Psi_{\lambda}(u_n)-{\frac{1}{p}}{\Psi_{\lambda}}'(u_n)u_{n}\geq {\frac{\lambda}{N}}\int_{\mathbb{R}^N}K(x)|u^{+}_n|^{p^*} $$ and $$ o(1)\|u^{+}_n\|_{\lambda} \geq {\Psi_{\lambda}}'(u_n)u^{+}_{n} =\|u^{+}_n\|^{p}_{\lambda}-\int_{\mathbb{R}^N}g(x,u^{+}_{n}){u^{+}_{n}} $$ Using the above argument, it is not difficult to check that under the assumptions of Lemma \ref{lem2}, $\Psi_{\lambda}$ satisfies the $(PS)_c$ condition for all $c<\alpha_{0}\lambda^{1-{\frac{p}{N}}}$. \end{proof} We consider $\lambda\geq 1$. The following two Lemmas imply that $\Phi_{\lambda}$ possesses the mountain-pass structure. \begin{lemma} \label{lem8} Assume {\rm (V0), (K0), (H0)} hold. There exist $\alpha_{\lambda}$, $\rho_{\lambda}>0$ such that $\Phi_{\lambda}(u)>0$ if $u\in B_{\rho_{\lambda}}\setminus {\{0}\}$ and $\Phi_{\lambda}(u)\geq\alpha_{\lambda}$ if $u\in \partial{B_{\rho_{\lambda}}}$, where $$ B_{\rho_{\lambda}}={\{u\in E:\|u\|_{\lambda}\leq\rho_{\lambda}}\}. $$ \end{lemma} \begin{proof} By (H0), for $\delta\leq (2p\lambda \upsilon^{p}_{p})^{-1}$ there is $C_{\delta}>0$ such that $G(x,u)\leq \delta|u|^{p}+C_{\delta}|u|^{p^*}$ for all $(x,u)$, where $\upsilon_{p}$ is the embedding constant of \eqref{e2.1}. Thus $$ \Phi_{\lambda}(u)\geq {\frac{1}{p}}\|u\|^{p}_{\lambda}-\lambda\delta|u|^{p}_{p}-\lambda C_{\delta}|u|^{p^*}_{p^*} \geq {\frac{1}{2p}}\|u\|^{p}_{\lambda}-\lambda C_{\delta}{\upsilon}^{p^*}_{p^*}\|u\|^{p^*}_{\lambda}. $$ Consequently the conclusion follows because $p^*>p$. \end{proof} \begin{lemma} \label{lem9} Under the assumptions of Lemma \ref{lem8}, for any finite dimensional subsequence $F\subset E$, $\Phi_{\lambda}(u)\to -\infty$ as $u\in F$, $\|u\|_{\lambda}\to\infty$. \end{lemma} \begin{proof} By (H0), $$ \Phi_{\lambda}(u)\leq {\frac{1}{p}}\|u\|^{p}_{\lambda} -\lambda_{0}a_{0}|u|^{s}_{s} $$ for all $u\in E$. Since all norms in a finite-dimensional space are equivalent and $s>p$, one obtains easily the desired conclusion. \end{proof} \begin{lemma} \label{lem10} Under the assumptions of Lemma \ref{lem8}, for any $\sigma>0$ there exists $\Lambda_{\sigma}>0$, such that, for each $\lambda\geq \Lambda_{\sigma}$, there is $\overline{e}_{\lambda}\in E$ with $\|\overline{e}_{\lambda}\|>{\sigma}_{\lambda}$, $\Phi_{\lambda}(\overline{e}_{\lambda})\leq 0$ and $$ \max_{t\in [0,1]}\Phi_{\lambda}(t\overline{e}_{\lambda})\leq \sigma{\lambda}^{1-{\frac{N}{p}}}, $$ where $\rho_{\lambda}$ is from Lemma \ref{lem8}. \end{lemma} \begin{proof} Choose $\delta>0$ so small that $$ {\frac{s-p}{sp(s{a_0})^{p/(s-p)}}}(2\delta)^{s/(s-p)}\leq \sigma $$ and let $e_{\lambda}\in E$ be the function defined by \eqref{e2.7}. Take $\Lambda_{\sigma}=\widehat{\Lambda}_{\delta}$. Let $\overline{t}_{\lambda}>0$ be such that $\overline{t}_{\lambda}\|e_{\lambda}\|_{\lambda}>{\rho}_{\lambda}$ and $\Phi_{\lambda}(t{e_{\lambda}})\leq 0$ for all $t>{\overline{t}_{\lambda}}$. Then by \eqref{e2.9}, $\overline{e}_{\lambda}={\overline{t}_{\lambda}}{e_{\lambda}}$ satisfies the requirements. \end{proof} \begin{lemma} \label{lem11} Under the assumptions of Lemma \ref{lem8}, for any $m\in N$ and $\sigma>0$ there exist $\Lambda_{m\sigma}>0$, such that, for each $\lambda\geq \Lambda_{m\sigma}$, there exists an $m$-dimensional subspace $F_{\lambda m}$ satisfying $$ \sup_{u\in F_{\lambda m}}\Phi_{\lambda}(u)\leq \sigma{\lambda}^{1-{\frac{N}{p}}}. $$ \end{lemma} \begin{proof} Choose $\delta>0$ small so that $$ {\frac{s-p}{sp(s{a_0})^{p/(s-p)}}}(2\delta)^{s/(s-p)}\leq \sigma $$ and take $F_{\lambda m}=H^{m}_{\lambda\delta}$. Then \eqref{e2.10} yields the conclusion as required. \end{proof} \section{Proof of Main Theorems} \begin{theorem} \label{thm1} Let {\rm (V0), (K0), (H0)} be satisfied. Then for any $\sigma>0$ there is $\Lambda_{\sigma}>0$ such that if $\lambda\geq\Lambda_{\sigma}$, then \eqref{NPL} has at least one positive solution $u_{\lambda}$ of least energy satisfying \begin{gather} \label{ethm1i} {\frac{\mu-p}{p}}\int_{\mathbb{R}^N}H(x,u_{\lambda}) +{\frac{1}{N}}\int_{\mathbb{R}^N}K(x)|u_{\lambda}|^{p^*}dx\leq \sigma{\lambda^{-{\frac{N}{p}}}}, \\ {\frac{\mu-p}{p\mu}}\int_{\mathbb{R}^N}(\varepsilon^{p}|\nabla u_{\lambda}|^{p}+V(x)|u_{\lambda}|^{p})dx\leq \sigma{\lambda^{1-{\frac{N}{p}}}} \label{ethm1ii} \end{gather} \end{theorem} \begin{proof} Consider the functional $\Psi_{\lambda}$. For any $0<\sigma<{a_0}$, we choose $\Lambda_{\sigma}$ and define for $\lambda\geq \Lambda_{\sigma}$ the minimax value $$ c_{\lambda}=\inf_{\gamma\in \Gamma_{\lambda}}\max_{t\in [0,1]}\Psi_{\lambda}(\gamma(t)) $$ where $\Gamma_{\lambda}={\{\gamma\in C([0,1],E):\gamma(0)=0,\; \gamma(1)=\overline{e}_{\lambda}}\}$. By Lemma \ref{lem8}, $$ \alpha_{\lambda}\leq c_{\lambda}\leq \sigma{\lambda}^{1-{\frac{N}{p}}} $$ Since by Lemma \ref{lem7}, $\Psi_{\lambda}$ satisfies the $(PS)_{c_{\lambda}}$-condition, the mountain-pass theorem implies that there is $u_{\lambda}\in E$ such that $\Psi_{\lambda}'(u_{\lambda})=0$ and $\Psi_{\lambda}(u_{\lambda})=c_{\lambda}$. Then $u_{\lambda}$ is a positive solution of \eqref{NPL}. Moreover, it is well known that such a Mountain-Pass solution is a least energy solution of \eqref{NPL}. Since $u_{\lambda}$ is a critical point of $\Psi_{\lambda}$, for $\nu\in [p,p^*]$, \begin{align*} \sigma{\lambda}^{1-{\frac{N}{p}}}\\ &\geq \Psi_{\lambda}(u_{\lambda})\\ &=\Psi_{\lambda}(u_{\lambda})-{\frac{1}{\nu}} \Psi_{\lambda}'(u_{\lambda})u_{\lambda}\\ &\geq ({\frac{1}{p}}-{\frac{1}{\nu}})\int_{\mathbb{R}^N}(|\nabla u_{\lambda}|^{p}+\lambda V(x)|u_{\lambda}|^{p})\\ &\quad +\lambda({\frac{1}{\nu}}-{\frac{1}{p^*}}) \int_{\mathbb{R}^N}K(x)|u_{\lambda}|^{p^*} +\lambda({\frac{\mu}{\nu}}-1)\int_{R^N}H(x,u_{\lambda}), \end{align*} where $\mu$ is the constant in (H0). Taking $\nu=p$ yields the estimate \eqref{ethm1i}, and taking $\nu=\mu$ gives the estimate \eqref{ethm1ii}. The proof is complete. \end{proof} \begin{theorem} \label{thm2} Let {\rm (V0), (K0), (H0)} be satisfied. If moreover $h(x,u)$ is odd in $u$, then for any $m\in N$ and $\sigma>0$ there is $\Lambda_{m\sigma}>0$ such that if $\lambda\geq \Lambda_{m\sigma}$, \eqref{NPL} has at least m pairs of solutions $u_{\lambda}$ which satisfy the estimates \eqref{ethm1i} and \eqref{ethm1ii}. \end{theorem} \begin{proof} Consider the functional $\Phi_{\lambda}$. By virtue of Lemma \ref{lem11}, for any $m\in N$ and $\sigma\in (0, a_0)$ there is $\Lambda_{m\sigma}$ such that for each $\lambda\geq \Lambda_{m\sigma}$, we can choose a m-dimensional subspace $F_{\lambda m}$ with $\max \Phi_{\lambda}(F_{\lambda m})\leq \sigma{\lambda}^{1-{\frac{N}{p}}}$. By Lemma \ref{lem9}, there is $R>0$ which depending on $\lambda$ and m such that $\Phi_{\lambda}(u)\leq 0$ for all $u\in F_{\lambda m}\setminus B_{R}$. Denote the set of all symmetric (in the sense that -A=A) and closed subsets of E by $\Sigma$. For each $A\in \Sigma$ let gen(A) be the Krasnoselski genus and $$ i(A)=\min_{h\in \Gamma_{m}}\text{gen}(h(A)\cap\partial B_{\rho_{\lambda}}) $$ where $\Gamma_{m}$ is the set of all odd homeomorphisms $h\in C(E,E)$ and $\rho_{\lambda}$ is the number from Lemma \ref{lem8}. Then \eqref{ethm1i} is a version of Benci's pseudoindex. Let $$ c_{\lambda_{j}}=\inf_{i(A)\geq j}\sup_{u\in A}\Phi_{\lambda}(u),\quad 1\leq j\leq m $$ Since $\Phi_{\lambda}(u)\geq \alpha_{\lambda}$ for all $u\in\partial B_{\rho_{\lambda}}$ and since $i(F_{\lambda m})=\dim F_{\lambda m}=m$, $$ \alpha_{\lambda}\leq c_{\lambda_1}\leq\dots\leq c_{\lambda_m}\leq\sup_{u\in F_{\lambda m}}\Phi_{\lambda}(u)\leq \sigma{\lambda}^{1-{\frac{N}{p}}}. $$ It follows from Lemma \ref{lem6} that $\Phi_{\lambda}$ satisfies the $(PS)_c$-condition at all levels $c<\lambda^{1-{\frac{N}{p}}}\alpha_{0}$. By the critical point theory, all $e_{\lambda_{j}}$ are critical levels and $\Phi_{\lambda}$ has at least m pairs of nontrivial critical points satisfying $$ \alpha_{\lambda}\leq \Phi_{\lambda}(u_{\lambda}) \leq \sigma{\lambda}^{1-{\frac{N}{p}}} $$ Therefore, $(NS)_{\lambda}$ has at least $m$ pairs of solutions. Finally, as in the proof of Theorem \ref{thm1} one sees that these solutions satisfy the estimates (i) and (ii). \end{proof} \begin{theorem} \label{thm3} Let {\rm (V0), (K0), (H0), (S)} be satisfied. If moreover $h(x,u)$ is odd in u, then for any $\sigma>0$ there exists $\Lambda_{\sigma}>0$ such that if $\Lambda\geq\omega_{\sigma}$, \eqref{NPL} has at least one pair of solutions which change sign exactly once and satisfy the estimates \eqref{ethm1i} and \eqref{ethm1ii}. \end{theorem} \begin{proof} We say that a function $u:\mathbb{R}^N\to \mathbb{R}$ changes sign $n$ times if the set ${\{x\in \mathbb{R}^N:u(x)\neq 0}\}$ has $n+1$ connected components. If $u$ is a solution of \eqref{NPL} then it is of class $C^{2}$ and $\tau$ induces a bijection between the connected components of ${\{x\in \mathbb{R}^N: u(x)>0}\}$ and those of ${\{x\in \mathbb{R}^N: u(x)<0}\}$. So $u$ changes sign an odd number of times. Define the $\tau$-Nehari manifold $$ N^{\tau}_{\lambda}={\{u\in E^{\tau}: u\neq 0,\;\; \Phi_{\lambda}'(u)u=0}\}. $$ Then critical points of the restriction of $\Phi_{\lambda}$ on $N^{\tau}_{\lambda}$ are solutions of \eqref{NPL}. Set $$ c^{\tau}_{\lambda}=\inf{\{\Phi_{\lambda}(u):u\in N^{\tau}_{\lambda}}\}. $$ Assume (S) holds. If $u\in E$ then the function $\widetilde{u}=(u+\tau u)/2$ satisfies $\tau\widetilde{u}=\widetilde{u}$; i.e., $\widetilde{u}\in E^{\tau}$. It is clear that if $(\varphi_{j})\subset C^{\infty}_{0}(\mathbb{R}^N)$, $|\varphi_{j}|_{s}=1$ and $|\nabla \varphi_{j}|_{p}\to 0$, then $\widetilde{\varphi_{j}}=({\varphi_{j}}+\tau {\varphi_{j}})/2\in E^{\tau}$ and $|\nabla \widetilde{\varphi_{j}}|_{p}\to 0$. Arguing as before, we see the conclusion: Assume (V0), (K0), (H0) and (S) be satisfied. Then for any $\sigma>0$ there exists $\Lambda_{\sigma}>0$ such that for each $\lambda\geq \Lambda_{m\sigma}$ there exists $0\neq \overline{e}_{\lambda}\in E^{\tau}$ such that $\Phi_{\lambda}'(\overline{e}_{\lambda}){\overline{e}_{\lambda}}=0$ and $$ \Phi_{\lambda}(\overline{e}_{\lambda})\leq \sigma{\lambda}^{1-{\frac{N}{p}}}. $$ So for any $\sigma\in(0,a_0)$, there is $\Lambda_{\sigma}>0$ such that $$ 00}\}$ has m connected components $X_{1},\dots,X_{m}$. Let $u_{i}(x)=u(x)$ if $x\in X_{i}\cup\tau X_{i}$ and $u_{i}(x)=0$ otherwise. Since u is a critical point of $\Phi_{\lambda}$, $$ \Phi_{\lambda}'(u)u_{i} =\|u_{i}\|^{p}_{\lambda}-\int_{\mathbb{R}^N}g(x,u_{i})u_{i}=0. $$ Thus $u_{i}\in N^{\tau}_{\lambda}$ for $i=1,\dots,m$, and $$ \Phi_{\lambda}(u)=\Phi_{\lambda}(u_1)+\dots+\Phi_{\lambda}(u_m)\geq m c^{\tau}_{\lambda}. $$ Now since $\Phi_{\lambda}(u_{\lambda})=c^{\tau}_{\lambda}$, one concludes that $u_{\lambda}$ changes sign only $m=1$ time. Final, as before one sees that $u_{\lambda}$ satisfies (i) and (ii). The proof is complete. \end{proof} \noindent\textbf{Remark.} Clearly we can see that the Theorems \ref{thmA}, \ref{thmB} and \ref{thmC} also be proofed. Indeed, \eqref{NPE}$\sim$\ref{NPL}. Our methods and results can also be applicable to subcritical nonlinear problems \eqref{e1.1}. \subsection*{Acknowledgments} The authors want to thank the anonymous the referees for their comments and suggestions. \begin{thebibliography}{00} \bibitem{a1} A. Ambrosetti, V. Felli, A. Malchiodi; \emph{Ground states of nonlinear Schrodinger equations with potentials vanishing at infinity}, J. Eur. Math. Soc. 7(2005) 117-144. \bibitem{a2} A. Ambrosetti and Z. Q. Wang; \emph{Nonlinear Schrodinger equations with vanishing and decaying potentials}, Differential Intergral Equations 18(2005), 1321-1332. \bibitem{b1} T. Bartsch, A. Pankov, Z.-Q. Wang; \emph{Nonlinear Schrodinger equations with steep potential well}, Commun. Contemp. Math. 3 (2001), 549-569. \bibitem{b2} M. Badiale and S. Rolando; \emph{A note on nonlinear elliptic problems with singular potentials}, Rend. Lincei Mat. Appl. 17(2006), 1-13. \bibitem{b3} A. Bahri and Y. Y. Li; \emph{On a min-max procedure for the existence of a positive solution for certain scalar field equations in $\mathbb{R}^N$}, Rev. Mat. Iberoamericana 6(1990), 1-15. \bibitem{b4} J. Byeon and Z. Q. Wang; \emph{Standing waves with a critical frequency for nonlinear Schrodinger equation}, Arch. Ration. Mech. Anal. 165 (2002), 295-316. \bibitem{b5} J. Byeon and Z. Q. Wang; \emph{Standing waves with a critical frequency for nonlinear Schrodinger equation II}, Calc. Var. Partial Differential Equations 18(2003), 207-219. \bibitem{b6} H. Berestycki and P. L. Lions; \emph{Nonlinear scalar field equations I}, Existence of a ground state, Arch. Rational Mech. Anal. 82(1983), 313-346. \bibitem{b7} H. Berestycki and P. L. Lions; \emph{Nonlinear scalar field equations II, Existence of infinitely many solutions}, Arch. Rational Mech. Anal. 82(1983), 347-376. \bibitem{c1} J. Chabrowski; \emph{Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents}, Calc. Var. 3(1995), 493-512. \bibitem{c2} G. Citti and F. Uguzzoni; \emph{Positive solutions of $-{\Delta}_{p}u+u^{p-1}=q(x)u^{\alpha}$ in $R^N$}, Nonlinear Differential Equations Appl. 9(2002), 1-14. \bibitem{d1} W. Y. Ding and W. M. Ni; \emph{On the existence of positive entire solutions of a semilinear elliptic equation}, Arch. Rational Math. Anal. 31(1986), 283-328. \bibitem{d2} Y. H. Ding and Andrzej Szulkin; \emph{Bound states for semilinear Schrodinger equations with sign-changing potential}, Calc. Var. 29(2007), 397-419. \bibitem{d3} Y. H. Ding and F. H. Lin; \emph{Solutions of perturbed Schrodinger equations with critical nonlinearity}, Calc. Var. 30(2007), 231-249. \bibitem{d4} Y. H. Ding and Andrzej Szulkin; \emph{Existence and Number of Solutions for a Class of Semilinear Schrodinger Equations}, Progress in Nonlinear Differential Equations and Their Applications, Vol. 66, 221-231. \bibitem{l1} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations}, The locally compactness case part II, Ann. Inst. H. Poincare Anal. Non. Lineaire 1(1984), 223-283. \bibitem{l2} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations: The limit case}, Rev. Mat. Iberoamericana, 1(1985), 145-201; 2(1985), 45-121. \bibitem{r1} V. Radulescu and D. Smets; \emph{Critical singular problems on infinite cones}, Nonlinear Analysis, T.M.A. 54 (2003), 1153-1164. \bibitem{s1} D. Smets; \emph{A concentration-compactness lemma with application to singular eigenvalue problems}, J. Funct. Anal. 167(1999), 463-480. \bibitem{s2} E. A. B. Silva and Magda S. Xavier; \emph{Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents}, Ann. Inst. Henri Poincare, Analyse Nonlineaire. 2(2003), 341-358. \bibitem{t1} G. Tarantello; \emph{On nonhomogeneous elliptic equations involving critical Sobolev exponent}, Ann. Inst. Henri Poincare, Analyse nonlineaire. 9(1992), 281-304. \bibitem{w1} M. Willem, ``Minimax Theorems", Birkhauser, Boston, 1996. \bibitem{y1} J. Yang and X. Zhu; \emph{On the existence of nontrivial solution of a quasilinear elliptic boundary value problem for unbounded domains}, Acta Math. Sci. 7(1987), 341-359. \bibitem{y2} L. S. Yu; \emph{Nonlinear $p$-Laplacian problems on unbounded domains}, Proc. Amer. Math. Soc. 15(1992), 1037-1045. \end{thebibliography} \end{document}