\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 113, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/113\hfil Existence of positive bounded solutions] {Existence of positive bounded solutions for some nonlinear polyharmonic elliptic systems} \author[S. Gontara, Z. Z. El Abidine \hfil EJDE-2010/113\hfilneg] {Sabrine Gontara, Zagharide Zine El Abidine} \address{Sabrine Gontara \newline D\'epartement de math\'ematiques, Faculte des sciences de Tunis, campus universitaire, 2092 Tunis, Tunisia} \email{sabrine-28@hotmail.fr} \address{Zagharide Zine El Abidine \newline D\'epartement de math\'ematiques, Faculte des sciences de Tunis, campus universitaire, 2092 Tunis, Tunisia} \email{Zagharide.Zinelabidine@ipeib.rnu.tn} \thanks{Submitted June 6, 2010. Published August 16, 2010.} \subjclass[2000]{34B27, 35J40} \keywords{Green function; Kato class; positive bounded solution; \hfill\break\indent Shauder fixed point theorem; polyharmonic elliptic system} \begin{abstract} We prove existence results for positive bounded continuous solutions of a nonlinear polyharmonic system by using a potential theory approach and properties of a large functional class $K_{m,n}$ called Kato class. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \section{Introduction} The goal is to study the existence of positive continuous bounded solutions for the nonlinear elliptic higher order system \begin{equation} \begin{gathered} (-\Delta )^{m}u+\lambda qg(v)=0\quad\text{in }B, \\ (-\Delta )^{m}v+\mu pf(u)=0\quad\text{in }B, \\ \lim_{x\to \xi \in \partial B}\frac{u(x)}{(1-|x| ^{2})^{m-1}} =\varphi (\xi ), \\ \lim_{x\to \xi \in \partial B}\frac{v(x)}{(1-| x|^{2})^{m-1}}=\psi (\xi ), \end{gathered} \label{1.1} \end{equation} where $m$ is a positive integer, $B=\{ x\in \mathbb{R} ^n:| x|<1\} $ is the unit ball of $\mathbb{R}^n$ $(n\geq 2)$, $\partial B=\{ x\in\mathbb{R} ^n:| x| =1\} $ is the boundary of $B$, $\lambda $, $\mu $, are nonnegative constants and $\varphi $, $\psi $ are two nontrivial nonnegative continuous functions on $\partial B$. For the case $m=1$, the existence of solutions for nonlinear elliptic systems has been extensively studied for both bounded and unbounded $C^{1,1}$domain $D$ in $\mathbb{R}^n$ $(n\geq 3)$ (see [8, 9, 11-13]). The polyharmonic operator $(-\Delta )^{m}$, $m\in\mathbb{N}^{\ast }$, has been studied several years later. Indeed, Boggio \cite{Boggio} showed that the Green function $G_{m,n}$ of the operator $(-\Delta)^{m}$ on $B$ with Dirichlet boundary conditions $u=\frac{\partial }{\partial \nu }u=\dots =\frac{\partial ^{m-1}}{\partial \nu ^{m-1}}u=0$ on $\partial B$, is given by: \begin{equation} G_{m,n}(x,y)=k_{m,n}| x-y| ^{2m-n}\int_{1}^{\frac{[ x,y] }{| x-y| }}\frac{(\nu ^{2}-1)^{m-1}}{\nu ^{n-1} }d\nu , \label{1.2} \end{equation} where $k_{m,n}$ is a positive constant, $\frac{\partial }{\partial \nu }$ is the outward normal derivative and for $x$, $y$ in $B$, $[x,y] ^{2}=|x-y|^{2}+( 1-|x|^{2}) (1-|y|^{2})$. From its expression, it is clear that $G_{m,n}$ is nonnegative in $ B^{2}$. This does not hold for the Green function of $(-\Delta )^{m}$ in an arbitrary bounded domain (see for example \cite{Gar}). It is well known that for $m=1$, we do not have this restriction. In \cite{IHSM}, the properties of the Green function $G_{m,n}$ of $(-\Delta )^{m}$ on $B$ allowed the authors to introduce a large functional class called Kato class denoted by $ K_{m,n}$ (see Definition \ref{def1} below). This class played a key role in the study of some nonlinear polyharmonic equation (see \cite{IHSM,Sonia,MTZ}). For the case $m=1$, the Kato class has been introduced and studied for general domain possibly unbounded in \cite{BM,Bachar,M} for $n\geq 3$ and \cite {zeddini} for $n=2$. \begin{definition}[\cite{IHSM}] \label{def1} \rm A borel measurable function $q$ on $B$ belongs to the Kato class $K_{m,n}$ if $q$ satisfies the condition \[ \lim_{\alpha \to 0}\Big( \sup_{x\in B} \int_{B\cap B(x,\alpha )}\big( \frac{\delta (y)}{\delta (x)}\big) ^{m}G_{m,n}(x,y)| q(y)| dy\Big) =0. \] Here and always $\delta (x)=1-| x| $, is the Euclidian distance between $x$ and $\partial B$. \end{definition} As typical example of functions belonging to the class $K_{m,n}$, we have \begin{example}[\cite{Sonia}] \label{exa1} \rm The function $q$ defined in $B$ by \[ q(x)=\frac{1}{(\delta (x))^{\lambda }(\log\frac{2}{\delta (x)})^{\mu }}, \] is in $K_{m,n}$ if and only if $\lambda <2m$ and $\mu \in\mathbb{R}$ or $\lambda =2m$ and $\mu >1$. \end{example} Before presenting our main results, we lay out a number of potential theory tools and some notations which will be used throughout the paper. We are mainly concerned with the bounded continuous solution $H\varphi $ of the Dirichlet problem \[ \begin{gathered} \Delta u=0\quad \text{in }B \\ u\big|_{\partial B}=\varphi , \end{gathered} \] where $\varphi $ is a nonnegative continuous function on $\partial B$. We remark that the function defined on $B$ and denoted by $H^{m}\varphi :x\to (1-| x| ^{2})^{m-1}H\varphi (x)$ is a bounded continuous solution of the problem \begin{equation} \begin{gathered} (-\Delta )^{m}u=0\quad \text{in }B \\ \lim_{x\to \xi \in \partial B}\frac{u(x)}{(1-| x| ^{2})^{m-1}}=\varphi (\xi ). \end{gathered} \label{1.4} \end{equation} For simplicity, we denote \[ C_0(B)=\{w\text{ continuous on }B\text{ and }\lim_{x\to \xi \in \partial B}w(x)=0\} \] and \[ C(\overline{B})=\{w\text{ continuous on }\overline{B}\}. \] We also refer to $V_{m,n}f$ the $m$-potential of a nonnegative measurable function $f$ on $B$ by \[ V_{m,n}f(x)=\int_{B}G_{m,n}(x,y)\,f(y)dy,\quad \text{for }x\in B. \] Recall that for each nonnegative measurable function $f$ on $B$ such that $f$ and $V_{m,n}f$ are in $L_{\rm loc}^{1}(B)$, we have \[ (-\Delta )^{m}(V_{m,n}f)=f, \] in the distributional sense. The outline of this paper is as follows. In section $2$, we collect some preliminary results about the Green function and the Kato class $ K_{m,n} $. In section $3$, a careful analysis about continuity is performed. In particular, we prove the following result. \begin{theorem} \label{thm1} Let $m-1\leq \beta \leq m$, $q\in K_{m,n}$, then the function $v$ defined on $B$ by \[ v(x)=\int_{B}\Big(\frac{\delta (y)}{\delta (x)}\Big) ^{\beta }G_{m,n}(x,y)\,| q(y)| dy \] is in $C(\overline{B})$ and if $m-1\leq \beta 0, \\ \mu _0=\inf_{x\in B}\frac{H^{m}\psi (x)} {V_{m,n}(pf(H^{m}\varphi )) (x)}>0. \end{gather*} \end{itemize} \begin{theorem} \label{thm2} Assume {\rm (H1)--(H3)}. Then for each $\lambda \in [0,\lambda _0)$ and each $\mu \in [ 0,\mu _0)$, the problem \eqref{1.1} has a positive continuous solution $(u,v)$ satisfying for each $x\in B$, \begin{equation} \begin{gathered} ( 1-\frac{\lambda }{\lambda _0}) H^{m}\varphi (x)\leq u( x) \leq H^{m}\varphi (x), \\ ( 1-\frac{\mu }{\mu _0}) H^{m}\psi (x)\leq v( x) \leq H^{m}\psi (x). \end{gathered} \label{1.5} \end{equation} \end{theorem} In section 5, we study the system \eqref{1.1} when the functions $f$ and $g$ are non-increasing and $\lambda =\mu =1$. More precisely, we fix a nontrivial nonnegative continuous function $\Phi $ on $ \partial B$ and we suppose the following hypotheses \begin{itemize} \item[(H4)] The functions $f$, $g:(0,\infty )\to [ 0,\infty )$ are non-increasing and continuous. \item[(H5)] The functions $p$ and $q$ are measurable nonnegative in $B$ such that the functions \[ \widetilde{p}:x\mapsto p(x)\frac{f(H^{m}\Phi (x))}{( \delta (x)) ^{m-1}H\Phi (x)},\quad \widetilde{q}:x\mapsto q\,(x)\frac{g(H^{m}\Phi (x))}{( \delta (x)) ^{m-1}H\Phi (x)} \] belong to the Kato class $K_{m,n}$. \end{itemize} Using a fixed point argument, we prove in section 5 the following second existence result. \begin{theorem} \label{thm3} Assume that $\lambda =\mu =1$ and that {\rm (H4)--(H5)} are satisfied. Suppose that there exists $\gamma>1$ such that $\varphi \geq \gamma\Phi $ and $\psi \geq \gamma\Phi $ on $\partial B$. Then \eqref{1.1} has a positive continuous solution satisfying for each $x\in B$ \begin{equation} \begin{gathered} H^{m}\Phi (x)\leq u(x)\leq H^{m}\varphi (x), \\ H^{m}\Phi (x)\leq v(x)\leq H^{m}\psi (x). \end{gathered} \label{gha} \end{equation} \end{theorem} Note that for $m=1$ we find again the result of \cite{Sameh} which was our original motivation for deriving our study. The last section is reserved to examples. We conclude this section by giving some notation. $(i)$ Let $f$ and $g$ be nonnegative functions on a set $S$. We write $ f(x)\approx g(x)$ for $x\in S$ if there is $c>0$ not depending on $x$ such that \[ \frac{1}{c}g(x)\leq f(x)\leq cg(x),\quad \forall x\in S. \] $(ii)$ For $s$, $t\in \mathbb{R}$, we denote $s\wedge t=\min (s,t)$ and $s\vee t=\max (s,t)$. $(iii)$ For any measurable function $f$ on $B$, we use the notation \[ \alpha _{f}:=\underset{x,y\in B}{\sup }\int_{B}\frac{G_{m,n}(x,z)G_{m,n}(z,y) }{G_{m,n}(x,y)}| f(z)| dz. \] Finally, we mention that the letter $c$ will be a positive generic constant which may vary from line to line. \section{Properties of the Green function $G_{m,n}$ and class $K_{m,n}$} To make the paper self contained, this section is devoted to recall some results established in \cite{IHSM,Ben} that will be useful in our study. \begin{proposition}[3G-Theorem] \label{prop1} There exists $C_{m,n}>0$ such that for each $x$, $y$, $z\in B$ \begin{equation} \frac{G_{m,n}(x,z)G_{m,n}(z,y)}{G_{m,n}(x,y)} \leq C_{m,n}\Big[ \Big( \frac{ \delta (z)}{\delta (x)}\Big) ^{m}G_{m,n}(x,z)+\Big( \frac{\delta (z)}{ \delta (y)}\Big) ^{m}G_{m,n}(y,z)\big] . \label{1.3} \end{equation} \end{proposition} \begin{proposition} \label{prop2} On $B^{2}$, the following estimates hold (i) For $2mn$, \begin{equation} G_{m,n}(x,y)\approx (\delta (x)\delta (y))^{m-\frac{n}{2}} (1\wedge \frac{(\delta (x)\delta (y))^{n/2}}{| x-y| ^n} ) . \label{2.3} \end{equation} \end{proposition} \begin{proposition} \label{prop3} On $B^{2}$ there exists $c>0$ such that \begin{equation} c(\delta (x)\delta (y))^{m}\leq G_{m,n}(x,y). \label{ll} \end{equation} Moreover if $| x-y| \geq r$, we have \begin{equation} G_{m,n}(x,y)\leq c\frac{(\delta (x)\delta (y))^{m}}{r^n}. \label{yy} \end{equation} \end{proposition} \begin{proposition} \label{prop4} Let $q$ be a function in $K_{m,n}$, then (i) The constant $\alpha _{q}$ is finite. (ii) The function $x\mapsto (\delta (x))^{2m-1}q(x)$ is in $ L^{1}(B)$. \end{proposition} \begin{proposition} \label{prop5} For each nonnegative function $q\in K_{m,n}$ and $h$ a nonnegative harmonic in $B$ we have for $x\in B$ \begin{equation} \int_{B}G_{m,n}(x,y)(1-| y| ^{2})^{m-1}h(y)q(y)dy\leq \alpha _{q}(1-| x| ^{2})^{m-1}h(x). \label{rr} \end{equation} In particular, \begin{equation} \sup_{x\in B}\int_{B}\Big(\frac{\delta (y)}{\delta (x)}\Big) ^{m-1}G_{m,n}(x,y)q(y)dy\leq 2^{m-1}\alpha _{q}. \label{aa} \end{equation} \end{proposition} \section{Modulus of Continuity} The objective of this section is to prove Theorem \ref{thm1}. Let $q$ be the function defined in $B$ by \[ q(x)=\frac{1}{(\delta (x))^{\lambda }}. \] It is shown in \cite{IHSM} that the function $q\in K_{m,n}$ if and only if $\lambda <2m$ and $V_{m,n}q$ is bounded if and only if $\lambda 0$, then by the definition of $K_{m,n}$, there is $r>0$ such that \[ \sup_{x\in B}\int_{B\cap B(x,r)}\Big( \frac{\delta (y)}{\delta (x)}\Big) ^{m}G_{m,n}(x,y)| q(y)| dy\leq \varepsilon. \] Now, let $x_0\in \overline{B}$, $x, z\in B$ and $\alpha >0$ then by \eqref{1.3} \begin{align*} &\int_{B\cap B(x_0,\alpha )}\frac{G_{m,n}(x,y)G_{m,n}(y,z)}{G_{m,n}(x,z)} | q(y)| dy \\ &\leq 2C_{m,n}\sup_{\xi \in B}\int_{B\cap B(x_0,\alpha )}\Big(\frac{\delta (y)}{\delta (\xi )}\Big) ^{m}G_{m,n}(\xi ,y)| q(y)| dy. \end{align*} Furthermore, from \eqref{yy}, for each $x\in B$, we have \begin{align*} &\int_{B\cap B(x_0,\alpha )}\Big(\frac{\delta (y)}{\delta (x)}\Big) ^{m}G_{m,n}(x,y)| q(y)| dy \\ &\leq \int_{B\cap B(x_0,\alpha )\cap (| x-y| 0$, then by Proposition \ref{prop7} there exists $\alpha >0$ such that for each $z\in B$ we have \[ \sup_{x\in B}\int_{B\cap B(x_0,\alpha )}\frac{ G_{m,n}(x,y)G_{m,n}(y,z)}{G_{m,n}(x,z)}| q(y)| dy\leq \varepsilon . \] By Fubini's theorem, we have \begin{align*} &\int_{B\cap B(x_0,\alpha )}h(y)G_{m,n}(x,y)| q(y)| dy \\ &=\int_{B}( \int_{B\cap B(x_0,\alpha )}\frac{G_{m,n}(x,y)G_{m,n}(y,z) }{G_{m,n}(x,z)}| q(y)| dy) \frac{G_{m,n}(x,z)}{ ( \delta (z)) ^{\lambda }}dz \\ &\leq \varepsilon h(x). \end{align*} Which together with \eqref{3} imply \begin{align*} &\sup_{x\in B}\int_{B\cap B(x_0,\alpha )}\Big(\frac{\delta (y)}{\delta (x)}\Big) ^{\beta }G_{m,n}(x,y)| q(y)| dy \\ &\leq c\text{ }\sup_{x\in B}\int_{B\cap B(x_0,\alpha )}\frac{ h(y)}{h(x)}G_{m,n}(x,y)| q(y)| dy \leq c\varepsilon . \end{align*} This completes the proof. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1}] Let $\beta \in [ m-1,m] $, $x_0\in \overline{B}$ and $\varepsilon >0$. By Corollary \ref{coro1}, there exists $\alpha >0$ such that \begin{equation} \sup_{\xi \in B}\int_{B\cap B(x_0,2\alpha )}\Big(\frac{\delta (y)}{\delta (\xi )}\Big) ^{\beta }G_{m,n}(\xi ,y)| q(y)| dy\leq \varepsilon . \label{m} \end{equation} We distinguish following two cases. \noindent \textbf{Case 1:} $\beta \in [ m-1,m)$. First we prove that $v$ is continuous on $B$. For this aim we fix $x_0\in B$ and $x$, $z\in B\cap B(x_0,\alpha )$. So we have \begin{align*} | v(x)-v(z)| &\leq \int_{B}| \frac{G_{m,n}(x,y) }{(\delta (x))^{\beta }}-\frac{G_{m,n}(z,y)}{(\delta (z))^{\beta }} | (\delta (y))^{\beta }| q(y)| dy \\ &\leq \int_{B\cap B(x_0,2\alpha )}| \frac{G_{m,n}(x,y)}{(\delta (x))^{\beta }}-\frac{G_{m,n}(z,y)}{(\delta (z))^{\beta }}| (\delta (y))^{\beta }| q(y)| dy \\ &\quad +\int_{B\cap B^{c}(x_0,2\alpha )}| \frac{G_{m,n}(x,y)}{(\delta (x))^{\beta }}-\frac{G_{m,n}(z,y)}{(\delta (z))^{\beta }}| (\delta (y))^{\beta }| q(y)| dy \\ &\leq 2\sup_{\xi \in B}\int_{B\cap B(x_0,2\alpha )}\Big(\frac{\delta (y)}{\delta (\xi )}\Big) ^{\beta }G_{m,n}(,y)| q(y)| dy \\ &\quad +\int_{B\cap B^{c}(x_0,2\alpha )}| \frac{G_{m,n}(x,y)}{(\delta (x))^{\beta }}-\frac{G_{m,n}(z,y)}{(\delta (z))^{\beta }}| (\delta (y))^{\beta }| q(y)| dy \\ &= I_{1}+I_{2}. \end{align*} If $| y-x_0| $ $\geq 2\alpha $ then $| y-x| \geq \alpha $ and $|y-z| \geq \alpha $. So applying \eqref{yy}, for all $x\in B\cap B(x_0,\alpha )$ and $y\in B\cap B^{c}(x_0,2\alpha )$, we have \[ \Big(\frac{\delta (y)}{\delta (x)}\Big) ^{\beta }G_{m,n}(x,y)\leq c(\delta (y))^{\beta +m}\leq c(\delta (y))^{2m-1}. \] On the other hand, for $y\in B\cap B^{c}(x_0,2\alpha )$, $x\mapsto \frac{ G_{m,n}(x,y)}{(\delta (x))^{\beta }}$ is continuous in $B\cap B(x_0,\alpha )$. Hence since $x\mapsto (\delta (x))^{2m-1}q(x)$ is in $L^{1}(B)$ then by the dominated convergence theorem, we obtain \[ I_{2}=\int_{B\cap B^{c}(x_0,2\alpha )}\big| \frac{G_{m,n}(x,y)}{ (\delta (x))^{\beta }}-\frac{G_{m,n}(z,y)}{(\delta (z))^{\beta }}\big| (\delta (y))^{\beta }| q(y)| dy\to 0 \] as $| x-z| \to 0$. This together with \eqref{m} imply that $v$ is continuous on $B$. Next, we show that \begin{equation} v(x)\to 0\quad \text{as }\delta (x)\to 0. \label{mmm} \end{equation} For this we consider $x_0\in \partial B$ and $x\in B(x_0,\alpha )\cap B$, then \begin{align*} v(x) &= \int_{B\cap B(x_0,2\alpha )}\Big( \frac{\delta (y)}{\delta (x)} \Big) ^{\beta }G_{m,n}(x,y)| q(y)| dy \\ &\quad +\int_{B\cap B^{c}(x_0,2\alpha )}\Big( \frac{\delta (y)}{\delta (x)} \Big) ^{\beta }G_{m,n}(x,y)| q(y)| dy \\ &\leq \sup_{\xi \in B}\int_{B\cap B(x_0,2\alpha )}\Big( \frac{ \delta (y)}{\delta (\xi )}\Big) ^{\beta }G_{m,n}(\xi ,y)| q(y)| dy \\ &\quad +\int_{B\cap B^{c}(x_0,2\alpha )}\Big( \frac{\delta (y)}{\delta (x)} \Big) ^{\beta }G_{m,n}(x,y)| q(y)| dy \\ &= J_{1}+J_{2}. \end{align*} For $y\in B\cap B^{c}(x_0,2\alpha )$ we have $| y-x| \geq \alpha $. So from \eqref{yy} we obtain \[ \Big( \frac{\delta (y)}{\delta (x)}\Big) ^{\beta }G_{m,n}(x,y)\leq c(\delta (x))^{m-\beta }\to 0\text{ as }\delta (x)\to 0. \] Then by the same arguments as above, we deduce that $J_{2}\to 0$ as $ \delta (x)\to 0$. This together with \eqref{m} gives \eqref{mmm}. \noindent \textbf{Case 2:} $\beta =m$. We point out that for $y\in B$, the function $x\mapsto\frac{G_{m,n}(x,y)}{ (\delta (x))^{m}}$ is continuous in $\overline{B}$ outside the diagonal. So using similar arguments as in the case 1 we prove that $v\in C(\overline{B })$. This completes the proof. \end{proof} \begin{proposition} \label{prop8} Let $m-1\leq \beta 0. \end{align*} So \[ v_{1}( x) -v_0( x) =-\mu V_{m,n}(pf(u_0))(x) \leq 0. \] On the other hand, since $g$ is nondecreasing we have \[ u_{1}( x) -u_0( x) =\lambda V_{m,n}[ q( g(v_0)-g(v_{1})) ] ( x) \geq 0. \] Since $f$ is nondecreasing and using that \begin{equation} u_0( x) \leq H^{m}\varphi (x), \label{4} \end{equation} we deduce from \eqref{4.2} that \[ v_{1}(x) = H^{m}\psi (x)-\mu V_{m,n}( pf(u_0)) (x) \geq ( 1-\frac{\mu }{\mu _0}) H^{m}\psi (x)>0. \] This implies that \[ u_{1}( x) \leq H^{m}\varphi (x). \] Finally, we obtain \begin{gather*} 0<( 1-\frac{\lambda }{\lambda _0}) H^{m}\varphi \leq u_0\leq u_{1}\leq H^{m}\varphi , \\ 0<( 1-\frac{\mu }{\mu _0}) H^{m}\psi \leq v_{1}\leq v_0\leq H^{m}\psi . \end{gather*} This implies that \eqref{4.3} and \eqref{4.4} hold for $k=0$ and we conclude for any $k\in \mathbb{N}$ by induction. Therefore, the sequences $(u_{k}) _{k\geq 0}$ and $ ( v_{k}) _{k\geq 0}$ converge respectively to two functions $u$ and $v$ satisfying \begin{equation} \begin{gathered} 0<( 1-\frac{\lambda }{\lambda _0}) H^{m}\varphi \leq u\leq H^{m}\varphi , \\ 0<( 1-\frac{\mu }{\mu _0}) H^{m}\psi \leq v\leq H^{m}\psi . \end{gathered} \label{4.9} \end{equation} Now, since $g$ is nondecreasing continuous, we obtain by \eqref{4.4} that for each $(x,y)\in B^{2}$ \[ 0\leq G_{m,n}(x,y)q(y)g(v_{k})\leq ||g(H^{m}\psi )||_{\infty }G_{m,n}(x,y)q(y). \] Moreover, since $x\mapsto \frac{q(x)}{( \delta (x)) ^{m-1}}\in K_{m,n}$ then by \eqref{aa}, we have for each $x\in B$, \[ y\mapsto G_{m,n}(x,y)q(y)\in L^{1}(B). \] So using the continuity of $g$ and the dominated convergence theorem we deduce that \[ \lim_{k\to \infty }V_{m,n}(qg(v_{k}))=V_{m,n}(qg(v)), \] and so we have that for each $x\in B$, \begin{equation} u( x) =H^{m}\varphi (x)-\lambda V_{m,n}(qg(v))( x) . \label{4.5} \end{equation} Similarly we prove that for each $x\in B$, \begin{equation} v( x) =H^{m}\psi (x)-\mu V_{m,n}(pf(u))(x). \label{4.6} \end{equation} Next, we claim that $( u,v) $ satisfies \begin{gather*} ( -\Delta ) ^{m}u=-\lambda qg(v), \\ ( -\Delta ) ^{m}v=-\mu pf(u). \end{gather*} Indeed, since $g(v)$ is bounded and $x\mapsto \frac{q(x)}{(\delta(x)) ^{m-1}}\in K_{m,n}$, we deduce by Proposition \ref{prop4} that \[ qg(v)\in L_{\rm loc}^{1}(B). \] On the other hand by Theorem \ref{thm1}, we have \[ x\mapsto \frac{1}{( \delta (x)) ^{m-1}}\int_{B}G_{m,n}(x,y)q(y)dy \in C_0(B). \] Therefore, using that $g(v)$ is bounded we get \begin{equation} V_{m,n}(qg(v))\in C_0(B), \label{yyy} \end{equation} which implies \[ V_{m,n}(qg(v))\in L_{\rm loc}^{1}(B). \] So we have in the distributional sense \[ ( -\Delta ) ^{m}V_{m,n}(qg(v))=qg(v)\quad\text{in }B. \] Similarly, \[ ( -\Delta ) ^{m}V_{m,n}(pf(u))=pf(u)\quad\text{in }B. \] Now, applying the operator $( -\Delta ) ^{m}$ in \eqref{4.5} and \eqref{4.6}, it follows by \eqref{4.9} that $(u,v)$ is a positive bounded solution of \begin{gather*} (-\Delta )^{m}u+\lambda qg(v)=0\quad\text{in }B, \\ (-\Delta )^{m}v+\mu pf(u)=0\quad\text{in }B. \end{gather*} From \eqref{4.5} and \eqref{yyy}, we deduce that $u$ is continuous in $B$. Similarly $v$ is continuous. Finally, by \eqref{1.4}, \eqref{4.5} and Theorem \ref{thm1}, we obtain \[ \lim_{x\to \xi \in \partial B}\frac{u(x)}{( 1-|x|^{2}) ^{m-1}}=\varphi (\xi ). \] Similarly, \[ \lim_{x\to \xi \in \partial B}\frac{v(x)}{( 1-|x|^{2}) ^{m-1}}=\psi ( \xi ) . \] This completes the proof. \section{Proof of Theorem \ref{thm3}} Assume that $\lambda =\mu =1$ and the hypotheses (H4) and (H5) are satisfied. Let ${\widetilde{p}}$ and ${ \widetilde{q}}$ be the functions in $K_{m,n}$ given by hypothesis (H5). Put $\gamma =1+\alpha _{\widetilde{p}}+\alpha _{\widetilde{ q}}$, where $\alpha _{\widetilde{p}}$ and $\alpha _{\widetilde{q}}$ are the constants associated respectively to the functions ${\widetilde{p}}$ and ${ \widetilde{q}}$. Let us consider two nonnegative continuous functions $\varphi $ and $\psi $ on $\partial B$ such that $\varphi \geq \gamma \Phi $ and $\psi \geq \gamma \Phi $. It follows that for each $x\in B$, \begin{equation} H^{m}\varphi (x)\geq \gamma H^{m}\Phi (x),\quad H^{m}\psi (x)\geq \gamma H^{m}\Phi (x). \label{5.1} \end{equation} Let $S$ be the non-empty closed convex set given by \[ S=\{w\in C_0(B):H^{m}\Phi \leq w\leq H^{m}\psi \}. \] We define the operator $T$ on $S$ by \[ Tw=H^{m}\psi -V_{m,n}( pf[ H^{m}\varphi -V_{m,n}(qg(w))]) . \] We aim to prove that $T$ has a fixed point in $S$. First, we shall prove that $TS$ is relatively compact in $C_0(B)$. Let $w\in S$, then since $w\geq H^{m}\Phi $ we deduce from hypothesis (H4) that \[ V_{m,n}(qg(w)) \leq V_{m,n}(qg(H^{m}\Phi )) = V_{m,n}((\delta (.))^{m-1}\widetilde{q}H\Phi ). \] Which implies by (H5) and \eqref{rr} that \begin{equation} V_{m,n}(qg(w))\leq \alpha _{\widetilde{q}}H^{m}\Phi . \label{5.2} \end{equation} This together with \eqref{5.1} imply \begin{align*} H^{m}\varphi -V_{m,n}(qg(w)) &\geq \gamma H^{m}\Phi -\alpha _{\widetilde{q} }H^{m}\Phi \\ &= (1+\alpha _{\widetilde{p}})H^{m}\Phi \\ &\geq H^{m}\Phi . \end{align*} Hence, using (H4), we have \begin{equation} pf[ H^{m}\varphi -V_{m,n}(qg(w))] \leq pf(H^{m}\Phi )=(\delta (.))^{m-1}\widetilde{p}H\Phi . \label{z"} \end{equation} This yields \begin{equation} pf[ H^{m}\varphi -V_{m,n}(qg(w))] \leq \| H\Phi \| _{\infty }(\delta (.))^{m-1}\widetilde{p}. \label{za} \end{equation} Then using Proposition \ref{prop8} with $\beta =m-1$, we deduce that the family of functions \[ \{ V_{m,n}(pf[ H^{m}\varphi -V_{m,n}(qg(w))]):w\in S\} \] is relatively compact in $C_0(B)$. So since $H^{m}\psi \in C_0(B)$, we conclude that the family $TS$ is relatively compact in $C_0(B)$. Next, we shall prove that $T(S)\subset S$. For all $w\in S$, we have obviously \[ Tw(x)\leq H^{m}\psi (x),\quad \forall x\in B. \] On the other hand, by \eqref{z"}, we have \begin{align*} V_{m,n}(pf[ H^{m}\varphi -V_{m,n}(qg(w))] &\leq V_{m,n}((\delta(.))^{m-1}\widetilde{p}H\Phi ) \\ &\leq V_{m,n}(\widetilde{p}H^{m}\Phi ). \end{align*} Then, by (H5) and \eqref{rr} we have \begin{equation} V_{m,n}(pf[ H^{m}\varphi -V_{m,n}(qg(w))] \leq \alpha _{ \widetilde{p}}H^{m}\Phi . \label{e} \end{equation} Which implies by \eqref{5.1}, that for each $x\in B$ \begin{align*} Tw(x) &\geq H^{m}\psi (x)-\alpha _{\widetilde{p}}H^{m}\Phi (x) \\ &\geq (\gamma -\alpha _{\widetilde{p}})H^{m}\Phi (x) \\ &\geq (1+\alpha _{\widetilde{q}})H^{m}\Phi (x) \\ &\geq H^{m}\Phi (x), \end{align*} which proves that $T(S)\subset S$. Now, we prove the continuity of the operator $T$ in $S$ for the supremum norm. Let $(w_{k})_{k\in \mathbb{N}}$ be a sequence in $S$ which converges uniformly to a function $w$ in $S$. Since $g$ is nonincreasing we deduce by $(H_{5})$ that \[ qg(w_{k})\leq qg(H^{m}\Phi )\leq \| H\Phi \| _{\infty }(\delta (.))^{m-1}\widetilde{q}. \] Now, it follows from (H5) and \eqref{aa}, that for each $x\in B$, \[ y\mapsto ( \delta (y)) ^{m-1}G_{m,n}(x,y)\widetilde{q}(y)\in L^{1}(B). \] We conclude by the dominated convergence theorem that for all $x\,\in \,B$, \begin{equation} \lim_{k\to \infty }V_{m,n}(qg(w_{k}))( x) =V_{m,n}(qg(w))( x) \label{5.4} \end{equation} and so from the continuity of $f$, we have \[ \lim_{k\to \infty }p( x) f[H^{m}\varphi (x)-V_{m,n}(qg(w_{k}))(x)]=p( x) f[H^{m}\varphi (x)-V_{m,n}(qg(w))(x)]. \] By \eqref{za}, for each $x,y$ in $B$, \[ G_{m,n}(x,y)p(y)f[H^{m}\varphi (y)-V_{m,n}(qg(w_{k}))(y)] \leq c(\delta (y))^{m-1}\widetilde{p}(y)G_{m,n}(x,y). \] Then since $\widetilde{p}\in K_{m,n}$, we get by \eqref{aa} and the dominated convergence theorem that for each $x\in B$, \[ Tw_{k}(x)\to Tw(x)\quad\text{as }k\to +\infty . \] Consequently, since $T(S)$ is relatively compact in $C_0(B)$, we deduce that the pointwise convergence implies the uniform convergence, namely, \[ {\Vert Tw_{k}-Tw\Vert }_{\infty }\to 0\quad \text{as } k\to +\infty . \] Therefore, $T$ is a continuous mapping of $S$ to itself. So, since $T(S)$ is relatively compact in $C_0(B)$, it follows that $T$ is a compact mapping on $S$. Finally, the Schauder fixed-point theorem implies the existence of a function $w\in S$ such that $w=Tw$. We put for $x\in B$ \begin{equation} u(x)=H^{m}\varphi (x)-V_{m,n}(qg(w))(x) \label{y} \end{equation} and $v(x)=w(x)$. Then \[ v(x)=H^{m}\psi (x)-V_{m,n}(pf(u))(x). \] It is clear that $(u,v)$ satisfies \eqref{gha} and it remains to prove that $ ( u,v) $ satisfies \eqref{1.1} with $\lambda =\mu=1$. Since $0\leq qg(v)\leq c(\delta (.))^{m-1}\widetilde{q}$ then by Proposition \ref{prop4}, it follows that $qg(v)\in L_{\rm loc}^{1}(B)$ and from \eqref{5.2}, we have $ V_{m,n}(qg(v))\in L_{\rm loc}^{1}(B)$. Hence $u$ satisfies (in the distributional sense) \[ (-\Delta )^{m}u=-(-\Delta )^{m}V_{m,n}(qg(w))=-qg(v). \] On the other hand, \[ (-\Delta )^{m}v=-(-\Delta )^{m}V_{m,n}(pf[ H^{m}\varphi -V_{m,n}(qg(v)) ] ). \] Using \eqref{za} and Proposition \ref{prop4} we deduce that $pf[H^{m}\varphi -V_{m,n}(qg(v))] \in L_{\rm loc}^{1}(B)$. Moreover, by \eqref{e} we get \[ V_{m,n}(pf(u))=V_{m,n}(pf[ H^{m}\varphi -V_{m,n}(qg(v))] )\in L_{\rm loc}^{1}(B). \] Hence, we have in the distibutional sense \[ (-\Delta )^{m}v=-pf(u). \] Finally, let $\xi \in \partial B$, then since $qg(v)\leq c(\delta (.))^{m-1}\widetilde{q}$, we deduce by Theorem \ref{thm1} for $\beta =m-1$, that \[ \underset{x\to \xi }{\lim }\frac{V_{m,n}(qg(v))(x)}{(1-| x^{2}| )^{m-1}}=0. \] Hence by \eqref{1.4} and \eqref{y} we have \[ \lim_{x\to \xi } \frac{u(x)}{(1-| x|^{2})^{m-1}} =\varphi (\xi )-\lim_{x\to \xi } \frac{ V_{m,n}(qg(v))(x)}{(1-| x^{2}| )^{m-1}}=\varphi (\xi ). \] Similarly, \[ \lim_{x\to \xi } \frac{v(x)}{(1-| x| ^{2})^{m-1}} =\psi (\xi )-\lim_{x\to \xi }\frac{ V_{m,n}(pf(u))}{(1-| x| ^{2})^{m-1}}=\psi (\xi ). \] This completes the proof. \section{Examples} In this section, we give examples that illustrate the existence results for \eqref{1.1}. In the following two examples (H3) is satisfied. \begin{example} \label{exa2} \rm Let $\varphi $ be a continuous function on $\partial B$ such that there exists $c_0>0$ satisfying $\varphi (x)\geq c_0$ for all $x\in \partial B$. Let $p$ be a nonnegative function on $B$ such that $p_0=\frac{p}{ (\delta (.))^{m-1}}$ is in $K_{m,n}$ and $q$ be a nonnegative measurable function satisfying for each $x\in B$, $q(x)\leq \frac{c}{( \delta (x)) ^{\lambda }}$ with $\lambda 0, \end{align*} which implies that $\lambda _0>0$. Now since $\psi $ is a nonnegative continuous function, then there exists $c>0$ such that for all $x\in B$, $H\psi (x)\geq c\delta (x)$. So we have \[ \frac{H^{m}\psi (x)}{V_{m,n}(qg(H^{m}\varphi ))(x)}\geq \frac{c\delta (x)(1-| x| ^{2})^{m-1}}{\| g(H\varphi )\| _{\infty }V_{m,n}q(x)}. \] Since $q(x)\leq \frac{c}{( \delta (x)) ^{\lambda }}$, $\lambda 0. \] This proves that $\mu _0>0$. \end{example} \begin{example} \label{exa3} \rm Let $\varphi $ and $\psi $ two nonnegative continuous functions on $\partial B$. We consider $f$, $g:(0,\infty )\to [ 0,\infty )$ nondecreasing and continuous functions. Since the functions $H^{m}\varphi $ and $H^{m}\psi $ are nonnegative bounded, then there exist $a_{1}\geq 0$, $a_{2}\geq 0$ such that $a_{1}+a_{2}>0$ and for each $x\in B$, \[ f(H^{m}\varphi (x))\leq a_{1}H^{m}\varphi (x)+a_{2},\quad g(H^{m}\psi (x))\leq a_{1}H^{m}\psi (x)+a_{2}. \] We assume \begin{itemize} \item[(A1)] $a_{1}\varphi \approx a_{1}\psi$; \item[(A2)] $a_{2}p\leq a_{2}\frac{c}{(\delta (x))^{\sigma }}$ $a_{2}q\leq a_{2} \frac{c}{(\delta (x))^{\sigma }}$ with $\sigma 0$ such that for all $x\in B$, $H\varphi (x)\geq c\delta (x)$, we obtain \begin{align*} \frac{H^{m}\varphi (x)}{V_{m,n}( qg(H^{m}\psi ) )(x)} &\geq c\frac{(a_{1}+a_{2})H\varphi (x)}{a_{1}H\psi (x) +a_{2}\delta (x)} \\ &\geq c\frac{a_{1}H\psi (x)+a_{2}\delta (x)}{a_{1}H\psi (x) +a_{2}\delta (x)} = c>0. \end{align*} Hence $\lambda _0>0$. Similarly we have $\mu _0>0$. Note that if $a_{1}=0$ then hypothesis (A1) is satisfied for each $\varphi $ and $\psi $ and if $a_{2}=0$ then the hypothesis (A2) is satisfied for each $p$ and $q$. \end{example} Now, as an application of Theorem \ref{thm2}, we give the following example. \begin{example} \label{exa4} \rm Let $\lambda $, $\mu $ be nonnegative constants, and $\varphi $, $\psi $ be two nontrivial nonnegative continuous functions on $\partial B$. Let $ f(t)=t^{\alpha }$ and $g(t)=t^{\beta }$, where $\alpha $, $\beta >0$. Now, let $\sigma 0$, $\beta >0$, $f(t)=t^{-\alpha }$ and $g(t)=t^{-\beta }$. Let $p$ and $q$ two nonnegative measurable functions such that \[ p(x)\leq \frac{c}{(\delta (x))^{\lambda }}\quad \text{with }\lambda 1$ such that if $\varphi \geq \gamma \Phi $ and $\psi \geq \gamma \Phi $ on $\partial B$, the problem \begin{gather*} (-\Delta )^{m}u+qv^{-\alpha }=0\quad\text{in }B, \\ (-\Delta )^{m}v+pu^{-\beta }=0\quad\text{in }B, \\ \lim_{x\to \xi \in \partial B}\frac{u(x)}{(1-| x| ^{2})^{m-1}}=\varphi (\xi ), \\ \lim_{x\to \xi \in \partial B}\frac{v(x)}{(1-| x| ^{2})^{m-1}}=\psi (\xi ), \end{gather*} has a positive continuous solution satisfying \eqref{gha}. \end{example} \begin{thebibliography}{00} \bibitem{BM} I. Bachar, H. M\^{a}agli; \emph{Estimates on the Green's function and existence of positive solutions of nonlinear singular elliptic equations in the half space}, Positivity 9 (2003), 153-192. \bibitem{IHSM} I. Bachar, H. M\^{a}agli, S. Masmoudi, M. Zribi; \emph{Estimates for the Green function and singular solutions for polyharmonic nonlinear equation}, Abstract and Applied Analysis 12 (2003), 715-741. \bibitem{Bachar} I. Bachar, H. M\^{a}agli, N. Zeddini; \emph{Estimates on the Green function and existence of positive solutions of nonlinear singular elliptic equations}, Commun. Contemp. Math. 53 (2003), 401-434. \bibitem{Sonia} S. Ben Othman; \emph{On a singular sublinear polyharmonic problem}, Abstract and Applied Analysis 2006 (2006), 1-14. \bibitem{Ben} S. Ben Othman, H. M\^{a}agli, M. Zribi; \emph{Existence results for polyharmonic boundary value problems in the unit ball}, Abstract and Applied Analysis 2007 (2007), 1-17. \bibitem{So} S. Ben Othman, H. M\^{a}agli, S. Masmoudi, M. Zribi; \emph{Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems}, Nonlinear Anal. 71 (2009), 4173-4150. \bibitem{Boggio} T. Boggio; \emph{Sulle funzioni di Green d'ordine m}, Rend. Circ. Math. Palermo, 20 (1905), 97-135. \bibitem{CR1} F. C. Cirstea, V. D. Radulescu; \emph{Entire solutions blowing up at infinity for semilinear elliptic systems}, J. Math. Pures. Appl. 81 (2002), 827-846. \bibitem{Dav} F. David; \emph{Radial solutions of an elliptic system}, Houston J. Math. 15 (1989), 425-458. \bibitem{Gar} P. R. Garabedian; \emph{A partial differential equation arising in conformal mapping}, Pacific J. Math. 1 (1951), 485-524 . \bibitem{Sameh} A. Ghanmi, H. M\^{a}agli, S. Turki, N. Zeddini; \emph{Existence of positive bounded solutions for some nonlinear elliptic systems}, J. Math. Anal. Appl. 352 (2009), 440-448. \bibitem{Ger} M. Ghergu, V. D. Radulescu; \emph{On a class of singular Gierer-Meinhart systems arising in morphogenesis}, C. R. Acad. Sci. Paris. Ser.I 344 (2007), 163-168. \bibitem{Lai} A. V. Lair , A. W. Wood; \emph{Existence of entire large positive solutions of semilinear elliptic systems}, Journal of Differential Equations 164 No.2 (2000), 380-394. \bibitem{MTZ} H. M\^{a}agli, F. Toumi, M. Zribi; \emph{Existence of positive solutions for some polyharmonic nonlinear boundary-value problems}, Electronic Journal of Differential Equations Vol. 2003 (2003), No. 58, 1-19. \bibitem{M} H. M\^{a}agli, M. Zribi; \emph{On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains}, Positivity 9 (2005), 667-686. \bibitem{zeddini} N. Zeddini; \emph{Positive solutions for a singular nonlinear problem on a bounded domain in $\mathbb{R}^{2}$}, Potential Analysis 18 (2003), 97-118. \end{thebibliography} \end{document}