\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 131, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/131\hfil Oscillation of solutions] {Oscillation of solutions for third order functional dynamic equations} \author[E. M. Elabbasy, T. S. Hassan \hfil EJDE-2010/131\hfilneg] {Elmetwally M. Elabbasy, Taher S. Hassan} % in alphabetical order \address{Elmetwally M. Elabbasy \newline Department of Mathematics, Faculty of Science\\ Mansoura University\newline Mansoura, 35516, Egypt} \email{emelabbasy@mans.edu.eg} \urladdr{http://www.mans.edu.eg/pcvs/10805/} \address{Taher S. Hassan \newline Department of Mathematics, Faculty of Science\\ Mansoura University\newline Mansoura, 35516, Egypt} \email{tshassan@mans.edu.eg} \urladdr{http://www.mans.edu.eg/pcvs/30140/ } \thanks{Submitted April 13, 2010. Published September 14, 2010.} \subjclass[2000]{34K11, 39A10, 39A99} \keywords{Oscillation; third order; functional dynamic equations; time scales} \begin{abstract} In this article we study the oscillation of solutions to the third order nonlinear functional dynamic equation $$ L_{3}(x(t))+\sum_{i=0}^{n}p_i(t)\Psi_k{\alpha_ki}(x(h_i(t)))=0, $$ on an arbitrary time scale $\mathbb{T}$. Here $$ L_0(x(t))=x(t),\quad L_k(x(t))=\Big(\frac{[ L_{k-1}x(t)]^{\Delta }}{a_k(t)}\Big)^{\gamma_kk}, \quad k=1,2,3 $$ with $a_1, a_2$ positive rd-continuous functions on $\mathbb{T}$ and $a_{3}\equiv 1$; the functions $p_i$ are nonnegative rd-continuous on $\mathbb{T}$ and not all $p_i(t)$ vanish in a neighborhood of infinity; $\Psi_k{c}(u)=|u|^{c-1}u$, $c>0$. Our main results extend known results and are illustrated by examples. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \section{Introduction} The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD dissertation \cite{h}, written under the direction of Bernd Aulbach. Since then a rapidly expanding body of literature has sought to unify, extend, and generalize ideas from discrete calculus, quantum calculus, and continuous calculus to arbitrary time scale calculus. Recall that a time scale $\mathbb{T}$ is a nonempty, closed subset of the reals, and the cases when this time scale is the reals or the integers represent the classical theories of differential and of difference equations. Many other interesting time scales exist, and they give rise to many applications (see \cite{bp}). Not only does the new theory of the so-called ``dynamic equations'' unify the theories of differential equations and difference equations, but also extends these classical cases to cases ``in between'', e.g., to the so-called $q$-difference equations when ${\mathbb{T=}}q^{\mathbb{N}_0}$ (which has important applications in quantum theory \cite{k}) and can be applied on different types of time scales like ${\mathbb{T=}}h\mathbb{Z}$, ${\mathbb{T=N}}_0^{2}$ and $ \mathbb{T=H}_{n}$ the space of harmonic numbers. In this work a knowledge and understanding of time scales and time scale notation is assumed; for an excellent introduction to the calculus on time scales, see Hilger \cite{h}, and Bohner and Peterson \cite{bp,bp2}. We are concerned with the oscillatory behavior of solutions to the third order nonlinear functional dynamic equation \begin{equation} L_{3}(x(t))+\sum_{i=0}^{n}p_i(t)\Psi_k{\alpha _i}(x(h_i(t)))=0, \label{1.1} \end{equation} on an arbitrary time scale $\mathbb{T}$, where $L_0(x(t)) =x(t)$, $$ L_k(x(t))=(\frac{[ L_{k-1}x(t)] ^{\Delta }}{a_k(t)})^{\gamma_kk},\quad k=1,2,3, $$ with $a_1, a_2$ are positive $rd$-continuous functions on $\mathbb{T}$ and $a_{3}\equiv 1$, and $\gamma_kk$, $k=1,2$ are quotients of odd positive integers, $\gamma_k{3}=1$ and $\alpha_k0=\gamma_1\gamma_k2$. We also assume $\Psi_k{c}(u)=| u|^{c-1}u$, $c>0$ and $p_i$, $i=0,1,2,\dots ,n$ are nonnegative $rd$-continuous functions on $\mathbb{T}$ such that not all $p_i(t)$ vanish in a neighborhood of infinity. The functions $h_i:\mathbb{T}\to \mathbb{T}$ satisfy $\lim_{t\to \infty }h_i(t)=\infty$, $i=0,1,2,\dots ,n$. Since we are interested in the oscillatory behavior of solutions near infinity, we assume that $\sup \mathbb{T}=\infty $, and define the time scale interval $ [t_0,\infty )_{\mathbb{T}}$ by $[t_0,\infty )_{\mathbb{T} }:=[t_0,\infty )\cap \mathbb{T}$. By a solution of \eqref{1.1} we mean a nontrivial real-valued function $L_0x\in C_{rd}^{1}[T_{x},\infty )_{ \mathbb{T}}$, $T_{x}\geq t_0$ which has the property that $L_1x\in C_{rd}^{1}[T_{x},\infty )_{\mathbb{T}}$, $L_2x\in C_{rd}^{1}[T_{x},\infty )_{\mathbb{T}}$ and $x(t)$ satisfies equation \eqref{1.1} on $[T_{x},\infty )_{\mathbb{T}}$, where $C_{rd}$ is the space of $rd$-continuous functions. The solutions vanishing identically in some neighborhood of infinity will be excluded from our consideration. A solution $x$ of \eqref{1.1} is said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is nonoscillatory. Throughout the paper, we define, for $ i=0,1,\dots ,n$ and $k=1,2$, \begin{gather*} A(s,u):=a_1(s)A_2^{1/\gamma_k1}(s,u),\quad A_k( s,u):=\int_{u}^{s}a_k(u)\Delta u, \\ \varphi_ki(t,u):=A_1(h_i(t),u)\phi _{i,2}^{1/\gamma_k1}(t),\quad \phi_k{i,k}(t):=\int_{h_i(t)}^{\infty }a_k(s)\Delta s, \\ h(t):=\min \{ t,\ h_i(t);\ i=0,1,\dots ,n\} ,\quad (\Phi ^{\Delta }(t))_{+}:=\max \{0,\Phi ^{\Delta }(t)\}. \end{gather*} In the previous few years, there has been an increasing interest in obtaining sufficient conditions for the oscillation/nonoscillation of solutions of different classes of dynamic equations, we refer the reader to the papers \cite{ag/bo3,ag/bo/gr1,ag/bo/gr/or2,Akin,BoHa,7,d,erbe1,erbe2, erbe,d1,ha/er/pe2,ha/er/pe3,erhape10,erhape11,erhape12,EH, er/ha/pe/sa3,soma,ha/er/pe1} and the references cited therein. Regarding third order dynamic equations, \cite{EA,EO,ha,erbee,erbeseveral} considered the third order dynamic equation \eqref{1.1}, in particular case and under quite restrictive conditions, for example, Erbe et al \cite{EA} studied the dynamic equation \eqref{1.1}, when $n=0$, $\gamma_1=\gamma_k2=1$, $\alpha_k0=1$ and $ h_0(t)\equiv t$ and established sufficient conditions which ensure the solution of equation \eqref{1.1} is either oscillatory or tends to zero and Erbe et al \cite{EO} extended the results which established in \cite{EA}, when $\gamma_k2\geq 1$ is the quotient of odd positive integers. Also, Hassan {\cite{ha} generalized the results which were established in \cite{EO,EA}}, for the equation \eqref{1.1}, when $n=0$, $\gamma_k1=1$, $\alpha_k0=\gamma_k2$, $\gamma_2>0$ is the quotient of odd positive integers, and $h_0(t)\leq t$ and $h_0^{\Delta }(t)\geq 0$, for $t\in \mathbb{T}$ and $h_0\circ \sigma =\sigma \circ h_0$. A number of sufficient conditions for oscillation were obtained for the cases when, for $k=1,2$, \[ \int_{t_0}^{\infty }a_k(t)\Delta t=\infty . \] Erbe, Hassan and Peterson \cite{erbee} solved this problem for the third order functional dynamic equation \eqref{1.1}, when $n=0$, $\gamma_k1=1$, $\alpha_k0=\gamma_k2$, $\gamma_k2>0$ is the quotient of odd positive integers and for both cases, for $k=1,2$, \begin{equation} \int_{t_0}^{\infty }a_k(t)\Delta t=\infty , \label{w} \end{equation} {and} \begin{equation} \int_{t_0}^{\infty }a_k(t)\Delta t<\infty . \label{2.44} \end{equation} Recently, Erbe, Hassan and Peterson \cite{erbeseveral} extended previous results for the third order dynamic equation \eqref{1.1} under some restrictive conditions, $n=2$ and $h\circ \sigma =\sigma \circ h$. The fact that the condition $h\circ \sigma =\sigma \circ h$ is not satisfied for some time scales, see \cite{erhape10}. The purpose of this paper is to extend the oscillation criteria which are established by \cite{erbeseveral}, {for the more general third order functional dynamic equation with mixed arguments} \eqref{1.1}, for several terms $n$ and without restrictive condition $h\circ \sigma =\sigma \circ h$ and for both of the cases \eqref{w} and \eqref{2.44}. We will still assume $\gamma _1,\gamma_k2>0$ are the quotient of odd positive integers and, hence our results will improve and extend results in the \cite{EA,EO,ha,erbee,erbeseveral}, and many known results on nonlinear oscillation. \section{Main Results} Throughout this paper, we assume that $\alpha_k1>\alpha_k2>\dots >\alpha_k{m}>\alpha_k0>\alpha_k{m+1}>\dots >\alpha_k{n}>0$. Before stating our main results, we begin with the following lemmas which will play an important role in the proof of our main results. \begin{lemma}\label{lem1} For each $n$-tuple $(\alpha_k1,\alpha_k2,\dots, \alpha_k{n})$, there exists $(\eta_k1,\eta_k2,\dots ,\eta_{n})$ with $0<\eta_ki<1$ satisfying \begin{equation} \sum_{i=1}^{n}\alpha_ki\eta_ki=\alpha_k0,\quad \sum_{i=1}^{n}\eta_i=1. \label{ll1} \end{equation} \end{lemma} The proof of the above lemma is the same as \cite[Lemma 2.1]{ha/er/pe3}. \begin{lemma} \label{lem2} Let $a_1$ be nondecreasing and delta differentiable on $[t_0,\infty )_{{\mathbb{T}}}$ and $x$ be a positive solution of \eqref{1.1} such that \begin{equation} x^{\Delta }(t)>0\text{\quad and\quad }(L_1( x(t)))^{\Delta }>0,\quad \text{for }t\geq t_0. \label{0} \end{equation} Then, if \begin{equation} \sum_{i=0}^{n}\int_{t_0}^{\infty }p_i(t)h_i^{\alpha_ki}(t)\Delta t=\infty , \label{2.1} \end{equation} we have \[ x^{\Delta \Delta }(t)>0,\quad \big(\frac{x(t)}{t}\big)^{\Delta }<0\quad \text{on }[t_0,\infty )_{{\mathbb{T}}}. \] \end{lemma} \begin{proof} Let $x$ be as in the statement of this lemma. Since \begin{equation} (L_1(x(t)))^{\Delta }=\frac{( (x^{\Delta }(t))^{\gamma_k1})^{\Delta }}{a_1^{\gamma _1\sigma }(t)}-\frac{(x^{\Delta }(t))^{\gamma _1}(a_1^{\gamma_k1}(t))^{\Delta }}{ a_1^{\gamma_k1}(t)a_1^{\gamma_k1\sigma }(t) }>0,\quad \text{for }t\geq t_0. \label{2.3} \end{equation} Using the P\"{o}tzsche chain rule \cite[Theorem 1.90]{bp}, we have \begin{equation} \begin{aligned} ((x^{\Delta }(t))^{\gamma_k1})^{\Delta } &= \gamma_k1\int_0^{1}[ x^{\Delta }(t)+h\mu (t)x^{\Delta \Delta }(t) ]^{\gamma_k1-1}\;dh\;x^{\Delta \Delta }(t) \\ &= \gamma_k1x^{\Delta \Delta }(t)\int_0^{1}[ hx^{\Delta \sigma }(t)+(1-h)x^{\Delta }(t)]^{\gamma_k1-1}dh. \end{aligned} \label{2.5} \end{equation} and \begin{equation} \begin{aligned} (a_1^{\gamma_k1}(t))^{\Delta } &= \gamma_k1\int_0^{1} [ a_1(t)+h\mu (t)a_1^{\Delta }(t)]^{\gamma _1-1}\;dh\;a_1^{\Delta }(t) \\ &= \gamma_k1a_1^{\Delta }(t)\int_0^{1}[ ha_1^{\sigma }(t)+(1-h)a_1(t)]^{\gamma_k1-1}dh. \end{aligned} \label{2.55} \end{equation} Using that $a_1$ is a nondecreasing and $x$ is increasing, we obtain, from \eqref{2.3}, \eqref{2.5} and \eqref{2.55} that $ x^{\Delta \Delta }(t)>0$ on $[t_0,\infty )_{{\mathbb{T}}}$. Next, we show that $\big(\frac{x(t)}{t}\big)^{\Delta }<0$. To see this, let $ U(t):=x(t)-tx^{\Delta }(t)$, then $U^{\Delta }(t)=-\sigma (t)x^{\Delta \Delta }(t)<0$ for $t\in [ t_0,\infty )_{{\mathbb{T}}}$. This implies that $U(t)$ is strictly decreasing on $[t_0,\infty )_{{\mathbb{T}} } $. We claim $U(t)>0$ on $[t_0,\infty )_{{\mathbb{T}}}$. Assume not, then there exists $t_1\geq t_0$ such that $U(t)<0$ on $[t_1,\infty )_{\mathbb{T}}$. Therefore, \begin{equation} \big(\frac{x(t)}{t}\big)^{\Delta }=\frac{tx^{\Delta }(t)-x(t)}{t\sigma (t)}=-\frac{U(t)}{t\sigma (t)}>0,\quad \text{for }t\in [ t_1,\infty )_{{\mathbb{T}}}. \label{2.8} \end{equation} Pick $t_2\in [ t_1,\infty )_{{\mathbb{T}}}$ so that $h_i(t)\geq t_1$, for $t\geq t_2$ and $i=0,1,\dots ,n$. Then, for $t\geq t_2$ and $i=0,1,\dots ,n$, we have from \eqref{2.8} that \[ \frac{x(h_i(t))}{h_i(t)}\geq \frac{x(t_1)}{t_1}=:c>0,\quad \text{for $t\geq t_2$ and $i=0,1,\dots ,n$}, \] so $x(h_i(t))\geq ch_i(t)$ for $t\geq t_2$ and $i=0,1,\dots ,n$. Now by integrating both sides of the dynamic equation \eqref{1.1} from $t_2$ to $ t$, we have \[ L_2(x(t_2))-L_2(x(t) )=\sum_{i=0}^{n}\int_{t_2}^{t}p_i(s)\Psi_k{\alpha_i}(x(h_i(s)))\Delta s. \] This implies, from \eqref{0} that \begin{equation} L_2(x(t_2))\geq \sum_{i=0}^{n}\int_{t_2}^{t}p_i(s)\Psi_k{\alpha_ki}(x(h_i(s)))\Delta s\geq \sum_{i=0}^{n}c^{\alpha_ki}\int_{t_2}^{t}p_i(s)h_i^{\alpha _i}(s)\Delta s. \label{2.9} \end{equation} Letting $t\to \infty $ we obtain a contradiction to assumption \eqref{2.1}. Hence $U(t)=x(t)-tx^{\Delta }(t)>0$ on $[t_0,\infty )_{{\mathbb{T}}}$. Consequently, \begin{equation} \big(\frac{x(t)}{t}\big)^{\Delta }=-\frac{U(t)}{t\sigma (t)}<0,\quad t\in [ t_0,\infty )_{{\mathbb{T}}}. \label{2.10} \end{equation} This completes the proof of Lemma \ref{lem2}. \end{proof} First, we establish oscillation criteria for \eqref{1.1} when \eqref{w} holds. \begin{theorem}\label{thm11} Let $\alpha_k0=\gamma_k1\gamma_k2$ and $h_i(t)$, $i=0,1,2,\dots ,n$ be nondecreasing functions on $[t_0,\infty )_{{\mathbb{T}}}$. Assume that \eqref{w} and \begin{equation} \int_{t_0}^{\infty }a_1(t)\Big(\int_{t}^{\infty }a_2(s)\Big( \sum_{i=0}^{n}P_i(s)\Big)^{1/\gamma_k2}\Delta s\Big) ^{1/\gamma_k1}\Delta t=\infty , \label{21} \end{equation} where $P_i(s):=\int_{s}^{\infty }p_i(u)\Delta u$, $i=0,1,\dots ,n$. Furthermore, suppose that, for all sufficiently large $T_1$, there is $T>T_1$ such that $h(T)>T_1$ and \begin{equation} \limsup_{t\to \infty }Q_1(t)\Big( \int_{T_1}^{h(t)}A(s,T_1)\Delta s\Big) ^{\alpha_k0}>1, \label{v11} \end{equation} where \[ Q_1(t):=P_0(t) +\prod_{i=1}^{n}(\eta_ki^{-1}P_i(t) )^{\eta_ki}. \] Then every solution of \eqref{1.1} is either oscillatory or tends to zero. \end{theorem} \begin{proof} Assume \eqref{1.1} has a non-oscillatory solution $x$ on $[t_0,\infty )_{\mathbb{T}}$. Then, without loss of generality, there is a $t_1\in [ t_0,\infty )_{\mathbb{T}}$, sufficiently large, such that $ x(t)>0$ and $x(h_i(t))>0$ on $[t_1,\infty )_{\mathbb{T}}$, for $i=0,1,2,\dots ,n$ and not all of the $p_i(t)$'$s$ are identically zero on $[t_1,\infty )_{\mathbb{T}}$. From \eqref{1.1}, we have \begin{equation} L_{3}(x(t))=-\sum_{i=0}^{n}p_i(t)\Psi_k{\alpha _i}(x(h_i(t)))<0, \label{o} \end{equation} on$\ [t_1,\infty )_{{\mathbb{T}}}$. Then $L_2(x(t) )$ is strictly decreasing on $[t_1,\infty )_{\mathbb{T}}$. Therefore, $x^{\Delta }(t)$ and $(L_1(x( t)))^{\Delta }$ are eventually of one sign. Then, there exists a sufficiently large $t_2\geq t_1$ so that $x^{\Delta }( t)$ and $L_1^{\Delta }(x(t))$ are of fixed sign for $t\geq t_2$. Therefore, we consider the following four cases: \begin{itemize} \item[(i)] $x^{\Delta }(t)<0$ and $(L_1(x(t)))^{\Delta }<0$; \item[(ii)] $x^{\Delta }(t)>0$ and $(L_1(x(t)))^{\Delta }<0$; \item[(iii)] $x^{\Delta }(t)<0$ and $(L_1(x(t)))^{\Delta }>0$; \item[(iv)] $x^{\Delta }(t)>0$ and $(L_1(x(t)))^{\Delta }>0$, on $[t_2,\infty )_{{\mathbb{T}}}$. \end{itemize} For case (i), we have \[ x(t)=x(t_2)+\int_{t_2}^{t}a_1(s)L_1^{1/\gamma _1}(x(s))\Delta s\leq x(t_2)+L_1^{1/\gamma _1}(x(t_2))\int_{t_2}^{t}a_1( s)\Delta s. \] Hence by \eqref{w}, we have $\lim_{t\to \infty }x(t)=-\infty $, which contradicts the fact that $x$ is a positive solution of \eqref{1.1}. For the case (ii), from \eqref{o} we have \begin{align*} L_1(x(t))&= L_1(x(t_2) )+\int_{t_2}^{t}a_2(s)L_2^{1/\gamma_k2}(x(s))\Delta s \\ &\leq L_1(x(t_2))+L_2^{1/\gamma_k2}( x(t_2))\int_{t_2}^{t}a_2(s)\Delta s. \end{align*} Then, by \eqref{w}, we have $\lim_{t\to \infty}L_1(x(t))=-\infty $, which contradicts $x^{\Delta }(t)>0$, for $t\geq t_2$. For the case (iii), we have $\lim_{t\to \infty }x(t)=c_0\geq 0$ and $\lim_{t\to \infty }L_1(x(t))=c_1\leq 0$. If we assume $c_0>0$, then $\Psi_k{\alpha_ki}(x(h_i(t)))\geq K$, for $i=0,1,2,\dots ,n$ and $t\geq t_{3}\geq t_2$, where $K:=\min \{ c_0^{\alpha _i}:~i=0,1,2,\dots ,n\} $. Integrating equation \eqref{1.1} from $t$ to $\infty $, we obtain \begin{align*} -L_2(x(t))&< -\sum_{i=0}^{n}\int_{t}^{\infty }p_i(s)\Psi_k{\alpha_ki}(x(h_i(s)))\Delta s \\ &\leq -c_0\sum_{i=0}^{n}\int_{t}^{\infty }p_i(s)\Delta s=-c_0\sum_{i=0}^{n}P_i(t), \end{align*} which implies \[ -(L_1(x(t)))^{\Delta} <-C_0a_2(t)\Big(\sum_{i=0}^{n}P_i(t)\Big)^{1/\gamma_k2}, \] where $C_0:=K^{1/\gamma_k2}\geq 0$. Integrating this inequality from $t$ to $\infty $, we obtain \begin{align*} L_1(x(t))&<-C_0\int_{t}^{\infty }a_2( s)\Big(\sum_{i=0}^{n}P_i(s)\Big)^{1/\gamma_2}\Delta s+c_1\\ &\leq -C_0\int_{t}^{\infty }a_2(s)\Big( \sum_{i=0}^{n}P_i(s)\Big)^{1/\gamma_k2}\Delta s. \end{align*} Finally, integrating the last inequality from $t_{3}$ to $t$, we obtain \[ x(t)<-c_0\int_{t_{3}}^{t}a_1(s)\Big(\int_{s}^{\infty }a_2( u)(\sum_{i=0}^{n}P_i(u))^{1/\gamma _2}\Delta u\Big)^{1/\gamma_k1}\Delta s+x(t_{3}). \] Hence by \eqref{21}, we have $\lim_{t\to \infty }x(t)=-\infty $, which contradicts the fact that $x$ is a positive solution of \eqref{1.1}. Thus, we conclude that $\lim_{t\to \infty }x(t)=0$. For the case (iv), integrating both sides of the dynamic equation \eqref{1.1} from $t$ to $\infty $ and then using the facts that $x(t)$ is strictly increasing and $h_i(t)$, $i=0,1,2,\dots ,n$ are nondecreasing, we obtain \begin{equation} \sum_{i=0}^{n}\Psi_k{\alpha_ki}(x(h_i(t)))P_i(t)\leq L_2(x(t)). \label{11f} \end{equation} Since$\ L_2(x(t))$ is strictly decreasing on $[t_2,\infty )_{{\mathbb{T}}}$, we obtain \begin{align*} L_1(x(t)) &> L_1(x(t))-L_1(x(t_2)) =\int_{t_2}^{t}a_2(s)L_2^{1/\gamma_k2}(x(s))\Delta s \\ &\geq L_2^{1/\gamma_k2}(x(t))\int_{t_2}^{t}a_2(s)\Delta s =L_2^{1/\gamma_k2}(x(t))A_2(t,t_2). \end{align*} Hence \[ x^{\Delta }(t) \geq a_1(t)A_2^{1/\gamma_k1}(t,t_2)L_2^{1/\alpha_0}(x(t)). \] Similarly, we see that \[ x(t)\geq L_2^{1/\alpha_k0}(x(t)) \int_{t_2}^{t}a_1(s)A_2^{1/\gamma_k1}(s,t_2)\Delta s, \] and so \begin{equation} x^{\alpha_k0}(t)\geq L_2(x(t))\Big( \int_{t_2}^{t}A(s,t_2)\Delta s\Big)^{\alpha_k0}. \label{hh1} \end{equation} Pick $t_{3}>t_2$, sufficiently large, so that $h(t)>t_2$, for $t\geq t_{3}$. Then from \eqref{hh1}, for $t\geq t_{3}$, we obtain \begin{equation} \begin{aligned} \Psi_k{\alpha_k0}(x(h(t))) &\geq L_2(x(h(t)))\Big(\int_{t_2}^{h(t)}A(s,t_2)\Delta s\Big)^{\alpha_k0}\\ &\geq L_2(x(t))\Big(\int_{t_2}^{h(t)}A(s,t_2)\Delta s\Big)^{\alpha_k0}. \end{aligned} \label{00f} \end{equation} Using \eqref{00f} in \eqref{11f}, for $t\geq t_{3}$, we find that \[ \sum_{i=0}^{n}\Psi_k{\alpha_ki}(x(h_i(t)))P_i(t)\leq \Psi _{\alpha_k0}(x(h(t)))\Big(\int_{t_2}^{h(t)}A( s,t_2)\Delta s\Big)^{-\alpha_k0}, \] which yields from the fact $x^{\Delta }(t)>0$ on $[t_2,\infty )_{{\mathbb{T}}}$ that \begin{equation} P_0(t)+\sum_{i=1}^{n}\Psi_k{\alpha_ki-\alpha _0}(x(h(t)))P_i(t)<\Big(\int_{t_2}^{h(t) }A(s,t_2)\Delta s\Big)^{-\alpha_k0}. \label{&&} \end{equation} Using the arithmetic-geometric mean inequality see \cite[Page 17]{3} \[ \sum_{i=1}^{n}\eta_kiu_i\geq \prod_{i=1}^{n}u_i^{\eta _i},\quad \text{where }u_i\geq 0. \] From Lemma \ref{lem1}, for $t\geq T$, we obtain \begin{equation} \begin{aligned} \sum_{i=1}^{n}\Psi_k{\alpha_ki-\alpha_k0}(x(h(t)))P_i(t) &=\sum_{i=1}^{n}\eta_ki(\eta_ki^{-1}\Psi_k{\alpha_ki-\alpha _0}(x(h(t)))P_i(t)) \\ &\geq \prod_{i=1}^{n}(\eta_ki^{-1}P_i( t))^{\eta_ki}\Psi_k{\eta_ki(\alpha_i-\alpha_k0)}(x(h(t)))\\ &\overset{\eqref{ll1}}{=} \prod_{i=1}^{n}( \eta_ki^{-1}P_i(t))^{\eta_ki}, \end{aligned} \label{&} \end{equation} Using \eqref{&} in \eqref{&&}, we have \[ Q_1(t)\Big(\int_{t_2}^{h(t)}A( s,t_2)\Delta s\Big)^{\alpha_k0}<1,\quad \text{for } t\geq t_{3}. \] Then \[ \limsup_{t\to \infty }Q_1(t)\Big( \int_{t_2}^{h(t)}A(s,t_2)\Delta s\Big) ^{\alpha_k0}\leq 1, \] which leads to a contradiction to \eqref{v11}. \end{proof} \begin{theorem} \label{thm4} Assume that \eqref{w} and \eqref{21} hold. Furthermore, suppose that, for all sufficiently large $T\in [ t_0,\infty )_{{\mathbb{T}}}$, such that $h_i(T)>t_0$, $i=0,1,\dots ,n$, \begin{equation} \sum_{i=0}^{n}\int_{t_0}^{\infty }p_i(t)A_1^{\alpha_ki}( h_i(t),t_0)\Delta t=\infty . \label{f3} \end{equation} Then every solution of equation \eqref{1.1} is either oscillatory or tends to zero. \end{theorem} \begin{proof} Assume \eqref{1.1} has a non-oscillatory solution $x$ on $[t_0,\infty )_{\mathbb{T}}$. Then, without loss of generality, there is a $t_1\in [ t_0,\infty )_{\mathbb{T}}$, sufficiently large, such that $ x(t)>0$ and $x(h_i(t))>0$ on $[t_1,\infty )_{\mathbb{T}}$, for $i=0,1,2,\dots ,n$ and not all $p_i(t)$ are identically zero on $[t_1,\infty )_{\mathbb{T}}$. Therefore, as in the proof of Theorem \ref{thm11}, we obtain there exists $t_2\geq t_1$ so that \[ (L_2(x(t)))^{\Delta }<0,\quad (L_1(x(t)))^{\Delta }>0,\quad \text{on } [t_2,\infty )_{{\mathbb{T}}}, \] and either $L_1(x(t))>0$ on $[t_2,\infty )_{\mathbb{T}}$ or $\lim_{t\to \infty }x(t)=0$. Assume $L_1( x(t))>0$ on $[t_2,\infty )_{{\mathbb{T}}}$. Since $ (L_1(x(t)))^{\Delta }>0$ on $ [t_2,\infty )_{{\mathbb{T}}}$, then \[ L_1(x(t))\geq L_1(x(t_2))=:c>0. \] Thus \[ x(t)\geq x(t)-x(t_2)\geq C\int_{t_2}^{t}a_1(s)\Delta s, \] where $C:=c^{1/\gamma_k1}$. Pick $t_{3}\geq t_2$ such that $h_i(t)>t_2$, for $t\geq t_{3}$ and $i=0,1,\dots ,n$, then, for $i=0,1,\dots ,n$, \begin{equation} x(h_i(t))>CA_1(h_i(t),t_2)\quad \text{on } [t_{3},\infty )_{{\mathbb{T}}}. \label{f1} \end{equation} It follows from \eqref{1.1} and \eqref{f1} that \[ -L_{3}(x(t))= \sum_{i=0}^{n}p_i(t)\Psi_k{\alpha_i}(x(h_i(t))) \geq \sum_{i=0}^{n}p_i(t)[ CA_1(h_i(t),t_2)]^{\alpha_ki}. \] Integrating both sides of the last inequality from $t_{3}$ to $t$, we have \begin{align*} L_2(x(t_{3})) &> \sum_{i=0}^{n}\int_{t_{3}}^{t}p_i(s)[ CA_1(h_i( s),t_2)]^{\alpha_ki}\Delta s+L_2(x( t))\\ &> \sum_{i=0}^{n}\int_{t_{3}}^{t}p_i(s)[ CA_1(h_i( s),t_2)]^{\alpha_ki}\Delta s, \end{align*} which contradicts \eqref{f3}. This completes the proof. \end{proof} \begin{example} \label{exa1} \rm Consider the third order dynamic equation \eqref{1.1}, for $t_0\geq 1$, where $0<\gamma_k1\leq 1$ and $\gamma_k2=\frac{1}{\gamma_k1}$ are the quotient of odd positive integers and $\alpha_ki$, $i=0,1,\dots ,n$ are positive constants and we assume $h_i(t)\leq t^{\gamma_k2}$, $i=0,1,\dots ,n$. Let \[ a_1(t)=1,\quad a_2(t)=\frac{1}{t^{\gamma_k1}},\quad p_i(t)=\frac{1}{th_i(t)},\quad i=0,1,\dots ,n. \] It is clear that conditions \eqref{w} hold, since \[ \int_{t_0}^{\infty }\Delta t=\infty ,\quad \int_{t_0}^{\infty }\frac{\Delta t}{t^{\gamma_k1}}=\infty ,\quad \text{for } 0<\gamma_k1\leq 1, \] by \cite[Example 5.60]{bp2}. Note that \begin{gather*} \int_{s}^{\infty }p_i(u)\Delta u = \int_{s}^{\infty }\frac{\Delta u}{ uh_i(u)}\geq \int_{s}^{\infty }\frac{\Delta u}{u^{\gamma_k2+1}} \geq \frac{1}{\gamma_k2}\int_{s}^{\infty }\big(\frac{-1}{u^{\gamma _2}}\big)^{\Delta }\Delta u =\frac{1}{\gamma_k2}\frac{1}{s^{\gamma_2}}, \\ \int_{t}^{\infty }a_2(s)(\sum_{i=0}^{n}P_i(s))^{1/\gamma_k2}\Delta s \geq \gamma_k0\int_{t}^{\infty }\frac{\Delta s}{s^{\gamma_k1+1}} \geq \frac{\gamma_k0}{\gamma_k1}\int_{t}^{\infty }(\frac{-1}{ s^{\gamma_k1}})^{\Delta }\Delta s=\frac{\gamma_k0}{\gamma _1t^{\gamma_k1}}, \end{gather*} where $\gamma_k0:=(\frac{n+1}{\gamma_k2})^{1/\gamma_k2}$ and \[ \int_{t_0}^{\infty }a_1(t)\Big(\int_{t}^{\infty }a_2(s)( \sum_{i=0}^{n}P_i(s))^{1/\gamma_k2}\Delta s\Big) ^{1/\gamma_k1}\Delta t \geq \gamma \int_{t_0}^{\infty }\frac{\Delta t}{t} =\infty , \] where $\gamma :=(\gamma_k0/\gamma_k1\big)^{1/\gamma_1}$, so that condition \eqref{21} holds. To apply Theorem \ref{thm4}, it remains to prove that condition \eqref{f3} holds. To see this, note that \[ \sum_{i=0}^{n}\int_{t_0}^{\infty }p_i(t)\Big[ \int_{t_0}^{h_i(t)}a_1(s)\Delta s\Big]^{\alpha_i}\Delta t \geq \int_{t_0}^{\infty }\big(\frac{1}{t}-\frac{t_0}{ th_0(t)}\big)\Delta t=\infty , \] for those time scales, where $\int_{t_0}^{\infty }\frac{\Delta t}{ th_0(t)}<\infty $. Then, by Theorem \ref{thm4}, every solution of equation \eqref{1.1} is either oscillatory or tends to zero. \end{example} By using Lemma \ref{lem2}, we obtain the following oscillation criterion for \eqref{1.1}. \begin{theorem}\label{thm1} Let $\alpha_k0=\gamma_k1\gamma_k2$ and $a_1$ be nondecreasing and delta differentiable on $[t_0,\infty )_{{\mathbb{T}}}$. Assume that \eqref{w}, \eqref{2.1} and \eqref{21} hold. Furthermore, suppose that there exists a positive $\Delta -$differentiable function $ \phi (t)$ and, \textit{for all sufficiently large }$T_1$, there is $T>T_1 $ such that \begin{equation} \limsup_{t\to \infty }\int_{T}^{t}\Big[ \phi (s)Q_2(s)-\frac{ ((\phi ^{\Delta }(s))_{+})^{\alpha_k0+1}}{ (\alpha_k0+1)^{\alpha_k0+1}(\phi (s)A(s,T_1)) ^{\alpha_k0}}\Big]\Delta s=\infty , \label{m2} \end{equation} where \[ Q_2(t):=p_0(t)H_0(t) +\prod_{i=1}^{n}(\eta_ki^{-1}p_i(t)H_i(t))^{\eta_ki}, \] and, for $i=0,1,\dots ,n$, \[ H_i(t):=\begin{cases} 1, & h_i(t)\geq t \\ (\frac{h_i(t)}{t})^{\alpha_ki}, & h_i(t)\leq t. \end{cases} \] Then every solution of \eqref{1.1} is either oscillatory or tends to zero. \end{theorem} \begin{proof} Assume \eqref{1.1} has a non-oscillatory solution $x$ on $[t_0,\infty )_{\mathbb{T}}$. Then, without loss of generality, there is a $t_1\in [ t_0,\infty )_{\mathbb{T}}$, sufficiently large, such that $ x(t)>0$ and $x(h_i(t))>0$ on $[t_1,\infty )_{\mathbb{T}}$, for $i=0,1,2,\dots ,n$ and not all of the $p_i(t)$'$s$ are identically zero on $[t_1,\infty )_{\mathbb{T}}$. Therefore, as in the proof of Theorem \ref{thm11}, we obtain there exists $t_2\geq t_1$ so that \[ (L_2(x(t)))^{\Delta }<0,\quad (L_1(x(t)))^{\Delta }>0,\quad \text{on } [t_2,\infty )_{{\mathbb{T}}}, \] and either $L_1(x(t))>0$ on $[t_2,\infty )_{\mathbb{T}}$ or $\lim_{t\to \infty }x(t)=0$. Assume $L_1( x(t))>0$ on $[t_2,\infty )_{{\mathbb{T}}}$. Consider the Riccati substitution \[ w(t)=\phi (t)\frac{L_2(x(t))}{x^{\alpha_0}(t)}. \] By the product rule and then the quotient rule \begin{equation} \begin{aligned} w^{\Delta }(t) &= \frac{\phi (t)}{x^{\alpha_k0}(t)}(L_2(x(t)))^{\Delta } +\big(\frac{\phi (t) }{x^{\alpha_k0}(t)}\big)^{\Delta }L_2^{\sigma }( x(t)) \\ &= \phi (t)\frac{L_{3}(x(t))}{x^{\alpha_k0}(t)} +\Big(\frac{\phi ^{\Delta }(t)}{x^{\alpha_k0\sigma }(t)}-\frac{\phi (t)(x^{\alpha_k0}(t))^{\Delta }}{x^{\alpha_k0}(t)x^{\alpha_k0\sigma }(t)}\Big)L_2^{\sigma }(x(t)). \end{aligned} \label{1.2} \end{equation} From \eqref{1.2} and the definition of $w(t)$, we have, for $t\geq t_2$ \[ w^{\Delta }(t)=-\phi (t)\sum_{i=0}^{n}p_i(t) \frac{x^{\alpha_ki}(h_i(t))}{x^{\alpha_k0}(t)} +\frac{\phi ^{\Delta }(t)}{\phi ^{\sigma }(t)}w^{\sigma }(t)-\frac{\phi (t)(x^{\alpha_k0}(t))^{\Delta }}{\phi ^{\sigma }(t)x^{\alpha_k0}(t)}w^{\sigma }(t). \] Now, for a fixed $i$ and let $t$ be a fixed point in $[t_2,\infty )_{\mathbb{T}}$. Then either $h_i(t)\leq t$ or $h_i(t)\geq t$. First, consider the case when $h_i(t)\geq t$. Then, by using the fact that $x$ is strictly increasing, we obtain $x(h_i(t))\geq x(t)$. Next, consider the case when $h_i(t)\leq t$. Then, in view of Lemma \ref{lem2}, we obtain $x(h_i(t))\geq \frac{h_i(t)}{t}x(t)$. It follows from the definition of $H_i(t)$ that, for $t\geq t_2$, \[ w^{\Delta }(t)\leq -\phi (t)\sum_{i=0}^{n}p_i(t)H_i(t) x^{\alpha_ki-\alpha_k0}(t)+\frac{\phi ^{\Delta }(t)}{\phi ^{\sigma }(t)} w^{\sigma }(t)-\frac{\phi (t)(x^{\alpha_k0}(t))^{\Delta }}{ \phi ^{\sigma }(t)x^{\alpha_k0}(t)}w^{\sigma }(t). \] As in the proof of Theorem \ref{thm11}, we obtain, for $t\geq t_2$, \[ w^{\Delta }(t)\leq -\phi (t)Q_2(t)+\frac{\phi ^{\Delta }(t)}{\phi ^{\sigma }(t)}w^{\sigma }(t)-\frac{\phi (t)(x^{\alpha_k0}(t))^{\Delta } }{\phi ^{\sigma }(t)x^{\alpha_k0}(t)}w^{\sigma }( t). \] Then, by the P\"{o}tzsche chain rule \cite[Theorem 1.90]{bp}, we obtain \begin{align*} (x^{\alpha_k0}(t))^{\Delta } &= \alpha_k0\int_0^{1}[x(t)+h\mu (t)x^{\Delta }(t)] ^{\alpha_k0-1}dh\;x^{\Delta }(t)\\ &= \alpha_k0\int_0^{1}[ (1-h)x(t) +hx^{\sigma }(t)]^{\alpha_k0-1}dh\;x^{\Delta }( t)\\ &\geq \begin{cases} \alpha_k0x^{(\alpha_k0-1)\sigma }(t)\;x^{\Delta }( t),& 0<\alpha_k0\leq 1 \\ \alpha_k0x^{\alpha_k0-1}(t)\;x^{\Delta }(t) ,& \alpha_k0\geq 1. \end{cases} \end{align*} If $0<\alpha_k0\leq 1$, we have \[ w^{\Delta }(t)\leq -\phi (t)Q_2(t)+\frac{\phi ^{\Delta }(t)}{\phi ^{\sigma }(t)}w^{\sigma }(t)-\frac{\alpha_k0\phi (t)w^{\sigma }( t)}{\phi ^{\sigma }(t)}\frac{x^{\Delta }(t) }{x^{\sigma }(t)}\big(\frac{x^{\sigma }(t)}{ x(t)}\big)^{\alpha_k0}, \] whereas if $\alpha_k0\geq 1$, we have \[ w^{\Delta }(t)\leq -\phi (t)Q_2(t)+\frac{\phi ^{\Delta }(t)}{\phi ^{\sigma }(t)}w^{\sigma }(t)-\frac{\alpha_k0\phi (t)w^{\sigma }( t)}{\phi ^{\sigma }(t)}\frac{x^{\Delta }(t) }{x^{\sigma }(t)}\frac{x^{\sigma }(t)}{x( t)}. \] Using that $x(t)$ is strictly increasing on $[t_2,\infty )_{\mathbb{T}}$, we obtain that, for $\alpha_k0>0$, \begin{equation} w^{\Delta }(t)\leq -\phi (t)Q_2(t)+\frac{\phi ^{\Delta }(t)}{\phi ^{\sigma }(t)}w^{\sigma }(t)-\frac{\alpha_k0\phi (t)w^{\sigma }( t)}{\phi ^{\sigma }(t)}\frac{x^{\Delta }(t) }{x^{\sigma }(t)}. \label{w1} \end{equation} Then using that $L_2(x(t))$ is strictly decreasing on $[t_2,\infty )_{\mathbb{T}}$, we obtain that, for $t\geq t_2 $, \begin{equation} \begin{aligned} L_1(x(t))&> L_1(x(t)) -L_1(x(t_2))=\int_{t_2}^{t}a_2(s)L_2^{1/\gamma_k2}(x(s))\Delta s \\ &\geq L_2^{1/\gamma_k2}(x(t)) \int_{t_2}^{t}a_2(s)\Delta s \geq L_2^{\sigma /\gamma_k2}(x(t))A_2(t,t_2). \end{aligned} \label{p} \end{equation} From \eqref{w1} and \eqref{p}, we obtain \begin{equation} w^{\Delta }(t)\leq -\phi (t)Q_2(t)+\frac{(\phi ^{\Delta }(t)) _{+}}{\phi ^{\sigma }(t)}w^{\sigma }(t)-\frac{\alpha_k0\phi (t)A(t,t_2)}{\phi ^{\alpha \sigma }(t)}w^{\alpha \sigma }(t), \label{m} \end{equation} where $\alpha :=\frac{\alpha_k0+1}{\alpha_k0}$. Define $X\geq 0$ and $Y\geq 0$ by \[ X^{\alpha }:=\frac{\alpha_k0\phi (t)A(t,t_2)}{\phi ^{\alpha \sigma }(t)}w^{\alpha \sigma }(t),\quad Y^{\alpha -1}:=\frac{(\phi ^{\Delta }(t))_{+}}{\alpha (\alpha _0\phi (t)A(t,t_2))^{1/\alpha }}. \] Then, using the inequality, see \cite{w}, \begin{equation} \alpha XY^{\alpha -1}-X^{\alpha }\leq (\alpha -1)Y^{\alpha }, \label{mm} \end{equation} we obtain \[ \frac{(\phi ^{\Delta }(t))_{+}}{\phi ^{\sigma }(t)}w^{\sigma }(t)-\frac{\alpha_k0\phi (t)A(t,t_2)}{\phi ^{\alpha \sigma }(t)}w^{\alpha \sigma }(t)\leq \frac{((\phi ^{\Delta }(t))_{+})^{\alpha_k0+1}}{ (\alpha_k0+1)^{\alpha_k0+1}(\phi (t)A(t,t_2)) ^{\alpha_k0}}. \] From the above inequality and \eqref{mm}, we obtain \[ w^{\Delta }(t)\leq -\phi (t)Q_2(t)+\frac{((\phi ^{\Delta }(t))_{+})^{\alpha_k0+1}}{(\alpha_k0+1)^{\alpha _0+1}(\phi (t)A(t,t_2))^{\alpha_k0}}. \] Integrating both sides from $t_2$ to $t$, \[ \int_{t_2}^{t}\Big[ \phi (s)Q_2(s)-\frac{((\phi ^{\Delta }(s))_{+})^{\alpha_k0+1}}{(\alpha_k0+1)^{\alpha _0+1}(\phi (s)A(s,t_2))^{\alpha_k0}}\Big] \Delta s\leq w(t_2)-w(t)\leq w(t_2), \] which leads to a contradiction to \eqref{m2}. \end{proof} \begin{example}\label{exa2}\rm Consider the third order nonlinear dynamic equation \eqref{1.1}, for $t_0\geq 1$, where $\gamma_k1$ and $\gamma_k2$ are the quotient of odd positive integers and $\alpha_ki$, $i=0,1,\dots ,n$ are positive constants with $\alpha_k1>\alpha_k2>\dots >\alpha_k{m}>\alpha_k0>\alpha _{m+1}>\dots >\alpha_k{n}>0$ and also, we assume $h_i(t)\geq t$, $i=0,1,\dots ,n$ such that \eqref{2.1} holds. Note that since $h_i(t)\geq t$, $i=0,1,\dots ,n$ it follows that $H_i(t)\equiv 1$, $i=0,1,\dots ,n$. Let \begin{gather*} a_1(t)=t^{1/\alpha_k0},\quad a_2(t)=\frac{1}{t^{1-1/\gamma_k2}}, \\ p_0(t)=\frac{\beta_k0}{t^{\alpha_k0+2}},\quad p_i(t)=\frac{\beta_ki}{t^{\eta_ki+2}},\quad i=1,2,\dots ,n. \end{gather*} where $\eta_ki$, $i=1,2,\dots ,n$ and $\beta_ki$, $i=0,1,\dots ,n$ are positive constants such that $\alpha_k0\geq \eta_ki$, $i=1,2,\dots ,n$. It is clear that conditions \eqref{w} hold, since \[ \int_{t_0}^{\infty }a_1(t)\Delta t=\int_{t_0}^{\infty }t^{1/\alpha_k0}\Delta t=\infty , \] and \[ \int_{t_0}^{\infty }a_2(t)\Delta t=\int_{t_0}^{\infty } \frac{\Delta t}{t^{1-1/\gamma_k2}}=\infty , \] by \cite[Example 5.60]{bp}. Therefore, we can find $T>T_1$ such that $ A_2(s,T_1)\geq 1$, for $s\geq T$. Also, using the P\"{o}tzsche chain rule, \begin{align*} P_0(s) &= \int_{s}^{\infty }p_0(u)\Delta u =\beta_0\int_{s}^{\infty }\frac{\Delta u}{u^{\alpha_k0+2}} \\ &\geq \frac{\beta_k0}{\alpha_k0+1}\int_{s}^{\infty }(\frac{-1}{ u^{\alpha_k0+1}})^{\Delta }\Delta u =\frac{\beta_k0}{\alpha_k0+1}\frac{1}{s^{\alpha_k0+1}}, \end{align*} and \begin{align*} P_i(s) &= \int_{s}^{\infty }p_i(u)\Delta u =\beta_i\int_{s}^{\infty }\frac{\Delta u}{u^{\eta_ki+2}} \\ &\geq \frac{\beta_ki}{\eta_ki+1}\int_{s}^{\infty }(\frac{-1}{ u^{\eta_ki+1}})^{\Delta }\Delta u \\ &= \frac{\beta_ki}{\eta_ki+1}\frac{1}{s^{\eta_ki+1}} \\ &\geq \frac{\beta_ki}{\alpha_k0+1}\frac{1}{s^{\alpha_k0+1}},\quad i=1,2,\dots ,n. \end{align*} Hence \begin{align*} \Big(\int_{t}^{\infty }a_2(s)\Big(\sum_{i=0}^{n}P_i(s) \Big)^{1/\gamma_k2}\Delta s\Big)^{1/\gamma_k1} &\geq \beta \Big( \int_{t}^{\infty }\frac{\Delta s}{s^{\gamma_k1+1}}\Big)^{1/\gamma_k1} \\ &\geq \frac{\beta }{\gamma_k1^{^{1/\gamma_k1}}}\Big(\int_{t}^{\infty }(\frac{-1}{s^{\gamma_k1}})^{\Delta }\Delta s\Big) ^{1/\gamma_k1} \\ &= \frac{\beta }{\gamma_k1^{^{1/\gamma_k1}}}\frac{1}{t}, \end{align*} where $\beta :=(\frac{1}{\alpha_k0+1}\sum_{i=0}^{n}\beta_ki) ^{1/\alpha_k0}$. Then \begin{align*} &\int_{t_0}^{\infty }a_1(t)\Big(\int_{t}^{\infty }a_2(s)( \sum_{i=0}^{n}P_i(s))^{1/\gamma_k2}\Delta s\Big) ^{1/\gamma_k1}\Delta t \\ &= \frac{\beta }{\gamma_k1^{^{1/\gamma_k1}}}\int_{t_0}^{\infty }\frac{1 }{t^{1-1/\alpha_k0}}\Delta t=\infty , \end{align*} so that condition \eqref{21} holds. Let us take $\phi (t)=t^{\alpha_k0+1}$, then, by the P\"{o}tzsche chain rule \[ \phi ^{\Delta }(t)=(\alpha_k0+1)\int_0^{1}(t+h\mu (t))^{\alpha _0}dh\leq (\alpha_k0+1)(\sigma (t))^{\alpha_k0}. \] Now, we assume $\mathbb{T}$ is a time scale satisfying $\sigma (t)\leq kt$, for some $k>0$, $t\geq T_k>T$. Note that \begin{align*} &\limsup_{t\to \infty }\int_{T}^{t}[ \phi (s)Q_2(s)-\frac{ ((\phi ^{\Delta }(s))_{+})^{\alpha_k0+1}}{ (\alpha_k0+1)^{\alpha_k0+1}(\phi (s)A(s,T_1)) ^{\alpha_k0}}]\Delta s \\ &\geq \limsup_{t\to \infty }\int_{T_k}^{t}[ \frac{\beta_k0 }{s}-\frac{k^{\alpha_k0(\alpha_k0+1)}}{s}]\Delta s \\ &\geq (\beta_k0-k^{\alpha_k0(\alpha_k0+1)})\limsup_{t\to \infty }\int_{T_k}^{t}\frac{\Delta s}{s}=\infty , \end{align*} if $\beta_k0>k^{\alpha_k0(\alpha_k0+1)}$ and hence \eqref{m2} holds. We conclude that if $[ T,\infty )_{\mathbb{T}}$ is a time scale where $\sigma (t)\leq kt$, for some $k>0$, $t\geq T_k$, then, by Theorem \ref{thm1}, every solution of \eqref{1.1} is either oscillatory or tends to zero if $\beta_k0>k^{\alpha_k0(\alpha_k0+1)}$. \end{example} In the following, we assume that \eqref{2.44} holds and establish sufficient conditions which ensure that every solution $x(t)$ of \eqref{1.1} is either oscillatory or tends to zero. By Theorems \ref{thm11} and \ref{thm1} and \cite[Theorem 2.1]{erbeseveral}, we obtain the following oscillation criteria for equation \eqref{1.1}. \begin{corollary} \label{coro1} Let $\alpha_k0=\gamma_k1\gamma_k2$ and $h_i(t)$, $i=0,1,2,\dots ,n$ be nondecreasing functions on $[t_0,\infty )_{{\mathbb{T}}}$. Assume that \eqref{2.44} and \eqref{21} hold. Furthermore, suppose that, for all sufficiently large $T_1\in [ t_0,\infty )_{{\mathbb{T}}}$, there is $T>T_1$ such that $h_i(T)>T_1$, $i=1,2,\dots ,n$, \begin{equation} \int_{T}^{\infty }a_1(t)\Big[ \int_{T}^{t}a_2(s)[ \sum_{i=1}^{n}\int_{T}^{s}p_i(u)\phi_k{i,1}^{\alpha_ki}(u) \Delta u]^{1/\gamma_k2}\Delta s\Big]^{1/\gamma_k1}\Delta t=\infty , \label{h1} \end{equation} and \begin{equation} \int_{T}^{\infty }a_2(t)\Big[ \sum_{i=1}^{n}\int_{T}^{t}p_i(u)\varphi _i^{\alpha_ki}(u,T_1)\Delta u\Big]^{1/\gamma _2}\Delta t=\infty . \label{h2} \end{equation} If condition \eqref{v11} holds, then every solution of \eqref{1.1} is either oscillatory or tends to zero. \end{corollary} \begin{corollary} \label{coro2} Assume that \eqref{2.44}, \eqref{21}, \eqref{h1} and \eqref{h2} hold. If \eqref{f3} holds, then every solution of \eqref{1.1} is either oscillatory or tends to zero. \end{corollary} \begin{corollary} \label{coro3} Let $\alpha_k0=\gamma_k1\gamma_k2$ and $a_1$ be nondecreasing and delta differentiable on $[t_0,\infty )_{{\mathbb{T}}}$. Assume that \eqref{2.44}, \eqref{2.1}, \eqref{21}, \eqref{h1} and \eqref{h2} hold. If \eqref{m2} holds, then every solution of \eqref{1.1} is either oscillatory or tends to zero. \end{corollary} \begin{remark} \label{rmk1} \rm If \eqref{21} is not satisfied, we have sufficient conditions which ensure that every solution $x(t)$ of \eqref{1.1} oscillates or $\lim_{t\to \infty }x(t)$ exists as a finite number. \end{remark} \begin{thebibliography}{00} \bibitem{ag/bo3} R.~P. Agarwal and M.~Bohner; \emph{Oscillation and boundedness of solutions to first and second order forced dynamic equations with mixed nonlinearities}, Aust. J. Math. Anal. Appl. 5(1) (2008) 1--12. \bibitem{ag/bo/gr1} R.~P. Agarwal, M.~Bohner, and S.~R. Grace; \emph{Oscillation criteria for first-order forced nonlinear dynamic equations}, Can. Appl. Math. Q. 15(3), 2008, to appear. \bibitem{ag/bo/gr/or2} R.~P. Agarwal, M.~Bohner, S.~R. Grace, and D.~O'Regan; \emph{Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations}, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 3463--3471. \bibitem{Akin} E. Akin-Bohner, Z. Do\v{s}l\'{a} and B. Lawrence; \emph{Oscillation properties for three-dimensional dynamic systems}, Nonlinear Analysis 69 (2008) 483-494. \bibitem{3} E. F. Beckenbach, R. Bellman; \emph{Inequalities}, Springer, Berlin, 1961. \bibitem{BoHa} M. Bohner and T. S. Hassan; \emph{Oscillation and boundedness of solutions to first and second order forced functional dynamic equations with mixed nonlinearities}, Appl. Anal. Discrete Math. 3 (2009) 242--252. \bibitem{bp} M. Bohner and A. Peterson; \emph{Dynamic Equations on Time Scales: An Introduction with Applications}, Birkh\"{a}user, Boston, 2001. \bibitem{bp2} M. Bohner and A. Peterson; editors; \emph{Advances in Dynamic Equations on Time Scales}, Birkh\"{a}user, Boston, 2003. \bibitem{7} M. Gera, J.~R. Graef, M. Gregus; \emph{On oscillatory and asymptotic properties of solutions of certain nonlinear third order differential equations}, Nonlinear Anal. 32 (1998) 417--425. 49--56. \bibitem{d} O. Do\v{s}l\'{y} and E. Hilger; \emph{A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales}, Special Issue on Dynamic Equations on Time Scales (P. P. Agarwal, M. Bohner and D. O'Regan, eds.), J. Comp. Appl. Math. 141(1-2)\ (2002), 571--585. \bibitem{erbe1} L. Erbe, T.~S. Hassan and A. Peterson; \emph{Oscillation criteria for nonlinear damped dynamic equations on time scales}, Appl. Math. Comp. 203 (2008) 343--357. \bibitem{erbe2} L. Erbe, T.~S. Hassan and A. Peterson; \emph{Oscillation criteria for nonlinear functional neutral dynamic equations on time scales}, J. Difference Equ. Appl. 15 (2009) 1097--1116. \bibitem{erbe} L. Erbe, T.~S. Hassan, A. Peterson and S.~H. Saker; \emph{Oscillation criteria for half-linear delay dynamic equations on time scales}, Nonlinear Dynam. Sys. Th. 9 (1) (2009) 51--68. \bibitem{d1} L. Erbe, T.~S. Hassan, A. Peterson and S.~H. Saker; \emph{Oscillation criteria for sublinear half-linear delay dynamic equations on time scales}, Int. J. Difference Equ. 3 (2008) 227-245. \bibitem{erhape10} L. Erbe, T.~S. Hassan and A. Peterson; \emph{Oscillation of second order functional dynamic equations}, Int. J. Differential Equ. (Submitted). \bibitem{erhape11} L. Erbe, T.~S. Hassan and A. Peterson; \emph{Oscillation criteria for first order forced functional dynamic}, Appl. Anal. Discrete Math. 3 (2009) 253--263. \bibitem{erhape12} L. Erbe, T.~S. Hassan and A. Peterson; \emph{Oscillation criteria for forced second order functional dynamic equations with mixed nonlinearities on time scales}, Advances in Dynamical Systems and Appl. 15 (1) (2010) 61--73. \bibitem{EH} L. Erbe, A. Peterson and S.~H. Saker; \emph{Hille and Nehari type criteria for third order dynamic equations}, J. Math. Anal. Appl. 329 (2007) 112--131. \bibitem{EA} L. Erbe, A. Peterson and S.~H. Saker; \emph{Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales}, J. Comp. Appl. Math. 181 (2005) 92--102. \bibitem{EO} L. Erbe, A. Peterson and S. H. Saker; \emph{Oscillation and asymptotic behavior of a third-order nonlinear dynamic equation}, Canad. Quart. Appl. Math. 14 (2) 2006 124--147. \bibitem{erbee} L. Erbe, T.~S. Hassan and A. Peterson; \emph{Oscillation of third order nonlinear functional dynamic equations on time scales}, Differential Equations Dynam. Systems 18 (2010) 199--227. \bibitem{erbeseveral} L. Erbe, T.~S. Hassan and A. Peterson; \emph{Oscillation of third order functional dynamic equations with mixed arguments on time scales}, J. Appl. Math. Comput., 34 (2010) 353-371 \bibitem{er/ha/pe/sa3} L. Erbe, T.~S. Hassan, A. Peterson, and S. Saker; \emph{Interval oscillation criteria for forced second order nonlinear delay dynamic equations with oscillatory potential}, Dynam. Contin. Discrete Impuls. Systems 17 (2010) 533--542. \bibitem{w} G.~H. Hardy, J.~E. Littlewood, G. Polya; \emph{Inequalities, second ed.}, Cambridge University Press, Cambridge, 1988. \bibitem{soma} T.~S. Hassan; \emph{Oscillation criteria for half-linear dynamic equations on time scales}, J. Math. Anal. Appl. 345 (2008) 176--185. \bibitem{ha} T.~S. Hassan; \emph{Oscillation of third order nonlinear delay dynamic equations on time scales}, Mathematical and Computer Modeling 49 (2009) 1573--1586. \bibitem{ha/er/pe1} T.~S. Hassan, L. Erbe and A. Peterson; \emph{Oscillation of second order superlinear dynamic equations with damping on time scales}, Comput. Math. Appl. 59 (2010) 550--558. \bibitem{ha/er/pe2} T.~S. Hassan, L. Erbe and A. Peterson; \emph{Oscillation criteria for second order sublinear dynamic equations with damping term}, J. Difference Equ. Appl., 2009 DOI:10.1080/ 10236190903143802. \bibitem{ha/er/pe3} T.~S. Hassan, L. Erbe, and A. Peterson; \emph{Forced oscillation of second order functional differential equations with mixed nonlinearities}, Acta Math. Scientia (to appear). \bibitem{h} S. Hilger; \emph{Analysis on measure chains -- a unified approach to continuous and discrete calculus}, Results Math. 18 (1990) 18--56. \bibitem{k} V. Kac and P. Chueng; \emph{Quantum Calculus}, Universitext, 2002. \end{thebibliography} \end{document}