\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 132, pp. 1--5.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/132\hfil Loss of exponential stability] {Loss of exponential stability for a thermoelastic system with memory} \author[B. F. Alves, W. D. Bastos, C. A. Raposo \hfil EJDE-2010/132\hfilneg] {Bruno Ferreira Alves, Waldemar Donizete Bastos, Carlos Alberto Raposo} % in alphabetical order \address{Bruno Ferreira Alves \newline Departament of Mathematics, Federal University of S. J. del-Rey\\ Pra\c{c}a Frei Orlando, 170, 36300-000, S\~ao Jo\~ao del Rei, MG, Brazil} \email{bruno.fa@ibest.com.br} \address{Waldemar Donizete Bastos \newline Departament of Mathematics, S\~ao Paulo State University, UNESP \newline Rua Crist\'ov\~ao Colombo, 2265, 15054-000, S\~ao Jos\'e do Rio Preto, SP, Brazil} \email{waldemar@ibilce.unesp.br} \address{Carlos Alberto Raposo \newline Departament of Mathematics, Federal University of S. J. del-Rey\\ Pra\c{c}a Frei Orlando, 170, 36300-000, S\~ao Jo\~ao del Rei, MG, Brazil} \email{raposo@ufsj.edu.br} \thanks{Submitted February 23, 2010. Published September 14, 2010.} \thanks{C. A. Raposo was supported by grants 573523/2008-8 - INCTMat from CNPq, and \hfill\break\indent 620025/2006-9 from CNPq} \subjclass[2000]{35B40, 35Q80, 35L05, 47D06} \keywords{Heat conduction with memory; $C_0$-semigroup; decay of solutions; \hfill\break\indent thermoelastic system} \begin{abstract} In this article we study a thermoelastic system considering the linearized model proposed by Gurtin and Pipkin \cite{GP} instead of the Fourier's law for the heat flux. We use theory of semigroups \cite{Pazy, ZL} combining Pruss' Theorem \cite{JamP} and the idea developed in \cite{GR} to show that the system is not exponentially stable. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \section{Introduction} We study a partial differential equation that models an elastic string: \begin{gather} u_{tt} - u_{xx} + \theta_{xx} = 0 \quad \text{in } (0,L)\times(0,\infty), \label{1.1}\\ \theta_{t} - g*\theta_{xx} + c\,g*\theta - u_{xxt}= 0\quad \text{in } (0,L)\times(0,\infty), \label{1.2} \end{gather} with initial data $$ u(x,0)=u_0(x),\quad u_{t}(x,0)=u_1(x),\quad \theta(x,0)=\theta_0(x)\,. $$ The function $u=u(x,t)$ is the small transversal vibration of the elastic string of reference configuration of length $L$, and $\theta=\theta(x,t)$ is the temperature difference from the material and natural ambient. To fix ideas we assume that the string is held fixed at both ends, $x = 0$ and $x = L$. We impose the boundary conditions \begin{gather*} u(0, t) = u(L, t) = 0, \\ \theta(0, t) = \theta(L, t) = 0. \end{gather*} In this model, $c$ is a positive constant, and $g: \mathbb{R}^{+}\to \mathbb{R}^{+}$ is the relaxation function. We assume that $g$ is differentiable and satisfies $g(0)>0$, $g'(t) <0$ and $$ 1 - \int_0^{\infty}g(s) ds = \ell > 0. $$ We introduce the convolution product $$ (g*u)(t) :=\int_0^{t}g(t-\tau)u(\cdot,\tau) d\tau\, . $$ Now we observe that when $c=0$ the thermoelastic system has exponential decay, as can be seen in \cite{Luci}, when we replace $g*u$ by $\theta$ in \eqref{1.2} we also have exponential decay, see \cite{FBR}. The similar situation is valid for thermoelastic plate, see \cite{GR} and \cite{VP}. The article is organized as follows, in the Section $2$ we introduce the notation and the functional spaces, in the Section $3$ we obtain the semigroup of solutions and finally, in the Section $4$ we prove the loss of exponential stability for the thermoelastic system with memory. \section{Functional setting and notation} We use the standard Lebesgue spaces and Sobolev spaces with their usual proprieties as in \cite{Adams}. Consider the positive operators A and B on $L^2(0,L)$ defined by $A=-(\cdot)_{xx}$ and $B = cI-(\,\cdot\,)_{xx}$, with domains $D(A) = D(B) = (H^2\cap H^1_0 )(0,L)$. Now, for $r \in \mathbb{R}$, we introduce the scale of Hilbert spaces $H_{r}=D(A^{r/2})$ with the usual inner products $ \langle v_1, v_2\rangle_{H_r} = \langle A^{r/2} v_1,A^{r/2}v_2\rangle$ and we have $H_{r_1}\hookrightarrow H_{r_2}$ are compact whenever $r_1 > r_2$. Concerning the memory kernel $g$, we make the substitution $\mu(s)=-g(s)$ and we require \begin{equation} \label{2.1} \mu \in C^{1}(\mathbb{R}^{+}) \cap L^{1}(\mathbb{R}^{+}),\quad \mu(s) > 0,\quad \mu' (s) \leq 0,\quad g(0) =\int_0^{\infty} \mu(s) ds > 0. \end{equation} Calling $\sigma_{\infty} =\sup \{s :\mu (s) > 0 \} $, we infer that, dual to \eqref{2.1}, for each $\sigma >0$, there exists a set $\mathcal{O}_{\sigma} \subset ( \sigma,\sigma_{\infty}) $ of positive Lebesgue measure such that $ \mu' (s)< 0$, in $\mathcal{O}_{\sigma}$. Now for $r \in \mathbb{R}$ consider the weighted Hilbert spaces: $$ \mathcal{M }_{r} = L^{2}_{\mu}(\mathbb{R}^{+};H_{r}) $$ with the inner product \begin{equation} \label{IP} \langle \nu , \eta\rangle_{\mathcal{M}_r} = \int_0^{\infty}\mu(s)\langle B^{r/2}\nu (s),B^{r/2}\eta(s)\rangle\,ds \end{equation} and we introduce as in \cite{GVP} the linear operator $T$ on $ \mathcal{M}_1$ defined by $ T\eta = -\eta_{s}$ with domain $$ D( T) = \{ \eta \in \mathcal{M }_1 : \eta _{s}\in \mathcal{M }_1, \, \eta(0)=0\}, $$ where $\eta_s$ is the distributional derivative of $\eta$ with respect to the internal variable $s$, and then the operator $T$ is the infinitesimal generator of a $C_0$-semigroup of contractions. In particular, there holds \begin{equation} \label{2.2} \langle T\eta, \eta\rangle_{\mathcal{M }_1} = \int_0^{\infty}\mu'(s)\| B^{1/2} \eta (s)\|\,ds \leq 0, \quad\text{for all } \eta \in D(T). \end{equation} Finally, we define with the usual inner products, the following Hilbert spaces: $$ \mathcal{H}_r = H_{r+2} \times H_r \times H_r \times M_{r+1},\quad r \in \mathbb{R}. $$ \section{The semigroup of solutions} To describe properly the solutions of the system \eqref{1.1}-\eqref{1.2} by means of a $C_0$-semigroup of linear operators acting on the phase-space $\mathcal{H}_0$, we will follow the ideas of \cite{Adams}. In this direction we introduce an additional variable, namely, the summed past history of $\theta$ defined as $$ \eta^{t}(s) = \int_0^{s} \theta(t-y)dy, \quad \text{with } t,s \geq 0. $$ Observe that we have formally $ (\frac{d}{dt} + \frac{d}{ds})(\eta^t(s)) = \theta$ in $ (0,L)$ subject to the boundary and initial conditions $\eta^{t}(0) = 0$ in $(0,L)$, $t\geq 0 $, $$ \eta^{0}(s) = \int_0^{s}\theta(-y)dy,\quad s \geq 0. $$ For the rest of this article, we consider the vectors $U(t) = ( u(t), v(t), \theta(t), \eta^{t} )^{T}$ and $U(0) = ( u_0, v_0, \theta_0, \eta_0 )^{T} \in \mathcal{H}_0$. We obtain the linear evolution equation, in $ \mathcal{H}_0$, \begin{gather} U_{t} - L\,U = 0 \label{3.1}\\ U(0) = U_0 \label{3.2} \end{gather} where the linear operator $L$ is defined as \[ L\,U = \begin{pmatrix} v\\ u_{xx} - \theta_{xx}\\ u_{xx} - \int_0^{\infty}g(s)[ c\theta(t-s) - \theta_{xx}(t-s)]ds\\ \eta \end{pmatrix}. \] with domain $D(L)= \{(u, v, \theta, \eta )^{T} \in \mathcal{H}_0 \}$ such that $v \in H_{2}$, $u_{xx} - \theta_{xx} \in H_0$, $$ u_{xx} - \int_0^{\infty}g(s)[ c\theta(t-s) - \theta_{xx}(t-s)]ds \in H_0, \quad \eta \in D(T). $$ \begin{theorem} \label{thm3.1} System \eqref{3.1} defines a $C_0$-semigroup of contractions $S(t) = e^{tL }$ on the phase-space $\mathcal{H}_0$. \end{theorem} The proof is done by using the Lumer - Phillips theorem \cite[Theorem 4.3]{Pazy}. \section{Loss of exponential stability} To prove the loss of exponential stability we use the following result. \begin{theorem} \label{thm4.1} Let $S(t)= e^{tL}$ be a $C_0$-semigroup of contractions in a Hilbert space. Then $S(t)$ is exponentially stable if and only if, \begin{equation} i\mathbb{R}= \{ i\beta : \beta \in \mathbb{R}\} \subset \rho(L) \label{g1} \end{equation} and \begin{equation} \|(\lambda I - L )^{-1}\| \leq C, \quad \text{for every } \lambda \in i \mathbb{R}. \label{g2} \end{equation} \end{theorem} The proof of the above theorem can be found in \cite{JamP} and in \cite{ZL}. We note that \eqref{3.1}-\eqref{3.2} is dissipative, because \eqref{2.2} implies \begin{equation} \langle LU, U\rangle_{\mathcal{H }_0} = \langle T\eta, \eta\rangle_{\mathcal{M }_1} \leq 0, \quad \text{for all } U \in D(L), \end{equation} and it is standard matter to show that $(I - L)$ maps $D(L)$ onto $\mathcal{H}_0$, see \cite{FBR}, where a similar case is treated. Then, using $\langle Tu,u\rangle <0 $ for all nonzero $u$ in $D(T)$, one can show that the solution of thermoelastic system \eqref{1.1}-\eqref{1.2} decays to zero as time approaches $\infty$. Now we are in position of to show our main result. \begin{theorem} \label{thm4.2} The semigroup $S(t)= e^{tL}$ on $\mathcal{H}_0 $ defined by \eqref{3.1}-\eqref{3.2} is not exponentially stable. \end{theorem} \begin{proof} For $i\lambda \in \rho(L)$ and $ V = (0,0,0, \eta)^{T} \in \mathcal{H}_0$, consider the complex equation \begin{equation} \label{w} (i\lambda\,I - L)U = V \end{equation} that when written explicitly reads \begin{gather} i\lambda u - v = 0 \label{4.4} \\ i\lambda v - u_{xx} + \theta_{xx} = 0 \label{4.5} \end{gather} Consider an orthonormal basis $\{w_{j}\}_{n \in \mathbb{N}} $ of eigenvectors of the operator $A$ and the respective eigenvalues $\{ \alpha_{n}\}_{n \in \mathbb{N}}$. We recall that $\alpha_n \to \infty$ as $n \to \infty$. We set $$ \eta_{n}(s) = \frac{w_{n}}{\sqrt{ c + \alpha_{n}}} $$ and $$ V_{n} = (0,0,0,\eta_{n})^{T}. $$ Notice that, using \eqref{2.1} and \eqref{IP} we have \[ \| V_{n}\|_{\mathcal{H}_0} = \|\eta_{n}\|_{\mathcal{M}_1} = \frac{1}{(c + \alpha_{n})} \] \begin{align*} \int_0^{\infty} \mu(s) \|B^{1/2} w_n(s) \|^{2} ds &= \frac{1}{(c + \alpha_{n})} \int_0^{\infty} \mu(s) ( c + \alpha_n)\| w_n(s) \|^{2} ds \\ &= \int_0^{\infty} \mu(s)ds = g(0). \end{align*} Now we build a sequence of $\lambda_{n}$ such that the corresponding solution $ U_{n}$ of \begin{equation} \label{w2} (i\lambda_nI - L)U_n = V_n \end{equation} satisfies $\| U_{n} \|_{\mathcal{H}_0} \to \infty $ as $ n \to \infty$. In this direction we look for a solution $U_{n}=(w_{n},w_{n},s_nw_{n},w_{n} )$ where $ s_n \in \mathbb{C}$. Then, from \eqref{4.4} and \eqref{4.5} we have \begin{equation} -\lambda_{n}^{2} -\alpha_{n} + s_{n}\alpha_{n} = 0 \label{4.8} \end{equation} that implies $$ s_{n} = 1 + \frac{\lambda_{n}^{2}}{\alpha_n}. $$ Choosing $\lambda_n = |\alpha_n|$ we finally have $$ \|U_n\|_{\mathcal{H}_0} \geq \|s_n\,w_n\|_{H_0}= |s_n| \geq \frac{\lambda_n^{2}}{|\alpha_n|} = |\alpha_n| \to \infty\quad \text{as } n \to \infty. $$ which yields the conclusion. \end{proof} \begin{thebibliography}{00} \bibitem{Adams} R. A. Adams; \emph{Sobolev Spaces}, Academic Press, New York, (1975). \bibitem{CMD} C. M. Dafermos; \emph{Asymptotic stability in viscoelasticity}, Arch. Ration. Mech. Anal. 37 (1970), 297–308. \bibitem{FBR} M. Fabrizio, B. Lazzari, J. E. Mu\~noz Rivera; \emph{Asymptotic Behavior in Linear Thermoelasticity}, Journal of Mathematical Analysis and Applications. 232 (1999) 138-165. \bibitem{Luci} L. H. Fatore, J. E. Mu\~noz Rivera; \emph{Energy decay for hyperbolic thermoelastic systems of memory type}. Quartely Of Applied Mathematics. 59(3) (2001) 441-458. \bibitem{GR} M. Grasselli, J. E. Mu\~noz Rivera, V. Pata; \emph{ On the energy decay of the linear thermoelastic plate with memory}. J. Math. Anal. Appl. 309 (2005) 1–14. \bibitem{GVP} M. Grasselli, V. Pata; \emph{Uniform attractors of nonautonomous systems with memory}, in: A. Lorenzi, B. Ruf (Eds.), Evolution Equations, Semigroups and Functional Analysis, in: Progr. Nonlinear Differential Equations Appl., vol. 50, Birkhäuser, Boston, (2002). \bibitem{VP} C. Giorgi, V. Pata; \emph{ Stability of linear thermoelastic systems with memory}. Math. Models Methods Appl. Sci. 11 (2001) 627–644. \bibitem {GP} M. E. Gurtin, A. C. Pipkin; \emph{A general theory of heat conduction with finite wave speeds}. Arch. Rational Mech. Anal. 31 (1968) 113-126. \bibitem{Pazy} A. Pazy; \emph{Semigroups of Linear Operators and Applications to Partial Differential Equations}, Springer- Verlag, New York, (1983). \bibitem{JamP} J. Prüss; \emph{On the spectrum of C0-semigroups} Trans. Amer. Math. Soc. 284 (1984) 847–857. \bibitem{ZL} Z. Liu, S. Zheng; \emph{Semigroups Associated with Dissipative Systems}. Chapman \& Hall/CRC Press, Boca Raton, FL, (1999). \end{thebibliography} \end{document}