\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 138, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/38\hfil Existence and upper semicontinuity] {Existence and upper semicontinuity of global attractors for neural fields in an unbounded domain} \author[S. H. da Silva \hfil EJDE-2010/38\hfilneg] {Severino Hor\'acio da Silva} \address{Severino Hor\'acio da Silva \newline Unidade Acad\^emica de Matem\'atica e Estat\'istica UAME/CCT/UFCG\\ Rua Apr\'igio Veloso, 882, Bairro Universit\'ario CEP 58429-900, Campina Grande-PB, Brasil} \email{horacio@dme.ufcg.edu.br} \thanks{Submitted March 16, 2010. Published September 27, 2010.} \thanks{Supported by grants 620150/2008 from CNPq-Brazil Casadinho, and 5733523/2008-8 \hfill\break\indent from INCTMat} \subjclass[2000]{45J05, 45M05, 34D45} \keywords{Well-posedness; global attractor; upper semicontinuity of attractors} \begin{abstract} In this article, we prove the existence and upper semicontinuity of compact global attractors for the flow of the equation $$ \frac{\partial u(x,t)}{\partial t}=-u(x,t)+ J*(f\circ u)(x,t)+ h, \quad h > 0, $$ in $L^{2}$ weighted spaces. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} We consider here the non local evolution equation \begin{equation} \frac{\partial u(x,t)}{\partial t}=-u(x,t)+ J*(f\circ u)(x,t)+ h, \quad h > 0, \label{1.1} \end{equation} where $u(x,t)$ is a real-valued function on $\mathbb{R}\times \mathbb{R}_{+}$, $h$ is a positive constant, $J \in C^{1}(\mathbb{R})$ is a non negative even function supported in the interval $[-1,1]$, and, $f$ is a non negative nondecreasing function. The $*$ above denotes convolution product, namely: \begin{equation} (J*u)(x)=\int_{\mathbb{R}}J(x-y)u(y)dy \label{1.2}. \end{equation} Equation \eqref{1.1} was derived by Wilson and Cowan, \cite{Wilson}, to model a single layer of neurons in 1972. The function $u(x,t)$ denotes the mean membrane potential of a patch of tissue located at position $x\in (-\infty, \infty)$ at time $t\geq 0$. The connection function $J(x)$ determines the coupling between the elements at position $x$ and position $y$. The non negative nondecreasing function $f(u)$ gives the neural firing rate, or averages rate at which spikes are generated, corresponding to an activity level $u$. The neurons at a point $x$ are said to be active if $f(u(x,t))>0$. The parameter $h$ denotes a constant external stimulus applied uniformly to the entire neural field, (see \cite{Amari}, \cite{Chen}, \cite{Ermentrout}, \cite{Kishimoto}, \cite{Krisner}, \cite{Laing}, \cite{Rubin} and \cite{Silva}). An equilibrium of \eqref{1.1} is a solution for \eqref{1.1} that is constant with respect to $t$. Thus, if $u$ is an equilibrium for \eqref{1.1} then $u$ satisfies \begin{equation} u(x)= J*(f\circ u)(x)+ h.\label{1.3} \end{equation} In the literature, there are already several works dedicated to the analysis of this model. In \cite{Amari} lateral inhibition type coupling is studied. Furthermore, when $f$ is a Heaviside step function, \cite{Amari} also treats the behavior of time dependent periodic solutions as well as traveling waves for systems of equations. Existence and uniqueness of monotone traveling waves was investigated in \cite{Ermentrout}. An another prove of existence of monotone travelling waves is given in \cite{Chen}. In \cite{Kishimoto}, the existence of a non-homogeneous stationary solution referred to as ``bump" is proved. One link between the integral equations given by \eqref{1.3} and ODEs is given in \cite{Krisner}. In \cite{Laing}, the existence of a non-homogeneous stationary solution of the type ``double-bump" is proved. In \cite{Rubin} is proved that solutions as ``bump" can exist and be linearly stable in neural population models without recurrent excitation. In \cite{Silva}, assuming that $f$ is Lipschitz and bounded, is proved the existence of global attractor, for the flow generated by \eqref{1.1}, in weighted space. We consider here the unique additional condition on $f$ which will is used as hypothesis in our results when necessary. \begin{itemize} \item[(H1)] The function $f:\mathbb{R}\to \mathbb{R}$ is Lipschitz, that is, there exists $k_{1}>0$ such that \begin{equation} |f(x)-f(y)|\leq k_{1}|x-y|, \quad \forall \, x,y \in \mathbb{R},\label{1.4} \end{equation} From \eqref{1.4}, follows that there exists constant $k_{2}\geq 0$ such that \begin{equation} |f(x)|\leq k_{1}|x|+k_{2}.\label{1.5} \end{equation} \end{itemize} This paper is organized as follows. In Section 2 we prove that, under hypothesis (H1), in the phase space $L^{2}(\mathbb{R},\rho)=\{u\in L^{1}_{\rm loc}(\mathbb{R}) : \int u^{2}\rho(x)dx<\infty\}$, the Cauchy problem for \eqref{1.1} is well posed with globally defined solutions. In Section 3 we prove that the system is dissipative in the sense of \cite{Hale}, that is, it has a global compact attractor. Our proof is stronger of what the given one in \cite{Silva} because we do not use no hypothesis of limitation on $f$. In our proof, we only use the Sobolev's compact embedding $H^{1}([-l,l])\hookrightarrow L^{2}([-l,l])$ and some ideias from \cite{Pereira}, where the equation $u_{t}=-u+\tanh(\beta J*u +h)$ is considered (see also \cite{Barros}, \cite{Masi1}, \cite{Severino} and \cite{Severino2} for related work). In Section 4, we prove an uniform estimate for the attractor and finally, in Section 5, after obtaining some estimates for the flow of \eqref{1.1}, we prove the upper semicontinuity property of the attractors with respect to function $J$ present in \eqref{1.1}. \section{Well-posedness} In this section we consider the flow generated by \eqref{1.1} in the space $L^{2}(\mathbb{R},\rho)$ defined by \begin{align*} L^{2}(\mathbb{R},\rho)=\big\{u\in L^{1}_{\rm loc}(\mathbb{R}) : \int_{\mathbb{R}}u^{2}(x)\rho(x)dx <+\infty\big\}, \end{align*} with norm $\|u\|_{L^{2}}(\mathbb{R},\rho)=\left(\int_{\mathbb{R}}u^{2}(x)\rho(x)dx \right)^{1/2}$. Here $\rho$ is an integrable positive even function with $\int_{\mathbb{R}}\rho(x)dx=1$. Note that in this space the constant function equal to 1 has norm 1. The corresponding higher-order Sobolev space $H^{k}(\mathbb{R},\rho)$ is the space of functions $u\in L^{2}(\mathbb{R},\rho)$ whose distributional derivatives up to order $k$ are also in $L^{2}(\mathbb{R}, \rho)$, with norm $$ \|u\|_{H^{k}(\mathbb{R},\rho)}=\Big(\sum_{i=1}^{k}\|\frac{\partial^{i} u}{\partial x^{i}}\|_{L^{2}(\mathbb{R},\rho)}^{2}\Big)^{1/2}. $$ To obtain some convenient estimates we will need the following additional hypothesis on the function $\rho$. \begin{itemize} \item[(H2)] There exists constant $K>0$ such that $$ \sup\{\rho(x) :x\in \mathbb{R},\; y-1 \leq x \leq y+1\}\leq K\rho(y), \quad \forall \,y\in \mathbb{R}. $$ \end{itemize} \begin{remark} \label{rmk2.1} \rm When $\rho(x)=\frac{1}{\pi}(1+x^{2})^{-1}$, the hypothesis (H2), is verified with $K=3$, (see, \cite{Pereira}). \end{remark} \begin{lemma} \label{lem5.1} Suppose that {\rm (H2)} holds. Then $$ \|J*u\|_{L^{2}(\mathbb{R},\rho)}\leq \sqrt{K} \|J\|_{L^{1}}\|u\|_{L^{2}(\mathbb{R},\rho)}. $$ \end{lemma} \begin{proof} Since $J$ is bounded and compact supported, $(J*u)(x)$ is well defined for $u\in L^{1}_{\rm loc}(\mathbb{R})$. Thus, using \eqref{1.2} and Holder's inequality (see \cite{Brezis}), we obtain \begin{align*} \|J*u\|_{L^{2}(\mathbb{R},\rho)}^{2}&= \int_{\mathbb{R}}|(J*u)(x)|^{2}\rho(x)dx\\ &\leq \int_{\mathbb{R}}\Big(\int_{\mathbb{R}}(J(x-y))^{1/2}(J(x-y))^{1/2} |u(y)|dy\Big)^{2}\rho(x)dx\\ &\leq \int_{\mathbb{R}}\Big( \Big[\int_{\mathbb{R}}J(x-y)dy \Big]^{1/2} \Big[\int_{\mathbb{R}}J(x-y)|u(y)|^{2}dy \Big]^{1/2}\Big)^{2}\rho(x)dx\\ &= \|J\|_{L^{1}}\int_{\mathbb{R}} \Big(\int_{\mathbb{R}}J(x-y)|u(y)|^{2}dy \Big)\rho(x)dx\\ &= \|J\|_{L^{1}}\int_{\mathbb{R}} \Big(\int_{\mathbb{R}}J(x-y)\rho(x)dx\Big)|u(y)|^{2}dy \\ &\leq \|J\|_{L^{1}}\int_{\mathbb{R}}\Big(\int_{x=y-1}^{x=y+1}J(x)\rho(x)dx \Big)|u(y)|^{2}dy\\ &\leq \|J\|_{L^{1}}\int_{\mathbb{R}} \Big(K\rho(y)\int_{x=y-1}^{x=y+1}J(x)dx \Big)|u(y)|^{2}dy\\ &\leq K\|J\|_{L^{1}}^{2}\int_{\mathbb{R}}|u(y)|^{2}\rho(y)dy\\ &= K\|J\|_{L^{1}}^{2}\|u\|^{2}_{L^{2}(\mathbb{R},\rho)}. \end{align*} It conclude the result. \end{proof} \begin{remark}\label{rmk2.3} \rm Under hypothesis (H1), for each $u\in L^{2}(\mathbb{R}, \rho)$, we have \begin{equation} |J*(f \circ u)(x)|\leq k_{1} (J*|u|)(x) +k_{2}\|J\|_{L^{1}}.\label{estL_inf} \end{equation} In fact, using \eqref{1.5} we obtain \begin{align*} |J*(f \circ u)(x)| &\leq \int_{\mathbb{R}}J(x-y)[k_{1}|u(y)|+k_{2}]dy\\ &= k_{1}\int_{\mathbb{R}}J(x-y)|u(y)|dy +k_{2}\int_{\mathbb{R}}J(x-y)dy\\ &= k_{1}J*|u|(x)+k_{2}\|J\|_{L^{1}}. \end{align*} \end{remark} \begin{proposition} \label{prop5.2} Suppose that the hypotheses {\rm (H1)} and {\rm (H2)} hold. Then the function $$ F(u)=-u+J*(f \circ u) +h $$ is globally Lipschitz in $L^{2}(\mathbb{R}, \rho)$. \end{proposition} \begin{proof} From triangle inequality and Lemma \ref{lem5.1}, it follows that \begin{align*} \|F(u)-F(v)\|_{L^{2}(\mathbb{R}, \rho)} &\leq \|v-u\|_{L^{2}(\mathbb{R}, \rho)}+\|J*(f\circ u)-J*(f\circ v)\|_{L^{2}(\mathbb{R}, \rho)}\\ &\leq \|v-u\|_{L^{2}(\mathbb{R}, \rho)}+\sqrt{K}\|J\|_{L^{1}}\|(f\circ u)-(f\circ v)\|_{L^{2}(\mathbb{R}, \rho)}. \end{align*} Using \eqref{1.4}, we have \[ \|(f\circ u)-(f\circ v)\|_{L^{2}(\mathbb{R},\rho)}^{2} \leq \int_{\mathbb{R}}k_{1}^{2}|u(x)-v(x)|^{2}\rho(x)dx = k_{1}^{2}\|u-v\|_{L^{2}(\mathbb{R}, \rho)}^{2}. \] Then \[ \|F(u)-F(v)\|_{L^{2}(\mathbb{R},\rho)}\leq (1+\sqrt{K}\|J\|_{L^{1}}k_{1})\|u-v\|_{L^{2}(\mathbb{R}, \rho)}. \] Therefore, $F$ is globally Lipschitz in $L^{2}(\mathbb{R}, \rho)$. \end{proof} \begin{remark} \label{rmk2.5} \rm Since the right-hand side of \eqref{1.1} defines a Lipschitz map in $L^{2}(\mathbb{R}, \rho)$, from standard results of ODEs in Banach spaces, follows that the Cauchy problem for \eqref{1.1} is well posed in $L^{2}(\mathbb{R}, \rho)$ with globally defined solutions, (see \cite{Brezis} and \cite{Daleckii}). \end{remark} \section{Existence of a global attractor} In this section, we prove the existence of a global maximal invariant compact set $\mathcal{A}\subset L^{2}(\mathbb{R}, \rho)$ for the flow of \eqref{1.1}, which attracts each bounded set of $L^{2}(\mathbb{R}, \rho)$ (the global attractor, see \cite{Hale} and \cite{Teman}). To obtain the existence of a global attractor we will need the following additional hypothesis on the function $J$. \begin{itemize} \item[(H3)] The function $J$ satisfies $k_{1}\sqrt{K}\|J\|_{L^{1}}<1$. \end{itemize} \begin{remark} \label{rmk2.6} \rm In the particular case that $\rho(x)=\frac{1}{\pi}(1+x^{2})^{-1}$ and $f=\tanh$, whenever $\|J\|_{L^{1}}<\frac{1}{\sqrt{3}}$, the hypothesis (H3) is satisfied. \end{remark} In what follows, we denote by $S(t)$ the flow generated by \eqref{1.1}. We recall that a set $\mathcal{B} \subset L^{2}(\mathbb{R}, \rho)$ is an absorbing set for the flow $S(t)$ in $L^{2}(\mathbb{R}, \rho)$ if, for any bounded set $B \subset L^{2}(\mathbb{R}, \rho)$, there is a $t_{1}>0$ such that $S(t)B \subset \mathcal{B}$ for any $t\geq t_{1}$, (see \cite{Teman}). \begin{lemma} \label{lem6.1} Assume that {\rm (H1), (H2), (H3)} hold. Let \[ R=\frac{2(k_{2}\|J\|_{L^{1}}+h)}{1-k_{1}\sqrt{K}\|J\|_{L^{1}}}. \] Then the ball with center at the origin of $L^{2}(\mathbb{R}, \rho)$ and radius $R$ is an absorbing set for the flow $S(t)$. \end{lemma} \begin{proof} Let $u(x,t)$ be the solution of \eqref{1.1}, then \begin{align*} &\frac{d}{dt} \int_{\mathbb{R}} |u(x,t)|^{2}\rho(x)dx\\ &= \int_{\mathbb{R}}2u(x,t)\frac{d}{dt}u(x,t)\rho(x)dx\\ &= -2\int_{\mathbb{R}}u^{2}(x,t)\rho(x)dx+2\int_{\mathbb{R}}u(x,t)[J*(f \circ u)(x,t)+h]\rho(x)dx. \end{align*} Using Holder inequalit's, \eqref{estL_inf} and Lemma \ref{lem5.1}, we obtain \begin{align*} &\int_{\mathbb{R}}u(x,t)[J*(f \circ u)(x,t)+h]\rho(x)dx\\ &\leq \Big(\int_{\mathbb{R}}u(x,t)^{2}\rho(x)dx\Big)^{1/2} \Big( \int_{\mathbb{R}}|J*(f \circ u)(x,t)+h|^{2}\rho(x)dx\Big)^{1/2}\\ &\leq \|u(\cdot ,t)\|_{L^{2}({\mathbb{R}},\rho)} \Big( \int_{\mathbb{R}}[k_{1}J*|u(x,t)|+k_{2}\|J\|_{L^{1}}+h]^{2} \rho(x)dx\Big)^{1/2}\\ &= \|u(\cdot,t)\|_{L^{2}(\mathbb{R},\rho)}\|k_{1}J*|u(\cdot,t)| +k_{2}\|J\|_{L^{1}}+h\|_{L^{2}(\mathbb{R},\rho)}\\ &\leq k_{1}\sqrt{K}\|J\|_{L^{1}}\|u(\cdot,t)\|_{L^{2}({\mathbb{R}},\rho)}^{2} + (k_{2}\|J\|_{L^{1}}+h)\|u(\cdot,t)\|_{L^{2}({\mathbb{R}},\rho)}. \end{align*} Hence \[ \frac{d}{dt}\int_{\mathbb{R}}|u(x,t)|^{2}\rho(x)dx \leq 2\|u(\cdot,t)\|_{L^{2}(\mathbb{R})}^{2} \big[-1 + k_{1}\sqrt{K}\|J\|_{L^{1}}+ \frac{(k_{2}\|J\|_{L^{1}}+h)}{\|u(\cdot,t)\|_{L^{2}({\mathbb{R}},\rho)}} \big]. \] Since $k_{1}\sqrt{K}\|J\|_{L^{1}}<1$, let $\varepsilon =1-k_{1}\sqrt{K}\|J\|_{L^{1}} >0$. Then, while $\|u(\cdot,t)\|_{L^{2}({\mathbb{R}},\rho)} > \frac{2(k_{2}\|J\|_{L^{1}}+h)}{\varepsilon}$, we have \[ \frac{d}{dt}\|u(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)}^{2} \leq 2\|u(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)}^{2}(-\varepsilon +\frac{\varepsilon}{2}) = -\varepsilon\|u(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)}^{2}. \] Therefore, \begin{align*} \|u(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)} &\leq e^{-\varepsilon t}\|u(\cdot,0)\|_{L^{2}(\mathbb{R}, \rho)}\\ &= e^{-(1-k_{1}\sqrt{K}\|J\|_{L^{1}}) t}\|u(\cdot,0)\|_{L^{2}(\mathbb{R}, \rho)}. \end{align*} This concludes the proof. \end{proof} \begin{remark} \label{rmk3.3} \rm From Lemma \ref{lem6.1}, follows that the ball of center in the origin and radius $R$ is invariant set under flow $S(t)$. \end{remark} \begin{lemma} \label{lem6.2} Besides the assumptions from Lemma \ref{lem6.1} we also suppose that the functions $J$ and $\rho$ satisfy the relation $J(x) \leq C \rho(x)$, $\forall x\in [-1,1]$, for some constant $C>0$. Let $R=\frac{2(k_{2}\|J\|_{L^{1}}+h)}{1-k_{1}\sqrt{K}\|J\|_{L^{1}}}$ be, then, for any $\eta>0$, there exists $t_{\eta}$ such that $S(t_{\eta})B(0,R)$ has a finite covering by balls of $L^{2}(\mathbb{R}, \rho)$ with radius smaller than $\eta$. \end{lemma} \begin{proof} From Lemma \ref{lem6.1}, it follows that $B(0,R)$ is invariant. Now, the solutions of \eqref{1.1} with initial condition $u_{0}\in B(0,R)$ is given, by the variation of constant formula, by $$ u(x,t)=e^{-t}u_{0}(x)+\int_{0}^{t}e^{-(t-s)}[(J*(f \circ u))(x,s)+h]ds. $$ Write $$ v(x,t)=e^{-t}u_{0}(x), \quad w(x,t)=\int_{0}^{t}e^{-(t-s)}[(J*(f \circ u))(x,s)+h]ds. $$ Let $\eta >0$ given. We may find $t(\eta)$ such that if $t \geq t(\eta)$ then $\|v(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)} \leq \frac{\eta}{2}$. In fact, $$ \|v(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)}=e^{-t}\|u_{0}\|_{L^{2}(\mathbb{R}, \rho)}, $$ then for $t>\ln(\frac{2 \|u_{0}\|_{L^{2}(\mathbb{R}, \rho)}}{\eta})$, we have $\|v(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)}< \frac{\eta}{2}$ for any $u_{0}\in B(0,R)$. Now, from (H1) it follows that \begin{align*} |J*(f \circ u)(x,s)| & \leq k_{1}\int J(x-y)|u(y, s)|dy + k_{2}\int J(x-y)dy\\ &= k_{1}\int J(y-x)|u(y, s)|dy + k_{2}\|J\|_{L^{1}}\\ &= k_{1}\int_{y=x-1}^{y=x+1}J(y)|u(y,s)|dy + k_{2}\|J\|_{L^{1}}. \end{align*} Since that $\rho$ is a positive function, $J$ is supported in the interval $[-1,1]$ and $J(x)\leq C\rho(x)$, $\forall\, x\in [-1,1]$, we obtain \begin{align*} |J*(f \circ u)(x,s)| & \leq C k_{1}\int_{y=x-1}^{y=x+1}\rho(y)|u(y,s)|dy + k_{2}\|J\|_{L^{1}}\\ & \leq C k_{1}\int\rho(y)|u(y,s)|dy + k_{2}\|J\|_{L^{1}}\\ &= C k_{1}\int\rho^{1/2}(y)|u(y,s)|\rho^{1/2}(y)dy + k_{2}\|J\|_{L^{1}}\\ &\leq C k_{1}\Big(\int\rho(y)|u(y,s)|^{2}dy \Big)^{1/2}\Big(\int\rho(y)dy\Big)^{1/2} + k_{2}\|J\|_{L^{1}}. \end{align*} Then \begin{equation} |J*(f \circ u)(x,s)| \leq Ck_{1}\|u(\cdot,s)\|_{L^{2}(\mathbb{R}, \rho)}+k_{2}\|J\|_{L^{1}}.\label{6.11} \end{equation} Thus, using \eqref{6.11} and that $\|u(\cdot,s)\|_{L^{2}(\mathbb{R},\rho)}\leq R$, results \begin{align*} |w(x,t)|&\leq \int_{0}^{t}e^{-(t-s)}[|J*(f \circ u)(x,s)|+h]ds\\ &\leq \int_{0}^{t}e^{-(t-s)}(Ck_{1}R+k_{2}\|J\|_{L^{1}}+h). \end{align*} Hence \begin{equation} |w(x,t)|\leq Ck_{1}R+k_{2}\|J\|_{L^{1}}+h. \label{6.12} \end{equation} Now, since \begin{align*} J'*|u|(x,s)&= \int_{x-1}^{x+1}J'(x-y)|u(y,s)|ds\\ &\leq \Big(\int_{x-1}^{x+1}|J'(x-y)|^{2}dy\Big)^{1/2} \Big(\int_{x-1}^{x+1}|u(y,s)|^{2}dy \Big)^{1/2}\\ &\leq \|J'\|_{L^{2}}\Big(\int_{x-1}^{x+1}|u(y,s)|^{2}dy \Big)^{1/2}, \end{align*} if $x\in [-l,l]$, we obtain \begin{align*} J'*|u|(x,s)&\leq \|J'\|_{L^{2}}\Big(\int_{l-1}^{l+1}|u(y,s)|^{2}dy \Big)^{1/2}\\ &\leq \|J'\|_{L^{2}}\Big(\int_{\mathbb{R}}|u(y,s)|^{2}\chi_{l+1}\rho(y) \frac{1}{\rho_{l}}dy \Big)^{1/2} \end{align*} where $\chi_{l}$ is the characteristic function of the interval $[-l,l]$ and $\rho_{l}=\inf\{|\rho(x)| : x\in [-l-1,l+1]\}$. Then if $u_{0}\in B(0,R)$, then \begin{equation} J'*|u|(x,s)\leq \frac{R\|J'\|_{L^{2}}}{\sqrt{\rho_{l}}}.\label{estL_inf3} \end{equation} Furthermore, differentiating $w$ with respect to $x$, for $t\geq 0$, we have $$ \frac{\partial w}{\partial x}(x,t)=\int_{0}^{t}e^{-(t-s)}\left(J'*(f\circ u)\right)(x,s)ds. $$ Thus \begin{align*} \big|\frac{\partial w (x, t)}{\partial x} \big| &\leq \int_{0}^{t}e^{-(t-s)}|J'*(f\circ u)(x, s)|_{L^{2}(\mathbb{R}, \rho)}ds\\ &\leq \int_{0}^{t}e^{-(t-s)}[k_{1}J'*|u(x,s)|+k_{2}\|J'\|_{L^{1}}]ds . \end{align*} But, proceeding as in the proof of \eqref{estL_inf}, we obtain $$ |J'*(f \circ u)(x,s)|\leq k_{1}(J'|u|)(x,s)+k_{2}\|J'\|_{L^{1}}. $$ Hence, using \eqref{estL_inf3}, results \begin{equation} \big|\frac{\partial w (x, t)}{\partial x} \big|\leq k_{1}\frac{R}{\sqrt{\rho_{l}}}\|J'\|_{L^{2}} +k_{2}\|J'\|_{L^{2}} .\label{6.9} \end{equation} From \eqref{6.12} and \eqref{6.9} follows that the restriction of $w(\cdot,t)$ to the interval $[-l,l]$ is bounded in $H^{1}([-l,l])$ (by a constant independent of $u_{0}\in B(0,R)$ and of $t$), and therefore the set $\{\chi_{l}w(\cdot,t)\}$ with $w(\cdot,0)\in B(0,R)$ is relatively compact subset of $L^{2}(\mathbb{R}, \rho)$ for any $t>0$ and, hence, it can be covered by a finite number of balls with radius smaller than $\frac{\eta}{4}$. Now, from Lemma \ref{lem6.1}, follows that, for all $t \geq 0$ and any $u_{0}\in B(0,R)$, \begin{equation} \|w(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)}\leq 2R.\label{6.10} \end{equation} Then, let $l>0$ be such that \begin{equation} 2R(Ck_{1}R+k_{2}\|J\|_{L^{1}}+h) \Big(\int_{\mathbb{R}}(1-\chi_{l}(x))^{4}\rho(x)dx \Big)^{1/2}\leq \frac{\eta}{4}.\label{6.13} \end{equation} Hence, using \eqref{6.12}, \eqref{6.10} and \eqref{6.13}, we obtain \begin{align*} &\|(1-\chi_{l})w(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)}^{2}\\ &= \int_{\mathbb{R}}\left[w(x,t)\rho(x)^{1/2}(1-\chi_{l})^{2} (x)w(x,t)\rho(x)^{1/2}\right]dx\\ &\leq \Big(\int_{\mathbb{R}}|w(x,t)|^{2}\rho(x)dx \Big)^{1/2}\Big(\int_{\mathbb{R}}(1-\chi_{l})^{4}(x)|w(x,t)|^{2}\rho(x)dx \Big)^{1/2}\\ &\leq \|w(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)} \Big((Ck_{1}R+k_{2}\|J\|_{L^{1}}+h)^{2}\int_{\mathbb{R}} (1-\chi_{l})^{4}(x)\rho(x)dx \Big)^{1/2}\\ &\leq 2R(Ck_{1}R+k_{2}\|J\|_{L^{1}}+h) \left(\int_{\mathbb{R}}(1-\chi_{l})^{4}(x)\rho(x)dx \right)^{1/2} \leq \frac{\eta}{4}. \end{align*} Therefore, since $$ u(\cdot,t)=v(\cdot,t)+\chi_{l}w(\cdot,t)+(1-\chi_{l})w(\cdot,t), $$ it follows that $S(t_{\eta})B(0,R)$ has a finite covering by balls of $L^{2}(\mathbb{R},\rho)$ with radius smaller than $\eta$ because $$ \|u(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)}=\|v(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)}+\|\chi_{l}w(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)}+\|(1-\chi_{l})w(\cdot,t)\|_{L^{2}(\mathbb{R}, \rho)}. $$ \end{proof} We denote by $\omega(D)$ the $\omega$-limit of a set $D$. \begin{theorem} \label{thm6.3} Assume the hypotheses in Lemma \ref{lem6.2}. Then $\mathcal{A}=\omega(B(0,R))$, is a global attractor for the flow $S(t)$ generated by \eqref{1.1} in $L^{2}(\mathbb{R}, \rho)$ which is contained in the ball of radius $R$. \end{theorem} \begin{proof} From Lemma \ref{lem6.1}, it follows that $\mathcal{A}$ is contained in the ball of radius $R$ and center in the origin of $L^{2}(\mathbb{R}, \rho)$. Now, being $\mathcal{A}$ invariant by flow $S(t)$, it follows that $\mathcal{A}\subset S(t)B(0,R)$, for any $t\geq 0$ and then, from Lemma \ref{lem6.2}, it results that the measure of noncompactness of $\mathcal{A}$ is zero. Hence $\mathcal{A}$ is relatively compact and, since $\mathcal{A}$ is closed, follows that $\mathcal{A}$ is also compact. Finally, if $D$ is bounded set in $L^{2}(\mathbb{R}, \rho)$ then $S(t_{0})D\subset B(0,R)$ for $t_{0}$ big enough and, therefore, $\omega(D)\subset \omega(B(0,R))$. \end{proof} \section{Boundedness results} In this section we prove uniform estimates for the attractor whose existence was proved in the Theorem \ref{thm6.3}. \begin{theorem} \label{thm6.4} Assume the same hypotheses from Theorem \ref{thm6.3}, and $J\in C^{r}(\mathbb{R})$, for some integer $r>0$. Then the attractor $\mathcal{A}$ is bounded in $C^{r}_{\rho}(\mathbb{R})$. \end{theorem} \begin{proof} Let $u(x,t)$ be a solution of \eqref{1.1} in $\mathcal{A}$. Then, by the variation of constants formula $$ u(x,t)=e^{-(t-t_{0})}u(x,t_{0})+\int_{t_{0}}^{t}e^{-(t-s)}[J*(f\circ u)(x,s)+h]ds. $$ From Theorem \ref{thm6.3} follows that $\|u(\cdot,t)\|_{L^{2}(\mathbb{R},\rho)}\leq R$, where $R=\frac{2(k_{2}\|J\|_{L^{1}}+h)}{1-k_{1}\sqrt{K}\|J\|_{L^{1}}}$. Since $\|u(\cdot,t_{0})\|_{L^{2}(\mathbb{R}, \rho)}\leq R$, letting $t_{0}\to -\infty$, we obtain \begin{equation} u(x,t)=\int_{-\infty}^{t}e^{-(t-s)}[J*(f\circ u)(x,s)+h]ds,\label{emL2a} \end{equation} where the equality in \eqref{emL2a} is in the sense of $L^{2}(\mathbb{R}, \rho)$. Using that $J\in C^{1}(\mathbb{R})$ follows, from \eqref{emL2a}, that $u(x,t)$ is differentiable with respect to $x$ and \begin{equation} \frac{\partial u(x,t)}{\partial x}= \int_{-\infty}^{t} e^{-(t-s)} J'*(f\circ u)(x,s)ds.\label{emL2b} \end{equation} Now, using that $J'\in C^{1}(\mathbb{R})$ follows, from \eqref{emL2b}, that $\frac{\partial u(x,t)}{\partial x}$ is differentiable with respect to $x$ and \begin{align*} \frac{\partial^{2} u(x,t)}{\partial x^{2}}= \int_{-\infty}^{t} e^{-(t-s)} J''*(f\circ u)(x,s)ds. \end{align*} Following this idea, using that $J^{(r-1)}\in C^{1}(\mathbb{R})$, we have that $\frac{\partial^{r-1} u(x,t)}{\partial x^{r-1}}$ is differentiable with respect to $x$ and \begin{equation} \frac{\partial^{r} u(x,t)}{\partial x^{r}}= \int_{-\infty}^{t} e^{-(t-s)} J^{r}*(f\circ u)(x,s)ds.\label{emL2c} \end{equation} Now, since $J$ is bounded and compact supported, it also follows that $J^{(r)}$ is bounded and compact supported. Thus $J^{(r)}*v$ is well defined for $v\in L^{1}_{\rm loc}(\mathbb{R})$. Hence, proceeding as in the Lemma \ref{lem5.1}, obtain $$ \|J^{(r)}*v \|_{L^{2}(\mathbb{R},\rho)}\leq \sqrt{K}\|J^{(r)}\|_{L^{1}}\|v\|_{L^{2}(\mathbb{R},\rho)}. $$ Thus, \begin{align*} \|J^{(r)}*(f\circ u)(\cdot,t)\|_{L^{2}(\mathbb{R},\rho)} \leq \sqrt{K}\|J^{(r)}\|_{L^{1}}\|(f \circ u)(\cdot, t)\|_{L^{2}(\mathbb{R},\rho)}. \end{align*} Using \eqref{1.5}, we have \begin{equation} \|f(u(\cdot,s))\|_{L^{2}(\mathbb{R}, \rho)}\leq k_{1} \|u(\cdot,s)\|_{L^{2}(\mathbb{R}, \rho)}+k_{2}.\label{6.7} \end{equation} Since the ball $B(0,R)$ is invariant, $\|u(\cdot,t)\|_{L^{2}(\mathbb{R},\rho)}\leq R$, from \eqref{6.7} results $$ \|(f\circ u)(\cdot,t)\|_{L^{2}(\mathbb{R},\rho)} \leq k_{1}R+k_{2}. $$ Hence \begin{equation} \|J^{(r)}*(f\circ u)(\cdot,t)\|_{L^{2}(\mathbb{R},\rho)} \leq \sqrt{K}\|J^{(r)}\|_{L^{1}}(k_{1}R+k_{2}) .\label{emL2d} \end{equation} Therefore, from \eqref{emL2c} and \eqref{emL2d}, follows that \begin{align*} \big\|\frac{\partial^{r} u(x,t)}{\partial x^{r}}\big\|_{L^{2}(\mathbb{R},\rho)} &\leq \int_{-\infty}^{t}e^{-(t-s)}\|J^{(r)}*(f\circ u) (\cdot,t)\|_{L^{2}(\mathbb{R},\rho)}ds\\ &\leq \sqrt{K}\|J^{(r)}\|_{L^{1}}(k_{1}R+k_{2}) \int_{-\infty}^{t}e^{-(t-s)}ds\\ &= \sqrt{K}\|J^{(r)}\|_{L^{1}}(k_{1}R+k_{2}). \end{align*} Therefore, we can obtain boundedness for the derivatives of $u$ of any order, in terms only of $J$ and of the derivatives of $J$, concluding the proof. \end{proof} \begin{theorem} \label{thm6.5} Assume the same hypotheses from Theorem \ref{thm6.3}. Then the attractor $\mathcal{A}$ belongs to the ball $\|\cdot\|_{\infty}\leq a$, where $a=Ck_{1}R +k_{2}\|J\|_{L^{1}}+h$. \end{theorem} \begin{proof} Let $u(x,t)$ be a solution of \eqref{1.1} in $\mathcal{A}$. Then as we see in \eqref{emL2a} $$ u(x,t)=\int_{-\infty}^{t}e^{-(t-s)}[J*(f\circ u)(x,s)+h]ds, $$ where the equality above is in the sense of $L^{2}(\mathbb{R}, \rho)$. Thus, using \eqref{6.11}, obtain \begin{align*} |u(x,t)| &\leq \int_{-\infty}^{t}e^{-(t-s)}[|J*(f\circ u)(x,s)|+h]ds\\ &\leq \int_{-\infty}^{t}(Ck_{1}R+k_{2}\|J\|_{L^{1}}+h)e^{-(t-s)}ds\\ &= \int_{-\infty}^{t}ae^{-(t-s)}ds = a. \end{align*} \end{proof} \section{Upper semicontinuity of attractors with respect to $J$ } A natural question to examine is the dependence of this attractors on the function $J$ present in \eqref{1.1}. We denote by $ \mathcal{A}_{J}$ the global attractor whose existence was proved in the Theorem \ref{thm6.3} Let us recall that a family of subsets $\{\mathcal{A}_{J}\}$, is upper semicontinuous at $J_{0}$ if $$ \operatorname{dist}(\mathcal{A}_{J}, \mathcal{A}_{J_{0}})\to 0, \quad\text{as }J\to J_{0}, $$ where $$ \operatorname{dist}(\mathcal{A}_{J}, \mathcal{A}_{J_{0}}) =\sup_{x\in \mathcal{A}_{J}}\operatorname{dist}(x, \mathcal{A}_{J_{0}})=\sup_{x\in \mathcal{A}_{J}} \inf_{y\in \mathcal{A}_{J_{0}}}\|x-y\|_{L^{2}(\mathbb{R}, \rho)}. $$ In this section, we prove that the family of attractors is upper semicontinuous, in $L^{2}(\mathbb{R},\rho)$, with respect to function $J$ at $J_{0}$ with $J\in C^{1}(\mathbb{R})$ non negative even and supported in the interval $[-1,1]$ and $J(x)\leq C\rho(x)$, $\forall \, x \in [-1,1]$, where $C$ is the constant given in the Lemma \ref{lem6.2}. \begin{lemma} \label{lem7.1} Assume {\rm (H1), (H2), (H3)} hold. Then the flow $S_{J}(t)$ is continuous with respect to variations of $J$, in the $L^{1}-norm$, at $J_{0}$, uniformly for $t\in [0,b]$ with $b<\infty$ and $u$ in bounded sets. \end{lemma} \begin{proof} As shown above the solutions of \eqref{1.1} satisfy the variations of constants formula, $$ S_{J}(t)u=e^{-t}u+\int_{0}^{t}e^{-(t-s)}[J*(f \circ S_{J}(s)u+ h]ds. $$ Let $J_{0} \in C^{1}(\mathbb{R})$ be a non negative even function supported in the interval $[-1,1]$, $b>0$ and $D$ a bounded set in $L^{2}(\mathbb{R},\rho)$, for example the ball $B(0,R)$ (Although $R$ depends on $J$, it can be uniformly chosen in a neighborhood of $J_{0}$) . Given $\varepsilon > 0$, we want to find $\delta >0$ such that $\|J - J_{0}\|_{L^{1}} < \delta$ implies $$ \|S_{J}(t)u-S_{J_{0}}(t)u\|_{L^{2}(\mathbb{R}, \rho)} < \varepsilon, $$ for $t\in [0,b]$ and $u\in D$. Note that \[ \|S_{J}(t)u-S_{J_{0}}(t)u\|_{L^{2}(\mathbb{R}, \rho)} \leq \int_{0}^{t}e^{-(t-s)} \| J*(f \circ S_{J}(s)u) - J_{0}*(f \circ S_{J_{0}}(s)u\|_{L^{2}(\mathbb{R}, \rho)}ds. \] Subtracting and summing the term $J_{0}*(f\circ S_{J}(s)u)$ and using Lemma \ref{lem5.1}, for any $t>0$, we obtain \begin{align*} \|S_{J}(t)u-S_{J_{0}}(t)u\|_{L^{2}(\mathbb{R}, \rho)} &\leq \int_{0}^{t}e^{-(t-s)}[ \| (J-J_{0})*(f \circ S_{J}(s)u)\|_{L^{2}(\mathbb{R}, \rho)}\\ &\quad + \|J_{0}*[f \circ S_{J}(s)u-f \circ S_{J_{0}}(s)u]\|_{L^{2}(\mathbb{R}, \rho)}]ds\\ &\leq \int_{0}^{t}e^{-(t-s)}[ \sqrt{K} \|J-J_{0}\|_{L^{1}}\|f\circ S_{J}(s)u\|_{L^{2}(\mathbb{R}, \rho)}\\ &\quad + \sqrt{K} \|J_{0}\|_{L^{1}}\|f\circ S_{J}(s)u-f\circ S_{J_{0}}(s)u\|_{L^{2}(\mathbb{R}, \rho)}]ds. \end{align*} Using \eqref{6.7}, we obtain $$ \|f\circ S_{J}(s)u\|_{L^{2}(\mathbb{R}, \rho)}\leq k_{1}\|u(\cdot,s)\|_{L^{2}(\mathbb{R}, \rho)}+k_{2}\leq k_{1}R+k_{2} $$ and, using (H1), we obtain $$ \|f\circ S_{J}(s)u-f\circ S_{J_{0}}(s)u\|_{L^{2}(\mathbb{R}, \rho)}\leq k_{1}\|S_{J}(s)u-S_{J_{0}}(s)u\|_{L^{2}(\mathbb{R}, \rho)}. $$ Therefore, \begin{align*} \|S_{J}(t)u-S_{J_{0}}(t)u\|_{L^{2}(\mathbb{R}, \rho)} &\leq (k_{1}R+k_{2})\sqrt{K}\|J-J_{0}\|_{L^{1}}\\ &\quad+\int_{0}^{t}e^{-(t-s)}\sqrt{K}\|J_{0}\|_{L^{1}}k_{1}\|S_{J}(s)u -S_{J_{0}}(s)u\|_{L^{2}(\mathbb{R}, \rho)}. \end{align*} Hence \begin{align*} e^{t}\|S_{J}(t)u-S_{J_{0}}(t)u\|_{L^{2}(\mathbb{R}, \rho)} &\leq (k_{1}R+k_{2})\sqrt{K}\|J-J_{0}\|_{L^{1}}e^{t}\\ &\quad +\int_{0}^{t}e^{s}\sqrt{K}\|J_{0}\|_{L^{1}}k_{1}\|S_{J}(s)u -S_{J_{0}}(s)u\|_{L^{2}(\mathbb{R}, \rho)}. \end{align*} Therefore, by Gronwall's Lemma, it follows that $$ \|S_{J}(t)u-S_{J_{0}}(t)u\|_{L^{2}(\mathbb{R}, \rho)} \leq (k_{1}R+k_{2})\sqrt{K}\|J-J_{0}\|_{L^{1}} e^{(\sqrt{K}\|J_{0}\|_{L^{1}}k_{1})t}. $$ From this, the results follows immediately. \end{proof} \begin{theorem} \label{thm7.2} Assume the same hypotheses as in Lemma \ref{lem7.1}. Then the family of attractors $\mathcal{A}_{J}$ is upper semicontinuous with respect to $J$ at $J_{0}$. \end{theorem} \begin{proof} From hypotheses of the theorem, it follows that, for every $J \in C^{1}(\mathbb{R})$, sufficiently close to $J_{0}$ in the $L^{1}$-norm, non negative even supported in $[-1,1]$ and satisfying $J(x)\leq C\rho(x)$, for all $x\in[-1,1]$, the attractor, $\mathcal{A}_{J}$, given by Theorem \ref{thm6.3} is in the closed ball $B[0,R]$ in $L^{2}(\mathbb{R},\rho)$. Therefore $$ \cup_{J}\mathcal{A}_{J}\subset B[0,R]. $$ Since $\mathcal{A}_{J_{0}}$ is global attractor and $B[0,R]$ is a bounded set then, for every $\varepsilon >0$, there exists $t^{*}>0$ such that $S_{J_{0}}(t)B[0,R]\subset \mathcal{A}_{J_{0}}^{\varepsilon/2}$, for all $t\geq t^{*}$, where $\mathcal{A}_{J_{0}}^{\frac{\varepsilon}{2}}$ is $\frac{\varepsilon}{2}$-neighborhood of $\mathcal{A}_{J_{0}}$. From Lemma \ref{lem7.1}, it follows that $S_{J}(t)$ is continuous at $J_{0}$, uniformly for $u$ in a bounded set and $t$ in compacts. Thus, there exists $\delta>0$ such that \[ \|J-J_{0}\|_{L^{1}}< \delta \Rightarrow \|S_{J}(t^{*})u-S_{J_{0}}(t^{*})u\|_{L^{2}(\mathbb{R},\rho)} < \frac{\varepsilon}{2}, \quad \forall \, u\in B[0,R]. \] We will show that if $\|J - J_{0}\|< \delta$ then $\mathcal{A}_{J} \subset \mathcal{A}_{J_{0}}^{\varepsilon}$. In fact, let $u\in \mathcal{A}_{J}$. Since $\mathcal{A}_{J}$ is invariant, $v=S_{J}(-t^{*})u\in \mathcal{A}_{J} \subset B[0,R]$. Therefore, \begin{gather} S_{J_{0}}(t^{*})v\in \mathcal{A}_{J_{0}}^{\varepsilon/2}, \label{*}\\ \|S_{J}(t^{*})v -S_{J_{0}}(t^{*})v\|_{L^{2}(\mathbb{R},\rho)} <\frac{\varepsilon}{2}.\label{**} \end{gather} From \eqref{*} and \eqref{**}, it follows that $$ u=S_{J}(t^{*})S_{J}(-t^{*})u=S_{J}(t^{*})v \in \mathcal{A}_{J_{0}}^{\varepsilon} $$ and the upper semicontinuity of $\mathcal{A}_{J}$ follows. \end{proof} \begin{remark} \label{rmk5.3} \rm Similar results can be obtained for the flow of \eqref{1.1} in $$ C_{\rho}(\mathbb{R})\equiv \{f:\mathbb{R}\to \mathbb{R} \,\, \mbox{continuous with the norm}\,\, \|\cdot\|_{\rho}\}, $$ where $$ \|u\|_{\rho}=\sup_{x\in \mathbb{R}}\{|u(x)|\rho(x)\}<\infty , $$ being $\rho$ a positive continuous function on $\mathbb{R}$. \end{remark} \subsection*{Acknowledgments} The author would like to thank the anonymous referee for his/her careful reading of the manuscript. He also would like to thank professors Antonio L. Pereira, for his suggestions, and Vandik E. Barbosa for the encouragement received. \begin{thebibliography}{00} \bibitem{Amari} S. Amari; \emph{Dynamics of pattern formation in lateral-inhibition type neural fields}, Biol. Cybernetics, \textbf{27} (1977), 77-87. \bibitem{Barros} S. R. M. Barros, A. L. Pereira, C. Possani, and A. Simonis; \emph{Spatial Periodic Equilibria for a Non local Evolution Equation}, Discrete and Continuous Dynamical Systems, \textbf{9} (2003), no. 4, 937-948. \bibitem{Brezis} H. Brezis; \emph{An\'alisis funcional teoria y aplicaciones}, Alianza, Madrid, 1984. \bibitem{Chen} F. Chen, \emph{Travelling waves for a neural network}, Electronic Journal Differential Equations, \textbf{2003} (2003), no. 13, 1-14. \bibitem{Daleckii} J. L. Daleckii, and M. G. Krein; \emph{Stability of Solutions of Differential Equations in Banach Space;} American Mathematical Society Providence, Rhode Island, 1974, \bibitem{Ermentrout} G. B. Ermentrout and J. B. McLeod; \emph{Existence and uniqueness of traveliing waves for a neural network}, Procedings of the Royal Society of Edinburgh, \textbf{123A} (1993), 461-478. \bibitem{Hale} J. K. Hale; \emph{Asymptotic Behavior of dissipative Systems}, American Surveys and Monographs, N. 25, 1988. \bibitem{Kishimoto} K. Kishimoto and S. Amari; \emph{Existence and Stability of Local Excitations in Homogeneous Neural Fields}, J. Math. Biology, \textbf{{07}} (1979), 303-1979. \bibitem{Krisner} E. P. Krisner; \emph{The link between integral equations and higher order ODEs}, J. Math. Anal. Appl., \textbf{{291}} (2004), 165-179. \bibitem{Laing} C. R. Laing, W. C. Troy, B. Gutkin and G. B. Ermentrout; \emph{Multiplos Bumps in a Neural Model of Working Memory}, SIAM J. Appl. Math., \textbf{{63}} (2002), no. 1, 62-97. \bibitem{Masi1} A. de Masi, E. Orland, E. Presutti and L. Triolo; \emph{Glauber evolution with Kac potentials: I. Mesoscopic and macroscopic limits, interface dynamics}, Nonlinearity, {\bf{7}} (1994), 633-696. \bibitem{Pereira} A. L. Pereira; \emph{Global attractor and nonhomogeneous equilibria for a non local evolution equation in an unbounded domain}, J. Diff. Equations, \textbf{226} (2006), 352-372. \bibitem{Severino} A. L. Pereira and S. H. Silva; \emph{Existence of global attractor and gradient property for a class of non local evolution equation}, Sao Paulo Journal Mathematical Science, \textbf{2}, no. 1, (2008), 1-20. \bibitem{Severino2} A. L. Pereira and S. H. Silva; \emph{Continuity of global attractor for a class of non local evolution equation}, Discrete and continuous dynamical systems, \textbf{26}, no. 3, (2010), 1073-1100. \bibitem{Rubin} J. E. Rubin and W. C. Troy; \emph{Sustained spatial patterns of activity in neural populations without recurrent Excitation,} SIAM J. Appl. Math., \textbf{64} (2004), 1609-1635. \bibitem{Silva} S. H. Silva and A. L. Pereira; \emph{Global attractors for neural fields in a weighted space.} Matem\'atica Contemporanea, \textbf{36} (2009), 139-153. \bibitem{Teman} R. Teman; \emph{Infinite Dimensional Dynamical Systems in Mechanics and Physics}, Springer, 1988. \bibitem{Wilson} H. R. Wilson and J. D. Cowan; \emph{Excitatory and inhibitory interactions in localized populations of model neurons,} Biophys. J., \textbf{12} (1972), 1-24. \end{thebibliography} \end{document}