\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 152, pp. 1--16.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/152\hfil Stability properties] {Stability properties of differential systems under constantly acting perturbations} \author[G. Cantarelli, G. Zappal\'a\hfil EJDE-2010/152\hfilneg] {Giancarlo Cantarelli, Giuseppe Zappal\'a } % in alphabetical order \address{Giancarlo Cantarelli \newline Dipartimento di Matematica dell'Universit\'a di Parma, Via G.P. Usberti 53/A , 43124 Parma, Italy} \email{giancarlo.cantarelli@unipr.it} \address{Giuseppe Zappal\'a \newline Dipartimento di Matematica e Informatica dell'Universit\'a di Catania, Viale Doria 6, 95125 Catania, Italy} \email{zappala@dmi.unict.it} \dedicatory{In memory of Corrado Risito} \thanks{Submitted January 17, 2010. Published October 21, 2010.} \subjclass[2000]{34D20, 34C25, 34A34} \keywords{Stability; persistent disturbance; two measures; Liapunov functions} \begin{abstract} In this article, we find stability criteria for perturbed differential systems, in terms of two measures. Our main tool is a definition of total stability based on two classes of perturbations. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{assumption}[theorem]{Assumption} \section{Introduction} Let $\mathbb{R}^+$ denote the interval $0 \leq t < \infty$, and $\mathbb{R}^n$ the $n$ dimensional Euclidean space with the corresponding norm $\|x\|$ for $x\in \mathbb{R}^n$. Let us consider the Cauchy problem \begin{equation} \dot x=X(t,x), \quad x(t_0)=x_0 \label{e1.1} \end{equation} and assume that $X(t,0) = 0$ for $t\in \mathbb{R}^+$. Note that this differential system has the null solution $x=0$. In the classical total stability theory, it is required that the null solution be stable, not only with respect to (small) perturbations of the initial conditions but also with respect to the perturbations of the right-hand side of the equation. To this end, we associate to the unperturbed system \eqref{e1.1} a corresponding family of perturbed systems \begin{equation} \dot x=X(t,x)+X_p(t,x),\quad x(t_0)=x_0. \label{e1.2} \end{equation} This differential system may not possess null solution, because we assume only that the right-hand side of \eqref{e1.2} be suitably smooth in order to ensure existence, uniqueness and continuous dependance of solutions for the initial value problem. For the convenience of the reader, we recall that the null solution of \eqref{e1.1} is said to be \emph{totally uniformly stable}, according to Dubosin-Malkin Definition \cite{d1,r1}, provided that for arbitrary positive $\epsilon$ and $t_0 \geq 0$ there are $\delta_1 = \delta_1(\epsilon ) > 0$ and $\delta_2 = \delta_2(\epsilon ) > 0$ such that whenever $\|x_0\| < \delta_1$ and $\|X_p\| < \delta_2$, the inequality $\|x(t,t_0,x_0)\| < \epsilon$ is satisfied for all $t \geq t_0$. Notice that in the classical total stability theory (and in the present paper) the symbol $x(t) = x(t,t_0,x_0)$ denotes the solution of \eqref{e1.2} through a point $(t_0,x_0)$. We emphasize that our stability criteria in Section 3 generalize two well-known Malkin theorems. In fact, a Malkin theorem \cite{m1,r1} on the \emph{total uniform stability} is included as a special case in Theorem \ref{thm3.1}, while Theorem \ref{thm3.5} improves another Malkin theorem \cite{m2,r1}. There under appropriate hypotheses Malkin proves that \begin{quote} For arbitrary positive $\epsilon$ and $t_0 \geq 0$, there are $\delta_1 = \delta_1(\epsilon ) > 0$ and $\delta_2 = \delta_2(\epsilon ) > 0$ and for any $\eta \in ]0,\epsilon[$ there is $\delta_3(\eta) \in ]0,\delta_2]$ such that whenever $\|x_0\| < \delta_1$ and $\|X_p\| < \delta_3$ there exists a constant $T_{\eta }>0 $, such that $\|x(t,t_0,x_0)\| < \epsilon$ is satisfied for all $t \geq t_0 + T_\eta$. \end{quote} It is worth noting that this property first comes the concept of the \emph{strong stability under perturbations in generalized dynamical systems} introduced by Seibert \cite{s2}. The aim of the present article is to introduce and study a new type of total stability in terms of two measures, by splitting the perturbation terms $X_p$ in two parts. Namely, by putting $ X_p = Y + Z$. In Sections 3,4, 5, we require the usual upper restriction on the Euclidean norm of vector $Z$, while we select vector $Y$ by an appropriate scalar product. In Section 6, a mechanical example illustrates our theoretical results. \section{Preliminaries, notation and basic ideas} Let $K := \{a : \mathbb{R}^+\to \mathbb{R}^+: \text{continuous, strictly increasing}, a(0) = 0 \}$ be the set of functions of class $K$ in the sense of Hahn. We shall define some concepts in terms of two measures \cite{l2,l3,m4}. Namely, we denote by $h(t,x)$ and $h_0(t,x)$ two continuous scalar functions satisfying the conditions: \begin{itemize} \item[(i)] $\inf_x h_0(t,x)=0$ for every $t \in \mathbb{R}$; \item[(ii)] there exists a positive constant $\lambda$ and a function $m=m(u) \in K$ such that $h_0(t,x)< \lambda$ implies $h(t,x) \leq m[h_0(t,x)] 0$ is the empty set. Hence, the set of the sets $\{Q(s)\}$ represents a Cartan-Silov direction or, simply, a direction. The above theoretical concepts are essential in the following definition: For every scalar $V=V(t,x)$ we say that $\lim_{h\to 0}V(t,x)=0$ if and only if for every direction such that $\lim h(t,x)=0$, we have $\lim V(t,x)=0$, see \cite{s3}. Denote by $U = U(t,x)$ and $G = G(t,x)$ respectively a continuous scalar function and a continuous $n$-vector function such that $\|G\| > 0$ on $\mathbb{R}^+\times \mathbb{R}^n$. For the unperturbed differential system \begin{equation} \dot x=X(t,x),\quad x(t_0)=x_0 \label{e2.1} \end{equation} and a correspondent perturbed differential system \begin{equation} \dot x=X(t,x)+Y(t,x)+Z(t,x)\quad x(t_0)=x_0 \label{e2.2} \end{equation} without further mention, we will assume that $Y G\leq U$, where $Y G$ denotes the scalar product of the vectors $Y$ and $G$. Moreover, we assume that the right-hand sides of \eqref{e2.1} and \eqref{e2.2}, are L-measurable in $t\in \mathbb{R}^+$, continuous in $x\in \mathbb{R}^n$. Also we assume that for every compact subset $A\subset \mathbb{R}^n$ there exists a map $\sigma_A =\sigma_A(t)$ locally integrable such that $\|X(t,x)\|$, $\|Y(t,x)\|$, $\|Z(t,x)\|<\sigma_A(t)$ when $x\in A$. The previous conditions (Caratheodory's conditions) ensure the existence and the general continuity of solutions for \eqref{e2.1} and \eqref{e2.2}; see \cite{c1,c2}. Then, for every $(t_0,x_0)\in \mathbb{R}^+\times \mathbb{R}^n$ we denote by $x(t)=x(t,t_0,x_0)$ a solution of \eqref{e2.2}, and we assume that $x(t)$ is defined for $t\ge t_0$. For every continuous scalar function $V=V(t,x)$ having continuous partial derivatives we put \begin{equation} V_t={{\partial V}\over {\partial t}},\quad V_x=\operatorname{grad} V={{\partial V}\over {\partial x}}, \quad \dot{V}_1=V_t+V_x \cdot X=\dot V .\label{e2.3} \end{equation} The function $\dot V$ is said to be the derivative of $V$ computed along the solutions of the unperturbed system \eqref{e2.1}. While the related formula given by Malkin \cite{m1,r1}, \begin{equation} \dot{V}_2 (t,x)=\dot V (t,x) + V_x (t,x)[Y(t,x)+Z(t,x)] \label{e2.4} \end{equation} gives the derivative of $V$ along the solutions of the perturbed system \eqref{e2.2}. If $\phi$ and $\theta$ are two scalar functions, it easy to prove the following results which will be used in the next sections. \begin{itemize} \item[(i)] if $V_x=\phi G$ and $YG\leq U$, when $\phi >0$ we deduce \begin{gather} \dot{V}_2(t,x)=\dot V(t,x)+\phi (t,x)[GY(t,x)+ GZ(t,x)], \label{e2.4A}\\ \dot{V}_2(t,x)\leq \dot V(t,x)+ \phi (t,x) [U(t,x)+ \|G(t,x)\|\|Z(t,x)\|]; \label{e2.4B} \end{gather} \item[(ii)] if $U(t,x)\leq 0$ and $\phi(t,x)>0, V_x=\phi G$ we deduce \begin{equation} \dot{V}_2(t,x)\leq \dot V(t,x) + \phi (t,x) \|G(t,x)\| \|Z(t,x)\|; \label{e2.4C} \end{equation} \item[(iii)] if $U(t,x)\ge 0$, $\phi (t,x)>0$, $\theta{(t,x)}>0$, $ V_x(t,x)=\phi G(t,x)$ and $\dot V(t,x)\leq -\theta U(t,x)$, we deduce \begin{equation} \dot{V}_{2}(t,x) \leq -[\theta (t,x)-\phi (t,x)]U(t,x) +\phi (t,x)\|G(t,x)\|\|Z(t,x)\|. \label{e2.4D} \end{equation} \end{itemize} We conclude the present section with a list of definitions concerning the several kinds of the stability in terms of two measures and two perturbations. \begin{definition} \label{def2.1} \rm System \eqref{e2.1} is said to be \emph{$(h_0, h)$-stable under two persistent perturbations}, also called $(h_0,h)$-t.bistable, if for every $t_0 \in \mathbb{R}^+$ and every $\epsilon >0$, there exist a number $\delta_1=\delta_1(t_0,\epsilon)$ and a function $\delta_2= \delta_2(t_0,x,\epsilon)>0$ such that for all $x_0 \in \mathbb{R}^n$ with $h_0(t_0, x_0)<\delta_1$, all $Z(t,x)$ with $\|Z(t, x)\|<\delta_2$, and all $Y$ with $YG\leq U$; we have $h[t, x(t)]<\epsilon$ when $t\ge t_0$. If $\delta_1=\delta_1(\epsilon)$ and $\delta_2=\delta_2(\epsilon)$ are independent of $t_0$ and $x$, we have the uniformity. \end{definition} \begin{definition} \label{def2.2} \rm System \eqref{e2.1} is said to be \emph{strongly weakly $(h_0,h)$-t.bistable}, if in Definition \ref{def2.1}, $\delta_2(t_0,x,\epsilon)\ge 0$, and the L-measure of set \begin{equation} E_t(\delta_2=0)=\{ x\in \mathbb{R}^n:\delta_2 (t_0,x,\epsilon)=0\} \label{e2.5} \end{equation} is zero for $t_0\in \mathbb{R}^+$ and $\epsilon >0$. In the following we will briefly write $\delta_2 \in GG$ to indicate this condition. \end{definition} \begin{definition} \label{def2.3} \rm System \eqref{e2.1} is said to be \emph{weakly $(h_0,h)-t.bistable$} if, for every $t_0\in \mathbb{R}^+$ and $\epsilon >0$, there exists at the most one $x\in \mathbb{R}^n$ such that $\delta_2(t_0,x,\epsilon)=0$. In the following this condition will be briefly denoted as $\delta_2 \in ZZ$. \end{definition} \begin{definition} \label{def2.4} \rm System \eqref{e2.1} is said to be \emph{$(h_0,h)$-eventually stable under two persistent perturbations}, also called eventually $(h_0,h)$-t.bistable, if: For every $\epsilon>0$ there exists $T=T(\epsilon)>0$, for every $t_0 \ge T$ there exist $\delta_1=\delta_1(t_0,\epsilon)$ and $\delta_2=\delta_2(t_0,x,\epsilon)>0$ such that for every $x_0 \in \mathbb{R}^n$ with $h_0(t_0, x_0)<\delta_1$, for every $Z$ with $\|Z(t,x)\|<\delta_2$ and every $Y$ with $YG\leq U$, we have $h[t, x(t)]<\epsilon$ when $t\ge t_0$. \end{definition} \begin{definition} \label{def2.5} \rm System \eqref{e2.1} is said to be \emph{$(h_0,h)$-semiattractive}, if it is $(h_0,h)$-t.bistable and: For every $\eta \in ]0,\epsilon[$ there exists a function ${\delta}_3>0$, with ${0< \delta}_3 \leq {\delta}_2$, such that for every $Z:\|Z\|<{\delta}_3$ and every $Y$ with $YG\leq U$, there exists $T_{\eta} >0$ for which $h[t,x(t)]<\eta$ when $t\ge t_0+T_{\eta}$, where $x(t)=x(t,t_0,x_0)$ is a solution of \eqref{e2.2}. \end{definition} \begin{definition} \label{def2.6} \rm System \eqref{e2.1} is said to be $(h_0,h)$-\emph{stable on average under two persistent perturbation}, also called \emph{$(h_0,h)$-t.bistable on average}, if: For every $t_0\in \mathbb{R}^+$, every $\epsilon>0$ and every $T>0$, there exist $\delta_1$ and $\delta_2>0$ such that every solution $x(t)=x(t,t_0,x_0)$ of \eqref{e2.2} with $h_0(t_0,x_0)<\delta_1$, $YG \leq U$, and \begin{equation} \int^{t+T}_t \sup\{\|Z(u,x)\| : x\in \mathbb{R}^n \} du<\delta_2 \quad \forall t\ge t_0 \label{e2.6} \end{equation} satisfies $h[t,x(t)]<\epsilon$ for all $t\ge t_0$. \end{definition} \section{Theoretical developments} Suppose that the functions $X,G,U$ are the known start point. We will use the technique that is known as family of Liapunov functions introduced by Salvadori \cite{s1}. The basic advantage of this method is that the single function needs to satisfy less rigid requirements than in other methods. \begin{theorem} \label{thm3.1} Let $U:\mathbb{R}^+\times \mathbb{R}^n \to \mathbb{R}$ be given. Assume that for every $\epsilon>0$, there exist three scalar functions $\Theta=\Theta (t,x)$, $\phi=\phi (t,x) \in C$, and $V=V(t,x) \in C^1$, and exists a constant $l$ such that on the set $ \mathbb{R}^+\times \mathbb{R}^n$ we have: \begin{itemize} \item[(i)] $h(t,x)= \epsilon $ implies $V(t,x) \ge l>0$; \item[(ii)] ${\lim_{h\to 0}}V(t,x)=0$; \item[(iii)] $\Theta (t,x) > \phi (t,x)>0$ and $(\Theta-\phi)U>0$; \item[(iv)] $V_x(t,x)=\phi G(t,x)$; \item[(v)] $\dot V(t,x)\leq -\Theta U(t,x)$. \end{itemize} Then system \eqref{e2.1} is $(h_0,h)$-t.bistable. \end{theorem} \begin{proof} Given $t_0, \epsilon, l, \Theta, \phi, V$, by (ii) there exists $d>0$ such that $h(t_0,x)t_0$ such that $h_1(t')=\epsilon$ with $h_1(t)<\epsilon $ for $t\in [t_0,t'[$ then we should deduce that $V_1(t')\ge l$, which is a contradiction. \end{proof} \noindent\textbf{Remark.} If $U \ge 0$ the system can be strongly weakly $(h_0,h)$-t.bistable or weakly $(h_0,h)$-t.bistable. \begin{corollary} \label{coro3.2} Suppose that there exist three scalar functions $\Theta=\Theta(t,x), \phi=\phi(t,x) \in C$ and $V=V(t,x) \in C^1$ such that on $\mathbb{R}^+\times \mathbb{R}^n$ we have: \begin{itemize} \item[(i)] for each $\epsilon >0$ there exists $l>0$ such that $h(t,x)=\epsilon $ implies $V(t,x) \ge l>0$; \item[(ii)] $\lim_{h\to 0} V(t,x)=0$; \item[(iii)] $\Theta(t,x)> \phi(t,x)>0$ and $(\Theta-\phi)U >0$; \item[(iv)] $V_x(t,x)=\phi G(t,x)$; \item[(v)] $\dot V(t,x)\leq -\Theta U(t,x)$. \end{itemize} Then \eqref{e2.1} is $(h_0,h)$-t.bistable. \end{corollary} \begin{corollary} \label{coro3.2a} For a scalar function $U< 0$, suppose that there exist three scalar functions $L=L(t,x)$, $\phi=1$, $V=V(t,x)$ such that the conditions (i)--(iv) in Corollary \ref{coro3.2} hold, and that $\dot V(t,x)\leq -L(t,x)< 0$. Then \eqref{e2.1} is $(h_0,h)-$t.bistable. \end{corollary} \begin{proof} From \eqref{e2.4C} we have \begin{equation} \dot V_2(t,x)\leq -L(t,x)+\|G\|\|Z\| \label{e3.1a} \end{equation} hence by choosing $\|Z\|\leq L/\|G\|$ we have the proof. \end{proof} \begin{theorem} \label{thm3.3} Suppose that for every $\epsilon >0$ there exist two scalar functions $\phi =\phi (t,x)$, $\Theta =\Theta (t,x) \in C$, a map $N=N(u)$ L-measurable, the scalar function $V=V(t,x) \in C^1 $, and a constant $l$ such that on $\mathbb{R}^+\times \mathbb{R}^n$ we have: \begin{itemize} \item[(i)] $h(t,x)=\epsilon $ implies $V(t,x)\ge l>0$; \item[(ii)] ${\lim_{h\to 0}} V(t,x)=0$; \item[(iii)] $\dot V(t,x)\leq -\Theta U(t,x)+N(t)$ with $0<\int_0^{+\infty}N(u)du <+\infty$ and $U >0 $ (a hypothesis of Hatvani's type); \item[(iv)] $\Theta (t,x) \ge \phi (t,x)>0$ and $(\Theta-\phi)U >0$; \item[(v)] $V_x(t,x)=\phi G(t,x)$. \end{itemize} Then \eqref{e2.1} is eventually $(h_0,h)$-t.bistable. \end{theorem} \begin{proof} Given $\epsilon>0$ we consider the function \begin{equation} W(t,x)=V(t,x)+\int_t^{+\infty}N(u)du \quad (t>0). \label{e3.2} \end{equation} Let $T>0$ such that $2\int_{t_0}^{+\infty }N(u)du0$ such that $h(t_0,x)t_0$ such that $H(t')=\epsilon$ and $H(t)<\epsilon$ for $t_0\leq tl$ hence $w(t')>l$. This is a contradiction which completes the proof. \end{proof} \begin{lemma} \label{lem3.4} Suppose that there exist four scalar functions $\phi=\phi(t,x)$, $U=U(t,x)$, $\Theta=\Theta(t,x) \in C$, $V=V(t,x) \in C^1$, a scalar function $\Psi=\Psi(t,h)$ L-integrable with respect to $t \in \mathbb{R}^+$, a map $a=a (u) \in K$ such that on $\mathbb{R}^+\times \mathbb{R}^n$, we have \begin{itemize} \item[(i)] $V(t,x)\ge a [h(t,x)]$; \item[(ii)] $ {\lim_{h\to 0}}V(t,x)=0$; \item[(iii)] $V_x(t,x)=\phi G(t,x)$; \item[(iv)] $\dot V(t,x)\leq -\Theta U(t,x)< 0$; \item[(v)] $\Theta(t,x)>\phi (t,x)>0$ and $(\Theta-\phi)U >0$; \item[(vi)] $(\Theta -\phi)U(t,x)=\Psi [t,h(t,x)]$; \item[(vii)] $\Psi (t,h) \ge \Psi (t, \mu)$ when $h \ge \mu>0$; \item[(viii)] $\int_{t'}^{+\infty} \Psi (\tau ,\rho )d\tau = +\infty $, for all $t'\in I$, all $\rho >0$. \end{itemize} Then \eqref{e2.1} is $(h_0,h)$-t.bistable. Also for every $\epsilon >0$, for every $\eta \in ]0,\epsilon]$, for each $\gamma>0$ for every $t_0 \in \mathbb{R}^+$ and $x_0\in \mathbb{R}^n$ with $h_0(t_0,x_0)<\delta_1$, for every $Z$ with \begin{equation} \|Z(t,x)\|\leq \big({1\over {1+\gamma}}\big) {{(\Theta -\phi )U(t,x)}\over {\phi \|G(t,x)\|}} = \delta_3; \label{e3.6} \end{equation} there exists $t_{\eta } \ge t_0$ for which $h[t_{\eta },x(t_{\eta})]<\eta$ where $x=x(t,t_0,x_0)$ is solution of \eqref{e2.2}. \end{lemma} \begin{proof} By contradiction let us assume that that there exist $\epsilon_1 >0$, $\eta_1\in ]0,\epsilon_1]$, $(t_1,x_1)\in \mathbb{R}^+\times \mathbb{R}^n$: $h_0(t_1,x_1)<\delta_1 ,\gamma_1>0$, $Z_1$ : $\|Z_1(t,x)\|<\delta_3$ (depending on $\gamma_1$) such that $h[t,x_1(t)]\ge \eta_1$ when $t\ge t_1$ where $x_1(t)=x(t,t_1,x_1)$ is obviously a solution of \eqref{e2.2}. Consider the derivative $\dot{V}_2(t,x)$: by hypotheses (iii) and (iv) we have \begin{equation} \dot{V}_2(t,x)=\dot{V}+\phi GY(t,x)+\phi GZ(t,x) \le-(\Theta-\phi )U+ \phi \|G\|\|Z\| \label{e3.7} \end{equation} Thus selecting \begin{equation} \|Z(t,x)\| \leq {1 \over {1+{\gamma}_1}} {{(\Theta- \phi)U(t,x)} \over {\phi \|G(t,x)\|}}=\frac {1}{1+\gamma_1}\delta_2=\delta_3 \label{e3.8} \end{equation} we obtain \begin{equation} \dot{V}_2(t,x)\leq -{{{\gamma}_1} \over {1+{\gamma}_1}}(\Theta-\phi)U <0. \label{e3.9} \end{equation} hence by (vi) \begin{equation} {\dot V }_2(t,x) \leq -{{{\gamma}_1}\over {1+{\gamma}_1}} \Psi [t,h(t,x)]. \label{e3.10} \end{equation} On the set $\{ (t,x)\in \mathbb{R}^+\times \mathbb{R}^n: h(t,x) \ge \eta_1>0 \}$ we have $ \Psi [t,h(t,x)] \ge \Psi (t, \eta_1)$ and \begin{equation} { \dot V}_2(t,x) \leq -{{{\gamma}_1} \over {1+{{\gamma}_1}}}\Psi (t,{\eta}_1). \label{e3.11} \end{equation} Along the above solution $x_1(t)$ we obtain, for $t\ge t_1$, \begin{gather} \int_{t_1}^{t} \dot{V}_2[u,x_1(u)] du \leq -{{{\gamma}_1} \over {1+{\gamma}_1}} \int_{t_1}^{t }\Psi (u,\eta_1) du, \label{e3.12}\\ V[t,x_1(t)]\leq V(t_1,x_1)-{{{\gamma}_1}\over {1+{\gamma}_1}} \int_{t_1}^t \Psi (u,\eta_1) du \label{e3.13} \end{gather} which is a contradiction. \end{proof} \begin{theorem} \label{thm3.5} Under the hypotheses of Lemma \ref{lem3.4} suppose that \begin{itemize} \item[(ix)] There exist $b=b(u) \in K$ such that $b[h_0 (t,x)]\leq h(t,x)$ on $\mathbb{R}^+\times \mathbb{R}^n$. \end{itemize} Then, for every $\epsilon >0$ and $\sigma \in ]0,\epsilon]$, there exists a function $\delta_3=\delta_3 (t,x,\sigma)\in ]0,\delta_2]$ such that: for every $t_0\in \mathbb{R}^+$, for every $x_0 \in \mathbb{R}^n$ with $h_0(t_0,x_0)<\delta_1$, and for every $Z:\|Z(t,x)\|<\delta_3$; there exists $T_{\sigma}>0$ for which $h[t,x(t)]<\sigma$ when $t\ge t_0+T_{\sigma}$ where $x(t)=x(t,t_0,x_0)$ is a solution of \eqref{e2.2}. \end{theorem} \begin{proof} Since the system \eqref{e2.1} is $(h_0,h)$-t.bistable, given $t_0 \in \mathbb{R}^+$ and $\epsilon >0$ there exist $\delta_1 =\delta_1 (t_0,\epsilon)$ and $\delta_2=\delta_2 (t,x,\epsilon)>0$ such that fixed $x_0 \in \mathbb{R}^n$ for which $h_0(t_0,x_0)<\delta_1$ and select $Z:\|Z(t,x)\|<\delta_2$ we have $h[t,x(t)]<\epsilon$ for $t\ge t_0$ where $x(t)=x(t,t_0,x_0)$ is a solution of \eqref{e2.2}. It is obvious that for every $\sigma \in ]0,\epsilon[$ there exist $d_1 \in ]0,\delta_1[$ and $d_2 \in ]0,\delta_2[$ such that fixed $(t_1,x_1) \in \mathbb{R}^+\times \mathbb{R}^n$ for which $h_0(t_1,x_1)0$; such that on $\mathbb{R}^+\times \mathbb{R}^n$, we have: \begin{itemize} \item[(i)] $a[h(t,x)] \leq V(t,x) \leq b[h(t,x)]$; \item[(ii)] $\phi(t,x) >0$; \item[(iii)] $V_x(t,x)=\phi G(t,x), \ \|V_x(t,x)\|0$, put $\nu={ r\over T } \epsilon$: the condition $\nu 0$, from (i) $h(t,x)=\epsilon$ implies $V(t,x)\ge a(\epsilon)$. Select $d \in ]0,\epsilon [$ such that: \begin{itemize} \item[(i)] $h(t_0,x) b(d)e^{\Theta}\ge a(\epsilon)e^{-\Theta},\quad {{1}\over {2}}\ge e^{-2\Theta}. \label{e3.29} \end{equation} Since $00$ there exists $l>0$ such that $h(t,x)=\epsilon$ implies $V(t,x)>l$; \item[(ii)] ${\lim_{h\to 0}}V(t,x)=0$; \item[(iii)] $\dot V(t,x)< 0$; \item[(iv)] $\|V_x(t,x)\|>0$. \end{itemize} Then \eqref{e2.1} is ($h_0,h$)-t.bistable with respect to the ``aim perturbations'' (friction?) for which $V_xY(t,x)\leq 0$. \end{theorem} \begin{proof} The proof is very similar to that of Theorem \ref{thm3.1}. We limit ourselves to observe that \begin{equation} \dot{V}_2(t,x)\leq \dot V(t,x)+\|V_x(t,x)\| \|Z(t,x)\| \label{e4.1} \end{equation} and thus if \begin{equation} \|Z(t,x)\|\leq -{{\dot V(t,x)}\over {\|V_x(t,x)\|}}={\delta}_2 \label{e4.2} \end{equation} we have $\dot{V}_2(t,x)\leq 0$. \end{proof} \begin{theorem} \label{thm4.2} Suppose that there exist three functions $\Phi=\Phi(t,x)\in C$, $V=V(t,x)$ and $W=W(t,x)\in C^1$ such that on $\mathbb{R}^+\times \mathbb{R}^n$ we have: \begin{itemize} \item[(i)] For all $\epsilon >0$ there exists $l>0$ such that $h(t,x)=\epsilon$ implies $V(t,x)-W(t,x)\ge l$; \item[(ii)] ${\lim_{h\to 0}}[V(t,x)-W(t,x)]=0$; \item[(iii)] $\dot V(t,x)< 0$; \item[(iv)] $ \|V_x(t,x)-W_x(t,x)\|>0$; \item[(v)] $0<\Phi (t,x)<1$. \end{itemize} Then the system \eqref{e2.1} is $(h_0,h)$-t.bistable with respect to the ``aim perturbations'' such that $(V_x-W_x)Y(t,x)\leq (-\Phi \dot V+\dot W)(t,x)$. \end{theorem} \begin{proof} Let $T(t,x)=V(t,x)-W(t,x)$ be an auxiliary function. From the following two conditions \begin{gather} \dot{T}_2(t,x)=[\dot V-\dot W](t,x)+(V_x-W_x)Y(t,x)+(V_x-W_x)Z(t,x), \label{e4.3}\\ \dot{T}_2\leq \dot V-\dot W-\Phi \dot V+\dot W+\|V_x-V_x\|\|Z\|\notag \end{gather} if \begin{equation} \|Z\|\leq -{{(1-\Phi)\dot V}\over {\|V_x-W_x\|}}=\delta_2 (t,x), \label{e4.4} \end{equation} we obtain $\dot{T}_2(t,x)\leq 0$. \end{proof} \begin{theorem} \label{thm4.3} Suppose that there exist a constant $a>0$ and two functions $V=V(t,x)$, $W=W(t,x)\in C^1$ such that on $\mathbb{R}^+\times \mathbb{R}^n$ we have \begin{itemize} \item[(i)] $V(t,x)\ge 0$; \item[(ii)] $W(t,x)\ge -a$ and for every $\epsilon >0$ there exist two constants $r, b>0$ for which $h(t,x)=\epsilon$ with $V(t,x)b$; \item[(iii)] ${\lim _{h\to 0}}V(t,x)= {\lim_{h\to 0}}W(t,x)=0$; \item[(iv)] $\|V_x(t,x) +\mu W_x(t,x)\|>0$ for every $\mu> 0$. \end{itemize} Then \eqref{e2.1} is bistable with respect to the ``aim perturbations'' for which \begin{equation} \dot V (t,x)+\mu \dot W (t,x)+[V_x(t,x)+\mu W_x(t,x)]Y(t,x)< 0. \label{e4.5} \end{equation} \end{theorem} \begin{proof} Given $\epsilon$ and $r,b>0$, suppose that $0<\mu (a+b)0$ is a constant (correspondent to $\epsilon$). Consider the family of functions \begin{equation} v(t,x)=V(t,x)+\mu W(t,x). \label{e4.6} \end{equation} If we assume that $h(t,x)=\epsilon$ and $V(t,x)\ge r$, we obtain \begin{equation} v(t,x)-\mu b\ge r-\mu (a+b), v(t,x)\ge \mu b \label{e4.7} \end{equation} When $h(t,x)=\epsilon $ implies $V(t,x)0$ such that for every $\eta \in ]0,m]$ there exist $\rho, \beta >0$ with the property: $(t,x)\in \mathbb{R}^+\times \mathbb{R}^n$ with $h(t,x)>\eta$ and $\phi (t,x)< \rho$ imply respectively $W(t,x)> \beta$, $W(t,x)< -\beta$, $|W(t,x|> \beta$. \end{definition} \begin{theorem} \label{thm5.3} Suppose that there exist: two functions $V=V(t,x)$ and $W=W(t,x)\in C^1$ from $\mathbb{R}^+\times \mathbb{R}^n$ to $\mathbb{R}$, and a constant $a>0$ such that, on $\mathbb{R}^+\times \mathbb{R}^n$, we have: \begin{itemize} \item[(i)] $V(t,x)\ge 0, \sup V(t,x)>0, W(t,x)\ge -a$; \item[(ii)] for every $\epsilon>0$ two numbers $r, b>0$ exist such that $h(t,x)=\epsilon$ and $V(t,x)b$. \end{itemize} Then we can construct a family of functions that verifies hypothesis (i) of Theorem \ref{thm3.1}. \end{theorem} \begin{proof} Given $\epsilon>0$ with $r,b$; let $0<\mu \leq r/(a+b)$ and consider the family of functions \begin{equation} v_{\mu}=v_{\mu}(t,x)=V(t,x)+\mu W(t,x). \label{e5.2} \end{equation} Suppose $h=h(t,x)=\epsilon$ and $V(t,x)\ge r$ hence $v_{\mu}(t,x)\ge r-\mu a$ and \begin{equation} v_{\mu}(t,x)-\mu b\ge r-\mu (a+b)\ge 0 \label{e5.3} \end{equation} hence we have $v_{\mu}(t,x)\ge \mu b>0$. If $h=h(t,x)=\epsilon$ and $V(t,x)b$ and \begin{equation} v_{\mu} (t,x)=V(t,x)+\mu W(t,x)\ge \mu b. \label{e5.4} \end{equation} \end{proof} \begin{theorem} \label{thm5.4} Suppose that there exist three functions of class $C^1$: $V=V(t,x)$, $W=W(t,x)$ from $\mathbb{R}^+\times \mathbb{R}^n$ to $\mathbb{R} $ and $\phi=\phi (t,x) $ from $\mathbb{R}^+\times \mathbb{R}^n$ to $\mathbb{R}^+$, and two constants $M, M'>0$ such that, on $\mathbb{R}^+\times \mathbb{R}^n$, we have: \begin{itemize} \item[(i)] $\phi(t,x)\ge 0; \phi(t,x)=0$ implies $\dot V(t,x)\leq 0, \phi(t,x)$ verifies Assumption \ref{assum5.1}; \item[(ii)] for every $\chi >0$ there exists $\chi'>0$ such that for every $t\in \mathbb{R}^+$ when $\operatorname{dist}[(t,x),E_t(\phi =0)]>\chi $ we have $\dot V(t,x)<-\chi'$; \item[(iii)] $|W(t,x)|$ and $\|WX(t,x)\|0$ such that given $\eta \in]0,m]$ there exist $\beta , \rho>0$ and three sets: \begin{gather} A_1=\{ (t,x)\in \mathbb{R}^+\times \mathbb{R}^n: h(t,x)\ge \eta, \phi (t,x)\leq \rho, \dot W(t,x) <-\beta \}, \label{e5.5}\\ A_2=\{ (t,x)\in \mathbb{R}^+\times \mathbb{R}^n: h(t,x)\ge \eta, \phi (t,x)\leq \rho, \dot W(t,x) > \beta \}, \label{e5.6}\\ A_3=\{ (t,x)\in \mathbb{R}^+\times \mathbb{R}^n:h(t,x) \ge \eta,\phi(t,x) \leq \rho, (t,x)\notin A_1 \cup A_2 \}=\emptyset \label{e5.7} \end{gather} since $W(t,x)\in C^1$ when $A_1, A_2\neq \emptyset $ we have $\operatorname{dist}[A_1, A_2]>0 $. Now, we shall denote, for a fixed $t=t'\in \mathbb{R}^+$, for $i=1, 2$ and for every $r>0$: \begin{gather} B_i(t')=\{(t',x)\in A_i:\phi(t',x)=0\}; \operatorname{dist}\{ \partial E_{t'}(0),\partial E_{t'}(\rho)\} =3\alpha \;(>0) \label{e5.8}\\ S=S(r)=\{ x\in \mathbb{R}^n: \|x\|0 \label{e5.14} \end{equation} and its derivative \begin{equation} \dot v_{\nu}=\dot v_{\nu}(t,x)=\dot V(t,x) +\nu \dot {\omega}(t,x) \label{e5.15} \end{equation} It is obvious that for fixed $t\in \mathbb{R}^+, (t,x)\in \Gamma$ with $(t,x)\notin [D''_1(t) \cup D''_2(t)]$, we have $v_{\nu}(t,x)=V(t,x), \dot v_{\nu}(t,x)=\dot V(t,x)$. In this first case since $\operatorname{dist}[(t,x),E_t(\phi=0)]\ge 3\alpha$ there exists $\alpha'>0$ such that $\dot V(t,x)<-\alpha'<0$. If $(t,x)\in D_1(t)\cap \Gamma$ then $T=1, \omega (t,x) =W(t,x), v_{\nu} (t,x)=V(t,x)+ \nu W(t,x)$ with $\dot V(t,x)\leq 0, \dot W(t,x)<-\beta$ hence $\dot v_{\nu} (t,x)<-\nu \beta <0$ for every $\nu>0$. When $(t,x)\in D''_1(t)\cap \Gamma$ with $(t,x)\notin D_1(t)$, we have $\alpha \leq \operatorname{dist}[(t,x),E_t(\phi=0)]\leq 3\alpha$ then there exists $\alpha''>0$ such that $\dot V(t,x)<-\alpha''$; therefore, $\dot v_{\nu} (t,x)<-\alpha''+\nu (2MN+M')$. If $0<2\nu [2MN+M']<\alpha''$ we obtain \begin{equation} 2\dot v_{\nu} (t,x)<-\alpha''.\label{e5.16} \end{equation} The cases $(t,x)\in D_2(t)\cap \Gamma$ and $(t,x)\in D''_2(t)\cap \Gamma$ with $(t,x)\notin D_2(t)$ are trivial as $A_1=\emptyset$ or $A_2=\emptyset$. \end{proof} \section{Application to the motion of rigid bodies} In this section we present an illustrative mechanical example. Putting $$ CD=\{ (p,q,r,\gamma_1,\gamma_2)\in \mathbb{R}^5: \gamma_1^2+ \gamma_2^2 \leq 1\} $$ on the set $\mathbb{R}^+\times CD$ let us consider the system of equations \begin{equation} \begin{gathered} \dot Ap+2A\dot p+2(C-A)qr=2Pz\gamma_2 \gamma_3-2f_1p-2f_4r, \\ \dot Aq+2A\dot q+2(A-C)pr=-2Pz\gamma_1 \gamma_3-2f_2q-2f_5r,\\ \dot Cr+2C\dot r=2f_4p+2f_5q-2f_3r,\\ \dot {\gamma}_1=r\gamma_2-q\gamma_3, \quad \dot {\gamma_2}=p\gamma_3-r\gamma_1, \quad \dot {\gamma}_3=q{\gamma_1-p\gamma_2},\\ \gamma^2=1-\gamma_3, \quad \gamma_1^2+\gamma_2^2+\gamma_3^2=1\,. \end{gathered} \label{e6.1} \end{equation} This system, with the usual designation and when $Pz=0$, constitutes the basic dynamical system for the motion of a symmetrical rigid body about a fixed point and variable mass \cite{o1}; if $P=0$ the body is non heavy, if $z=0$ the center of gravity is a fixed point. \begin{assumption} \label{assum6.1} \rm Assume that the given functions $A(t), C(t)\in C^1(\mathbb{R}^+\to \mathbb{R}^+)$, $P(t)\in C(\mathbb{R}^+\to \mathbb{R}^+)$, $z(t)\in C(\mathbb{R}^+\to ]0,\infty[)$ and $G(t,p,q,r,\gamma_1, \gamma_2),U(t,\dots \gamma_2)$ satisfy the following properties: \begin{itemize} \item[(i)] $\inf \{ A(t),C(t),P(t),-z(t)\} >0$, $-Pz=\text{const} >0$ and $A'=\inf A(t)\leq \sup A(t)=A''$; \item[(ii)] $0\phi =1$, $-f''(p^2+q^2+r^2)\leq \dot V \leq -f'(p^2+q^2+r^2)$. \item[(v)] $\dot V=0$ if and only if $p=q=r=0$; therefore, the L-measure on $\mathbb{R}^5$ of the set $$ E_1=E(\dot V=0)=\{ p=q=r=0,(\gamma_1,\gamma_2)\in \mathbb{R}_2 :\gamma_1^2+\gamma_2^2 \leq 1 \} $$ is equal to zero, hence the system \eqref{e6.1} is strongly weakly $(h_0,h)$-t.bistable with respect to perturbation \begin{equation} \sigma\{ Ap, Aq, Cr, 0, 0 \} \label{e6.5} \end{equation} where $\sigma=\sigma(t,p,q,r,\gamma_1,\gamma_2)>0$ belongs to $C^1$. \item[(vi)] Since \begin{equation} \begin{aligned} \dot W& =2(A-C)qr\gamma_2 -A\dot p\gamma_2 +2Pz\gamma_2^2 -2f_1 p\gamma_2 -2f_4 r\gamma_2+Ap\dot{\gamma_2}\\ &\quad -2(C-A)pr\gamma_1+A\dot q\gamma_1+2Pz\gamma_1^2 +2f_2q\gamma_1+ 2f_5r\gamma_1+Aq\dot {\gamma_1}, \end{aligned}\label{e6.6} \end{equation} hence on the set $E_1$, we obtain $\dot W=2Pz(\gamma_1^2+\gamma_2^2)\leq 0$. \item[(vii)] If $0<\eta <1$ and $\gamma_1^2+\gamma_2^2=\gamma \ge \eta$ we deduce $2Pz\gamma\leq 2Pz\eta <0$ i.e. on the set $E_2=E(\dot V=0,\eta \leq \gamma \leq 1)$ \ we have $\dot W\leq 2Pz\eta <0$ and $4h=-Pz\gamma\ge -Pz\eta $. Since $W\in C^1$ there exists $b>0$ such that on the set \begin{equation} (CD)_1=\{ (p,q,r)\in \mathbb{R}^3:p^2+q^2+r^2\leq 9b^2 \} \times \{ (\gamma_1,\gamma_2) \in \mathbb{R}^2:\gamma \ge \eta \} \label{e6.7} \end{equation} we have $\dot W \leq Pz\eta<0$, i.e. the function $\dot W$ is definitely negative on the set $E(\dot V=0)$ with respect to the measure $h$ when $\gamma \ge \eta$. According to Theorem \ref{thm5.4} we have $A_2=0$ and \begin{equation} \begin{aligned} A_1&=\{ (p,q,r,\gamma_1,\gamma_2):h\ge -\frac 1 2 Pz\gamma \ge -\frac 1 2 Pz\eta; \phi=p^2+q^2+r^2\leq 9b^2 \} \\ &=\{ (p,q,r)\in \mathbb{R}^3:\phi=p^2+q^2+r^2 \leq 9b^2 \} \times \{ (\gamma_1,\gamma_2) \in \mathbb{R}^2:\gamma \ge \eta \}. \end{aligned}\label{e6.8} \end{equation} \item[(viii)] Consider the function $\psi =\psi(p,q,r)$ from $\mathbb{R}^3$ to $\mathbb{R}^+$ such that $\psi=0$ when $4b^2\leq \phi$, $\psi=1$ when $0\leq \psi<4b^2 $ and their regularized function, defined on $\mathbb{R}^3$: \begin{equation} T(x)=\int_{\mathbb{R}^3}\psi_i(x)\Omega_{b}(x-u)du \label{e6.9} \end{equation} where $x=(p,q,r)$ and $\Omega_b$ is the averaging kernel of radius $b$. It is obvious that $0\leq T \leq 1, T\in C^{\infty}$ and: $T =0$ when $\phi\ge 9b^2$, $00)$ being $M''$ a suitable constant. On the set $(CD)_1$ we obtain \begin{equation} |TW|=|T\|W|\leq |W|\leq A''[|p\gamma_2|+|q\gamma_1|]\leq 6A''b. \label{e6.10} \end{equation} \item[(ix)] Successively consider the family of functions $w_{\mu}=V+\mu TW$ defined on the set $$ \mathbb{R}^+\times (CD)_2=\{ t\in \mathbb{R}^+\} \times \{ (p,q,r)\in \mathbb{R}^3; (\gamma_1,\gamma_2)\in \mathbb{R}^2:\eta \leq \gamma<1\} $$ when $\mu >0$ and suppose that: \begin{itemize} \item[(1)] $\phi \ge 9b^2$ in this case $T=0$, $w_{\mu}=V$ hence for $h=s$ we obtain $w_{\mu}=2s$; \item[(2)] $\phi<9b^2$ now $|TW|\leq 6A''b$ therefore $h=s$ implies \begin{equation} [w_{\mu}]_{h=s}=[V+\mu TW]_{h=s}\ge 2s-6\mu A''b>s \leftrightarrow \mu<\frac {s}{6A''b}. \label{e6.11} \end{equation} \end{itemize} \item[(x)] Consider the derivatives \begin{equation} {\dot w}_{\mu}=\dot V+\mu \dot T W+\mu T\dot W \label{e6.12} \end{equation} and suppose that: \begin{itemize} \item[(1)] $\phi \ge 9b^2$ then $T=0$ i.e. ${\dot w}_{\mu}=\dot V=-f_1p^2-f_2q^2-fr^3r^2\leq -f'\phi \le -9f'b^2$. \item[(2)] $\phi \leq b^2$ hence $T=1, {\dot w}_{\mu} =\dot V+\mu \dot W, {\dot w}_{\mu}<\mu Pz\eta$. \item[(3)] $b^2<\phi <9b^2$ then $\dot W \leq 0, {\dot w}_{\mu} \leq \dot V+\mu \dot T W$ but \ $|\dot T W|\leq M''|W|\leq 6M''A''b$ and $\dot V \leq -f'b^2$ therefore we obtain ${\dot w}_{\mu}\leq -f'b^2+6\mu M''A''b\leq -3\mu M''A''2b$ if and only if $\mu \leq {{f'b}\over {9M''A''}}$. \end{itemize} \end{itemize} When $\mu \leq \mu'=\min [{{s}\over{6A''b}} , {{f'b}\over{9M''A''}}]$ all the conditions of Theorem \ref{thm3.1} are verified, hence \eqref{e6.1} is weakly $(h_0,h)$-t.bistable with respect to the perturbations \begin{equation} Y=\sigma \{ -(w_{\mu})_p , -(w_{\mu})_q , -(w_{\mu})_r , 0 , 0 \} \label{e6.13} \end{equation} where $\mu \leq \mu'$ and $\sigma =\sigma (p,q,r,\gamma_1,\gamma_2)$ is an arbitrary continuous function. \end{theorem} \begin{thebibliography}{00} \bibitem{a1} Ahmad, B.; \emph{Stability in terms of two measures for perturbed impulsive delay integro-differential equations}, Appl. Math. Comput. 214 (2009), 83-89. \bibitem{c1} Carath\'eodory C.; \emph{Vorlesungen u''ber Reelle Funktionen}, (zweite aufl., Berlin, 1927) pp.665-674. \bibitem{c2} Coddington, E. A.; Levinson, N.; \emph{Theory of ordinary differential equations}, McGraw-Hill,New York, 1955. \bibitem{d1} Dubosin, G. N.; \emph{On the problem of stability of a motion under constantly acting perturbations-Trudy gos}. astr. Inst. Sternberg 14,(1),(1940),pp.15-24. \bibitem{h1} Hahn, W.; \emph{Stability of motion}, Springer Verlag, Berlin (1967). \bibitem{h2} Hatvani, L.; \emph{On the Uniform Attractivity of Solutions of Ordinary Differential Equation by two Liapunov Function}, Proc. Japan. Acad.67,sez.A (1991)pp. 162-167. \bibitem{l1} Lakshmikantham, V.; Leela, S.; \emph{Differential integral inequality theory and applications}, Academic Press 1969. \bibitem{l2} Lakshmikantham, V.; Salvadori, L.; \emph{On Massera Type Converse Theorem in Terms of Two Different Measures}, Boll. UMI 13-A (1976),293-301. \bibitem{l3} Lakshmikantham, V.; Leela, S.; Martynyuk, A. A.; \emph{Stability analysis of Nonlinear Systems}. Marcel. Dekker New York1989. \bibitem{l4} Liapunov, A. M.; \emph{Problem general de la stabilite' du mouvement}, Princ. Univ. Press, 1949. \bibitem{l5} Liu, X.; Sivasundaram, S.; \emph{Stability of nonlinear systems under constantly acting perturbations}, Internat. J. Math. and Math. Sci. Vol. 18, No. 2 (1995) 273-278. \bibitem{m1} Malkin, I. G.; \emph{Stability in the case of constantly acting disturbances}, PMM 8(1944), pp.241-245. \bibitem{m2} Malkin, I.G.; \emph{Theory of stability of Motion}, Gos. Izdat.tekh-theoret Lit. Moscow 1952, English transl. AEC tr. 3352(1958), pp. 75-89. \bibitem{m3} Matrosov, V. M.; \emph{On the stability of motion}, PMM vol 26 n. 5(1962), pp. 1337-1353. \bibitem{m4} Movchan, A. A.; \emph{Stability of process with respect to two metrics}, PMM 26, 6(1960), pp. 998-1001. \bibitem{o1} Oliveri, E.; \emph{Il teorema dell'energia nella meccanica della massa variabile}, Atti Accademia Gioenia serie IV vol. VII, Fasc. 3 (1962) pp. 35-46. \bibitem{o2} Oziraner, A. S.; \emph{On stability of motion relative to a part of variables under constantly acting perturbations}, PMM Vol. 34 (1982), pp. 304-310. \bibitem{r1}Rouche, N.; Habets, P.; Laloy, M.; \emph{Stability theory by Liapunov Direct Method}. Springer Verlag N.Y. Berlin 1977. \bibitem{r2} Rumiantsev, V. V.; \emph{On the stability of motion in a part of variables} (Russian), Vestnik Moscow Univ. ser. J Math. Meh. 4 (1957), pp. 9-16. \bibitem{s1} Salvadori, L.; \emph{Famiglie ad un parametro di funzioni di Liapunov nello studio della stabilita'}, Symposia Mathematica Vol VI (1971), pp. 309-330. \bibitem{s2} Seibert, P.; \emph{Stability under perturbations in generalized dynamical systems}, Proc. Intern. Symp. Non-lin. Diff. Eq. and Non-lin. Mech. Academic Press (1963), pp. 463-473. \bibitem{s3} Silov, G. E.; \emph{Analisi Matematica, Funzioni di una variabile}, ed Mir Mosca 1978. \bibitem{w1} Wang, P.; Lian, H.; \emph{On the stability in terms of two measures for pertubed impulsive integro-differential equations}, J. Math. Anal. Appl. 313 (2006) 642-653. \bibitem{z1} Zappal\'a, G.; \emph{Restricted total stability and total attractivity}, Electron.J. Diff. Eqns., Vol. 2006(2006), No. 87, pp 1-16. \end{thebibliography} \end{document}