\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 169, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/169\hfil Persistence of solutions] {Persistence of solutions to nonlinear evolution equations in weighted Sobolev spaces} \author[X. Carvajal, P. Gamboa \hfil EJDE-2010/169\hfilneg] {Xavier Carvajal Paredes, Pedro Gamboa Romero} % in alphabetical order \address{Xavier Carvajal \newline IM UFRJ, Av. Athos da Silveira Ramos, P.O. Box 68530. CEP 21945-970. RJ. Brazil} \email{carvajal@im.ufrj.br, Phone 55-21-25627520 } \address{Pedro Gamboa Romero \newline IM UFRJ, Av. Athos da Silveira Ramos, P.O. Box 68530. CEP:21945-970.RJ. Brazil} \email{pgamboa@im.ufrj.br, Phone 55-21-25627520} \thanks{Submitted October 18, 2010. Published November 24, 2010.} \subjclass[2000]{35A07, 35Q53} \keywords{Schr\"{o}dinger equation; Korteweg-de Vries equation; \hfill\break\indent global well-posed; persistence property; weighted Sobolev spaces} \begin{abstract} In this article, we prove that the initial value problem associated with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces $\mathcal{X}^{s,\theta}$, for $s \geq 2\theta \ge 2$ and the initial value problem associated with the nonlinear Schr\"odinger equation is well-posed in weighted Sobolev spaces $\mathcal{X}^{s,\theta}$, for $s \geq \theta \geq 1$. Persistence property has been proved by approximation of the solutions and using a priori estimates. \end{abstract} \maketitle \numberwithin{equation}{section} \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[section]{Remark} \section{Introduction}\label{IN} In this paper we consider the initial value problem (IVP) for the Korteweg-de Vries (KdV) equation \begin{equation}\label{IVP} \begin{gathered} \partial_t u + u_{xxx} + a(u)u_x=0, \quad (t,x) \in \mathbb{R}\times \mathbb{R},\\ u(x,0) = u_0(x), \end{gathered} \end{equation} where $u$ a real-valued function and $a \in C^\infty(\mathbb{R}, \mathbb{R})$ is a real function. And the initial value problem for the nonlinear Schr\"odinger (NLS) equation \begin{equation}\label{NIVP} \begin{gathered} \partial_t u = i(\Delta u - F(u))=0, \quad (t,x) \in \mathbb{R}\times \mathbb{R}^n,\\ u(x,0) = u_0(x), \end{gathered} \end{equation} where $u$ a complex-valued function and $F$ satisfies: \begin{itemize} \item[(F1)] $F \in C^{[s]+1}(\mathbb{C},\mathbb{C})$ with $F(0)=0$. \item[(F2)] If $s \le n/2$ and if $F(\eta)$ is a polynomial in $\eta$ and $\bar{\eta}$, then $\deg (F)=k \le \chi(s):=1+4/(n-2\sigma)$, $-\infty\le \sigma \le n/2$. If $s \le n/2$ and if $F(\eta)$ is not a polynomial, then \begin{equation}\label{eqa} |D^i F(\eta)| \le c |\eta|^{k-i}, \quad i=0,1,\dots,[s]+1, \quad \text{as } |\eta| \to \infty, \end{equation} where $[s]+1\le k \le \chi(s)$. \end{itemize} The above conditions on $a$ and $F$ guarantee the well-posedness for \eqref{IVP} and \eqref{NIVP} in the usual Sobolev spaces $H^s$, $s \ge 2$ and $H^s$, $s \ge 1$ respectively, see \cite{K1, KT3}. We are mainly concerned with the question of the persistence property in weighted Sobolev spaces. The aim of this work is to use Lemmas proved in \cite[Lemmas 3 and 4 ]{NP} and to apply this result to show persistence property of \eqref{IVP} in $\mathcal{X}^{s,\theta}$ (see definition in \eqref{SSWW}) for $s \geq 2\theta \ge 2$ and persistence property of \eqref{NIVP} in $\mathcal{X}^{s,\theta}$ for $s \geq \theta \ge 1$. The notation we took are from \cite{CN1}. In what follows we introduce the notion of well-posedness that we are going to use throughout this work. We say that \eqref{IVP} is locally well-posed in a Banach space $X$, if the following hold. \begin{enumerate} \item There exist $T>0$ and a unique solution $u$ in the time interval $[-T,T]$ (unique existence). \item The solution varies continuously depending upon the initial data (continuous dependence); that is, continuity of the application $$ u_{0} \to u \quad \text{from $X$ to $\mathcal{C}([-T,T];X)$}. $$ In particular if $u_0^n \to u_0$ when $n \to \infty$, then \begin{equation}\label{mnx1} \sup_{t \in[-T,T]}\|u_n(t)-u(t)\|_{H^s}\to 0, \end{equation} where $u_n(t)$ is solution of \eqref{IVP} with initial data $u_0^n$. \item The solution describes a continuous curve in $X$ in the time interval $[-T,T]$ whenever initial data belongs to $X$ (persistence). \end{enumerate} Moreover, we say that \eqref{IVP} is globally well-posed in $X$ if the same properties hold for all time $T>0$. If some of the hypotheses in the definition of local well-posedness fail, we say that the IVP is well-posed. Our main focus in this work will be to show the persistence property. In \cite{CN1} they proved the persistence property for an equation mixed Korteweg-de Vries - Nonlinear Schr\"odinger with a weight of low regularity. To accomplish this they used an abstract interpolation lemma (\cite[Lemma 2.2]{CN1}). The interpolation lemma proved in \cite{CN1} is quite general and applies to several equations provided they satisfy certain \emph{a priori} estimates. These \emph{a priori} estimates are related to the conserved quantities and are as follows. \begin{gather}\label{ap-1} \|u(t)\|_{L^2} \le C \|u_0\|_{L^2}. \\ \label{ap-2} \|u(t)\|_{\dot{H}^1} \le C\|u_0\|_{\dot{H}^1}+ A_1(\|u_0\|_{L^2}).\\ \label{ap-3} \|u(t)\|_{\dot{H}^2} \le C A_2(\|u_0\|_{\dot{H}^2}, \|u_0\|_{\dot{H}^1}, \|u_0\|_{L^2}).\\ \label{ap-4} \|u(t)\|_{L^2(d\dot{\mu}_r)} \le C \|u_0\|_{L^2(d\dot{\mu}_r)}+ A_3(\|D_{x}^a u_0\|_{L^2}, \|D_{x}^{a-1} u_0\|_{L^2},\dots, \|u_0\|_{L^2}), \end{gather} where $a=a(r) \ge 1$, $r \in \mathbb{Z}^{+}$, $A_j$ are continuous functions with $A_1(0)=0$, $A_2(0,0,0)=0$ and $A_3(0,\dots, 0)=0$. It can be inferred that, if one has local well-posedness result for given data in $H^s$ and if the model under consideration satisfies \emph{a priori} estimates \eqref{ap-1}-\eqref{ap-4}, then with the help of an abstract interpolation lemma, it is easy to prove persistence property in weighted Sobolev spaces. A typical example of \eqref{IVP} that satisfies the properties \eqref{ap-1}--\eqref{ap-4} listed above is the IVP associated to the generalized Korteweg-de Vries (gKdV) equation ($a(x)=x^k$ in \eqref{IVP}) \begin{equation}\label{IVP-1} \begin{gathered} \partial_t u + \partial_{xxx}u +u^k\partial_xu=0, \quad (t,x) \in \mathbb{R}^2,\; k = 1, 2, 3, \dots \\ u(x,0) = u_0(x). \end{gathered} \end{equation} Another typical example is the IVP associated to the Nonlinear Schr\"odinger (NLS) equation, \eqref{NIVP} when $F(x)=\mu |x|^{\alpha-1}$. \begin{equation}\label{nls-1} \begin{gathered} i\partial_t u +\Delta u = \mu |u|^{\alpha-1}u, \quad \mu = \pm 1, \; \alpha >1,\; x \in \mathbb{R}^n,\; t\in \mathbb{R} \\ u(x,0) = u_0(x), \end{gathered} \end{equation} the local well-posedness has been studied in \cite{HNT} for given data in the weighted Sobolev spaces. More precisely, the following result that deals with the persistence property has been proved in \cite{HNT}. \begin{theorem}\label{thm1} Suppose that $u_0\in H^{s}(\mathbb{R}^n)\cap L^2(|x|^{2m}dx)$, $m\in \mathbb{Z}^+$, with $m\leq \alpha-1$ if $\alpha$ is not an odd integer. \begin{itemize} \item[(A)] If $s\geq m$, then there exist $T=T(\|u_0\|_{s,2})>0$ and a unique solution $u=u(x,t)$ of \eqref{nls-1} with \begin{equation}\label{eq-m1} u\in C([-T, T]; H^s\cap L^2(|x|^{2m}dx)) \cap L^q([-T, T];L_s^p\cap L^p(|x|^{2m}dx)). \end{equation} \item[(B)] If $1\leq s 0$, with $m\leq \alpha-1$ if $\alpha$ is not an odd integer. \begin{itemize} \item[(A)] If $s\geq m$, then there exist $T=T(\|u_0\|_{s,2})>0$ and a unique solution $u=u(x,t)$ of \eqref{nls-1} with \begin{equation}\label{eq-m3} u\in C([-T, T]; H^s\cap L^2(|x|^{2m}dx))\cap L^q([-T, T]; L_s^p\cap L^p(|x|^{2m}dx)). \end{equation} \item[(B)] If $1\leq s 0$. Suppose that $ D^a f\in L^2(\mathbb{R}^n)$ and $\langle x\rangle^b f= (1+|x|^2)^{b/2} f\in L^2(\mathbb{R}^n)$. Then \begin{equation} \|\langle x\rangle^{\theta b} D^{(1-\theta)a} f\|_{L^2}\leq C \|\langle x\rangle^b f\|_{L^2}^{\theta} \|D^{a} f\|_{L^2}^{1-\theta}. \end{equation} \end{lemma} \section{Statement of the well-posedness result} In this section we prove the well-posedness of the Cauchy problem \eqref{IVP} in the weighted Sobolev space $\mathcal{X}^{s,\theta}$, for $\theta \ge 1$ and $s \ge 2\theta$. \begin{lemma}\label{l1.2} If $u_0 \in {L^2(d\dot{\mu}_{\theta})}$, $\theta \in [0,1]$, $\lambda > 0$ and $u_0^{\lambda}(x)= \mathcal{F}^{-1}( {\bf\chi}_{\{|\xi|< \lambda \}} \widehat{u_0})(x)$, then \begin{equation}\label{2.40} \|u_0^\lambda\|_{L^2(d\dot{\mu}_{\theta})} \leq\|u_0\|_{L^2(d\dot{\mu}_{\theta})}. \end{equation} \end{lemma} If $\theta=0$, \eqref{2.40} is a direct consequence of Plancherel's theorem and definition of $u_0^\lambda$. If $\theta=1$, using properties of Fourier transform we obtain $$ |\widehat{x u_0^{\lambda}}(\xi)|=|\partial_{\xi} \widehat{u_0^{\lambda}}(\xi)|=|{\bf\chi}_{\{|\xi|< \lambda \}} \partial_{\xi} \widehat{u_0}(\xi)|={\bf\chi}_{\{|\xi|< \lambda \}}|\widehat{x u_0}(\xi)|. $$ Thus by Plancherel's equality \begin{equation*} \int_{\mathbb{R}}x^2|u_0^{\lambda}(x)|^2 dx = \int_{\mathbb{R}}|\widehat{x u_0^{\lambda}}(\xi)|^2 d\xi \le \int_{\mathbb{R}}|\widehat{x u_0}(\xi)|^2 d\xi=\int_{\mathbb{R}}|x u_0(x)|^2 dx. \end{equation*} When $\theta \in (0,1)$, we obtain \eqref{2.40} by interpolation between the cases $\theta=0$ and $\theta=1$, see \cite{B-L}. Lemmas \ref{lem-e} and \ref{kdv-0} tells nothing new; we present a proof for the sake of completeness \subsection{A priori estimates for the nonlinear Schr\"odinger equation} \begin{lemma}\label{lem-a} If $u \in \mathbb{S}(\mathbb{R}^n)$, $r \ge 1$. Then \begin{equation*} \int_{\mathbb{R}^n} \langle x\rangle^{2r-2}|D_{x}u|^2\,dx \le \Big(\int_{\mathbb{R}^n}\langle x\rangle^{2r}|u|^2\,dx \Big)^{1-\frac{1}{r}}\Big(\int_{\mathbb{R}^n}|D^{r}u|^2\,dx \Big)^{1/r}. \end{equation*} \end{lemma} \begin{proof} We apply the Lemma \ref{opera-l}, taking $a=b=r$ and $\theta= 1-\dfrac{1}{r}$, then $r \ge 1$ since $0 \le \theta \le1$. \end{proof} \begin{lemma}\label{lem-c} If $u \in \mathbb{S}(\mathbb{R}^n)$. Then \[ \int_{\mathbb{R}^n} \langle x\rangle^{2b}|\nabla u(t,x)|^2dx \leq b_{r,n}\int_{\mathbb{R}^n} \langle x\rangle^{2b}|D_{x} u(t,x)|^2dx + b_{r,n}\int_{\mathbb{R}^n} \langle x\rangle^{2b}|u(t,x)|^2dx. \] \end{lemma} \begin{proof} Since $\widehat{D_{x} u}(\xi)=|\xi| \widehat{u}(\xi)$, we consider $a(x,\xi):= \dfrac{\xi_j}{1+|\xi|}$ and using the Lemma \ref{oper}, we can see that the operator $a(x,\xi)$ is bounded and $a \in S_{1,0}^0$. \end{proof} \begin{lemma}\label{lem-e} If $u$ is a solution of the IVP for the NLS \eqref{nls-1} with $u_0 \in\mathcal{X}^{s,r}$, $s \ge r \ge 1$. Then \begin{equation}\label{mm1} \int_{\mathbb{R}^n}\varphi|u|^2\,dx \le \big\{ C_{r,n}\sup_{t\in[-T,T]}\|u(t)\|_{H^r(\mathbb{R}^n)}^2+\|u(0)\|_{L^2(d\mu_r)}^2 \big\} e^{c_{r,n}T}. \end{equation} \end{lemma} \begin{proof} Consider $\varphi(x):= (1+|x|^2)^r= \langle x\rangle^{2r}$ to $x \in\mathbb{R}^n$ Multiplying the term $\varphi\overline{u}$ where $u \in S(\mathbb{R}^n)$ in equation \eqref{nls-1} and after integrating on $\mathbb{R}^n$, we obtain taking real part \begin{equation}\label{ab1} 2\Re\big\{\int_{\mathbb{R}^n}u_t\varphi\overline{u}\,dx \big\} -2\Re\big\{i\int_{\mathbb{R}^n}\Delta u\varphi\overline{u}\,dx\big\} = -2\mu\Re\big\{i\int_{\mathbb{R}^n}|u|^{\alpha}\varphi\,dx\big\} \end{equation} observe that $\partial_t{u.\overline{u}}= 2\Re\{u.\overline{u}_t\}$. Replacing in \eqref{ab1}, we obtain \begin{equation}\label{ab2} \partial_t{\int_{\mathbb{R}^n}\varphi\,dx |u|^2} = 2\Re\big\{{i\int_{\mathbb{R}^n}\Delta u\varphi\overline{u}\,dx\big\}}, \end{equation} on the other hand \begin{equation} \label{ab3} \begin{aligned} \int_{\mathbb{R}^n}\varphi\partial_{x_i}^2u \overline{u}\,dx &=-\int_{\mathbb{R}^n} \partial_{x_i}(\varphi\overline{u})\partial_{x_i}u\,dx \\ &= \int_{\mathbb{R}^n}(\varphi\partial_{x_i}^2 \overline{u}+2\partial_{x_i}\varphi \partial_{x_i}\overline{u}+\partial_{x_i}^2\varphi \overline{u})u\,dx, \end{aligned} \end{equation} of \eqref{ab3}, we obtain \begin{equation*}%\label{ab4} \int_{\mathbb{R}^n}\varphi\Delta u \overline{u}\,dx =\int_{\mathbb{R}^n}(\varphi\Delta\overline{u}+2\nabla\varphi.\nabla\overline{u}+ \Delta\varphi\overline{u}\;)u\,dx, \end{equation*} which leads us to \begin{equation}\label{ab5} 2i\int_{\mathbb{R}^n}\varphi \Im\{\Delta u\overline{u}\}\,dx = \int_{\mathbb{R}}\Delta\varphi|u|^2\,dx +2\int_{\mathbb{R}^n}\nabla\varphi.\nabla\overline{u} u\,dx, \end{equation} of \eqref{ab2} and \eqref{ab5}, we obtain $$ \partial_t\int_{\mathbb{R}^n}\varphi|u|^2\,dx = i\int_{\mathbb{R}}\Delta\varphi|u|^2\,dx +2i\int_{\mathbb{R}^n}\nabla\varphi.\nabla\overline{u} u\,dx, $$ and taking real part \begin{equation}\label{ab6} \partial_t\int_{\mathbb{R}^n}\varphi|u|^2\,dx = 2\Re\big\{i\int_{\mathbb{R}^n}\nabla\varphi. \nabla\overline{u} u\,dx\big\}. \end{equation} Notice that \begin{equation}\label{cd1} |\nabla\varphi| \le 2r\langle x\rangle^{2r-1}, \end{equation} so \begin{equation} \begin{aligned}\label{ab7} \big|\Im\big\{\int_{\mathbb{R}^n}\nabla\varphi. \nabla\overline{u} u\,dx\big\}\big| &\le \int_{\mathbb{R}^n}|\nabla\varphi\|\nabla u\|u|\,dx \\ &\le 2r \int_{\mathbb{R}^n}\langle x\rangle^{r}|u|\langle x\rangle^{r-1} |\nabla u|\,dx \\ &\le r \int_{\mathbb{R}^n}\varphi|u|^2\,dx +r\int_{\mathbb{R}^n}\langle x\rangle^{2r-2} |\nabla u|^2\,dx. \end{aligned} \end{equation} Applying Lemma~\ref{lem-c}, \eqref{ab2} and \eqref{ab7}, we have \begin{equation}\label{cd3} \partial_t\int_{\mathbb{R}^n}\varphi|u|^2\,dx \le c_{r,n} \int_{\mathbb{R}^n}\varphi|u|^2\,dx+c_{r,n} \int_{\mathbb{R}^n} \langle x\rangle^{2r-1}|D_{x}u|^2\,dx, \end{equation} and using Lemma~\ref{lem-a}, we obtain \begin{equation*} \partial_t\int_{\mathbb{R}^n}\varphi|u|^2\,dx \le c_{r,n}\int_{\mathbb{R}^n}\varphi|u|^2\,dx +c_{r,n}\int_{\mathbb{R}^n}|D_{x}u|^2\,dx+c_{r,n}\int_{\mathbb{R}^n} |D^{r}u|^2\,dx. \end{equation*} Thus \begin{equation}\label{cd5} \partial_t\int_{\mathbb{R}^n}\varphi|u|^2\,dx \le c_{r,n}\int_{\mathbb{R}^n}\varphi|u|^2\,dx +c_{r,n}\|u\|^2_{H^r(\mathbb{R}^n)}, \end{equation} applying Gronwall, we obtain the result. \end{proof} \subsection{A priori estimates for the generalized Korteweg-de Vries equation} \begin{lemma}\label{kdv-0} If $u$ is a solution of the IVP for \eqref{IVP-1} with $u_0 \in\mathcal{X}^{s,\theta}$, $s \ge 2 \theta \ge 2$. Then \begin{equation*} \begin{aligned} \int_{\mathbb{R}} \varphi|u|^2\,dx &\le C_{\theta,k}\{\sup_{t\in[-T,T]} \|u\|_{H^1(\mathbb{R})}^2+\sup_{t\in[-T,T]}\|u\|_{H^{2\theta}(\mathbb{R})}^2\} e^{c_{\theta,k}T}\\ &\quad + \|u(0)\|_{L^2(d\mu_{\theta})}^2\;e^{c_{\theta,k}T}. \end{aligned} \end{equation*} \end{lemma} \begin{proof} Let $u \in S(\mathbb{R})$. In \eqref{IVP-1} consider $k \in\mathbb{N}$, $s\geq 2\theta$, $\theta\geq 1$. Now multiply the equation by the term $\varphi u$ and after integrating on $\mathbb{R}$, where $\varphi(x):= (1+|x|^2)^{\theta}$. \begin{equation}\label{kdv-1} \begin{aligned} \partial_t{\int_{\mathbb{R}} \varphi|u|^2\,dx} &=-2\int_{\mathbb{R}} \varphi u u_{xxx}\,dx-2 \int_{\mathbb{R}} \varphi u^{k+1}u_x\,dx\\ &= -\frac12 \int_{\mathbb{R}} \varphi_{xxx}u^2\,dx +3\int_{\mathbb{R}} \varphi_xu_{xx}u\,dx-\frac{2}{k+2} \int_{\mathbb{R}} \varphi\partial_xu^{k+2}\,dx \\ &= \int_{\mathbb{R}} \varphi_{xxx}u^2\,dx-3 \underbrace{\int_{\mathbb{R}} \varphi_x|u_x|^2\,dx}_{I_3}-\frac{2}{k+2} \underbrace{\int_{\mathbb{R}} \varphi\partial_xu^{k+2}\,dx}_{I_4}. \end{aligned} \end{equation} Is obvious that \[ \int_{\mathbb{R}} \varphi_{xxx}|u|^2\,dx\leq C_{\theta}\int_{\mathbb{R}} \varphi|u|^2\,dx. \] Applying interpolation \begin{equation}\label{kdv-2} \begin{gathered} |I_3|\leq C_{\theta}\|u\|_{H^1(\mathbb{R})}^2 +\Big(\int_{\mathbb{R}} |x|^{2\theta}|u|^2\,dx \Big)^{1-\frac{1}{2\theta}} \Big(\int_{\mathbb{R}} |D_{x}^{2\theta}|^2\,dx \Big)^{1/(2\theta)}\\ |I_4|\leq C_{\theta}\sup_{t\in [-T,T]}\|u(t)\|_{H^1(\mathbb{R})}^k \int_{\mathbb{R}} \varphi|u|^2\,dx. \end{gathered} \end{equation} Using Young \begin{equation}\label{kdv-3} \begin{aligned} |I_3|&\leq C_{\theta,k}\Big(\sup_{t\in [-T,T]} \|u(t)\|_{H^1(\mathbb{R})^2}+\sup_{t\in [-T,T]}\|u(t)\|_{H^{2\theta}(\mathbb{R})}^2 \Big)\\ &\quad + C_{\theta,k}\Big(1+\sup_{t\in [-T,T]}\|u(t)\|_{H^1(\mathbb{R})}^k \Big) \int_{\mathbb{R}} \varphi|u|^2\,dx. \end{aligned} \end{equation} Applying similar ideas to the case Nonlinear Schr\"odinger (NLS) equation and using Gronwall, we complete the proof. \end{proof} \subsection{Proof of Theorems \ref{mainthm} and \ref{mainthm1}} \begin{proof}[Proof of Theorem~\ref{mainthm} (case gKdV)] The case NLS follows a similar argument. Let $u_0 \in \mathcal{X}^{s,\theta}$, $s \ge 2 \theta \ge 2$, $u_0 \neq 0$, we know that that there exists an function $u \in C([-T,T], H^{s})$ such that \eqref{IVP-1} is local well-posed in $H^{s}$. Is well know that $\mathbf{S}(\mathbb{R})$ is dense in $\mathcal{X}^{s,\theta}$. Then for $u_0 \in \mathcal{X}^{s,\theta}$ there exist a sequence $(u_0^{\lambda})$ in $\mathbf{S}(\mathbb{R})$ such that \begin{equation}\label{converg} u_0^{\lambda} \to u_0 \quad \textrm{in}\;\mathcal{X}^{s,\theta}. \end{equation} By \eqref{mnx1} (continuous dependence) the sequence of solutions $u^{\lambda}(t)$ associated to IVP \eqref{IVP} with initial data $u_0^{\lambda}$ \begin{equation}\label{IVPmnx} \begin{gathered} \partial_t u^\lambda + u^\lambda_{xxx} + (u^{\lambda})^ku^\lambda_x=0, \quad (t,x) \in \mathbb{R}^2,\\ u^\lambda(x,0) = u_0^\lambda(x), \end{gathered} \end{equation} satisfy \begin{equation}\label{converg1} \sup_{t \in [-T,T]} \|u^{\lambda}(t)-u(t)\|_{H^s} \stackrel{\lambda \to \infty}\to 0, \quad s \ge 2\theta \ge 2. \end{equation} The solutions $u^{\lambda}$ of \eqref{IVPmnx} satisfy the conditions \eqref{ap-1}-\eqref{ap-4} of Section \ref{IN}. Therefore, Lemma~\ref{kdv-0} gives \begin{align*} \int_{\mathbb{R}} \varphi|u^{\lambda}|^2\,dx &\le C_{\theta,k}\{\sup_{t\in[-T,T]}\|u^{\lambda}\|_{H^1(\mathbb{R})}^2 +\sup_{t\in[-T,T]}\|u^{\lambda}\|_{H^{2\theta}(\mathbb{R})}^2\}e^{c_{\theta,k}T}\\ &\quad + \|u^{\lambda}(0)\|_{L^2(d\mu_{\theta})}^2\;e^{c_{\theta,k}T}, \end{align*} Taking the limit when $\lambda \to \infty$, \eqref{converg1} implies \begin{align*} \int_{\mathbb{R}} \varphi|u|^2\,dx &\le C_{\theta,k}\{\sup_{t\in[-T,T]}\|u\|_{H^1(\mathbb{R})}^2+\sup_{t\in[-T,T]}\|u\|_{H^{2\theta}(\mathbb{R})}^2\}e^{c_{\theta,k}T}\\ &\quad + \|u(0)\|_{L^2(d\mu_{\theta})}^2\;e^{c_{\theta,k}T}. \end{align*} Thus $u(t) \in \mathcal{X}^{s,\theta}$, $t \in [-T,T]$, which proves the persistence. The local well-posedness theory in $H^{s}$ implies the uniqueness and continuous dependence upon the initial data in $H^s$, this imply uniqueness in $\mathcal{X}^{s,\theta}$. Now we will prove continuous dependence in the norm $\|\cdot\|_{L^2(d\dot{\mu}_{\theta})}$. Let $u(t)$ and $v(t)$ be two solutions in $\mathcal{X}^{s,\theta}$, of \eqref{nls-1} with initial dates $u_0$ and $v_0$ respectively, let $u^{\lambda}(t)$, $v^{\lambda}(t)$ be the solutions associated with \eqref{nls-1} with initial dates $u_0^{\lambda}$ and $v_0^{\lambda}$ respectively such that $u_{0}^{\lambda}, v_{0}^{\lambda} \in \mathbf{S}(\mathbb{R})$, \begin{equation}\label{converpx} u_{0}^{\lambda} \to u_0, \quad v_{0}^{\lambda} \to v_0 \quad \textrm{in } \mathcal{X}^{s,\theta} \end{equation} and with $\lambda \gg 1$, we have \begin{align*} \|u(t)-v(t)\|_{L^2(d\dot{\mu}_{\theta})} &\le \|u(t)-u^{\lambda}(t)\|_{L^2(d\dot{\mu}_{\theta})} +\|u^{\lambda}(t)-v^{\lambda}(t)\|_{L^2(d\dot{\mu}_{\theta})}\\ &\quad +\|v^{\lambda}(t)-v(t)\|_{L^2(d\dot{\mu}_{\theta})}. \end{align*} The convergence \begin{equation}\label{converg131} \sup_{t \in [-T,T]} \|u^{\lambda}(t)-u(t)\|_{H^s} \to 0, \quad \sup_{t \in [-T,T]} \|v^{\lambda}(t)-v(t)\|_{H^s} \to 0, \end{equation} as $\lambda \to \infty$, where $ s \ge 2\theta \ge 2$, implies for $\lambda \gg1$ that $$ |u(x,t)-u^{\lambda}(x,t)|\le 2 |u(x,t)| \quad \textrm{and} \quad |v(x,t)-v^{\lambda}(x,t)|\le 2 |v(x,t)|. $$ The Dominated Convergence Lebesgue's Theorem gives \begin{align*} \|u(t)-u^{\lambda}(t)\|_{L^2(d\dot{\mu}_{\theta})}\to 0 \quad \textrm{and} \quad\|v^{\lambda}(t)-v(t)\|_{L^2(d\dot{\mu}_{\theta})} \to 0. \end{align*} Let $w^\lambda:=u^{\lambda}-v^{\lambda}$, then $w^\lambda$ satisfies the equation \begin{align*} w^\lambda_t &+ w^\lambda_{xxx}+(u^{\lambda})^{k}w^\lambda_{x} +v^{\lambda}_{x}A(u^{\lambda}, u^{\lambda}){w}^\lambda=0, \end{align*} where $A(x,y)=x^{k-1}+x^{k-2}y+\dots +x y^{k-2}+y^{k-1}$. Then, we multiply the above equation by $\varphi \bar{w}^\lambda$, integrate on $\mathbb{R}$, to obtain by Gronwall's Lemma that \begin{equation}\label{eqf} \int_{\mathbb{R}} \varphi |w^\lambda(t,x)|^2\,dx \leq \big\{ \int_{\mathbb{R}} \varphi |w^\lambda(0,x)|^2\,dx+c_\theta \sup_{t\in [-T,T]} \|w^\lambda(t)\|_{H^{2\theta}}^2 \big\} e^{k_0T}, \end{equation} where $k_0$ is a constant to $\lambda \gg 1$. Observe that the convergence \eqref{converpx} and \eqref{converg131} imply $$ \|w^\lambda(0)\|_{L^2(d\mu_\theta)} =\|u_0^\lambda-v_0^\lambda\|_{L^2(d\mu_\theta)} \le 2 \|u_0-v_0\|_{L^2(d\mu_\theta)}, $$ and $$ \|w^\lambda(t)\|_{H^{2\theta}} =\|u^\lambda(t)-v^\lambda(t)\|_{H^{2\theta}} \le 2 \sup_{t\in [-T,T]} \|u(t)-v(t)\|_{H^{2\theta}}, $$ if $\lambda \gg1$, which together with \eqref{eqf} gives the continuous dependence. \end{proof} \begin{proof}[Proof of Theorem~\ref{mainthm1}] Is a direct consequence of the proof of Theorem \ref{mainthm} and the global theory for the gKDV equation (see \cite{KT1}). \end{proof} \section*{Acknowledgements} The authors thank the anonymous referee for constructive remarks and also for the suggestion to improve Lemma \ref{lem-e} and Theorem \ref{mainthm}. This research was supported by the following grants: E-26/111.564/2008 ``Analysis, Geometry and Applications'', from FAPERJ, Brazil; E-26/110.560/2010 ``Nonlinear Partial Diferential Equations'', from Pronex-FAPERJ, Brazil; and 303849/2008-8 from the National Council of Technological and Scientific Development (CNPq), Brazil. \begin{thebibliography}{00} \bibitem{B-L} J. Berg, J. Lofstrom; \emph{Interpolation Spaces}, Springer, Berlin, 1976. \bibitem{CN1} X. Carvajal and W. Neves; \emph{Persistence of solutions to higher order nonlinear Schr\"odinger equation}, J. Diff. Equations. \textbf{249}, (2010), 2214-2236. \bibitem{HNT} N. Hayashi, K. Nakamitsu, M. Tsutsumi; \emph{Nonlinear Schr\"odinger equations in weighted Sobolev spaces}, Funkcialaj Ekvacioj, \textbf{31} (1988) 363-381. \bibitem{K1} T. Kato; \emph{On the Korteweg-de Vries equation}, Manuscripta Math. \textbf{28} (1979), 89-99. \bibitem{KT1} T. Kato; \emph{On the Cauchy Problem for the (Generalized) Korteweg-de-Vries Equation}, Studies in Applied Mathematics, Advances in Math. Supplementary Studies, \textbf{08} (1983), 93-127. \bibitem{K-M} T. Kato and K. Masuda; \emph{Nonlinear Evolution Equations and Analycity. I}, Ann. Inst. H. Poincaré Anal. Non Linéaire \textbf{03} (1986), 455-467. \bibitem{KT3} T. Kato; \emph{On nonlinear Schr\"odinger equations, II. $H^s$-solutions and unconditional well-posedness}, J. Anal. Math. \textbf{67} (1995), 281-305. \bibitem{JN} J. Nahas; \emph{A decay property of solutions to the mKdV equation}, PhD. Thesis, University of California-Santa Barbara, June 2010. \bibitem{NP0} J. Nahas, G. Ponce; \emph{On the persistent properties of solutions of nonlinear dispersive equations in weighted Sobolev spaces}, to appear in RIMS Kokyuroku Bessatsu (RIMS Proceeding). \bibitem{NP} J. Nahas, G. Ponce; \emph{On the persistent properties of solutions to semi-linear Schr\"odinger equation}, Comm. Partial Diff. Eqs. \textbf{34} (2009), no. 10-12, 1208-1227. \end{thebibliography} \end{document}