\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 173, pp. 1--5.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/173\hfil Regularity of solutions] {Regularity of solutions to 3-D nematic liquid crystal flows} \author[Q. Liu, S. Cui \hfil EJDE-2010/173\hfilneg] {Qiao Liu, Shangbin Cui} \address{Qiao Liu \newline Department of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China} \email{liuqao2005@lzu.cn, liuqao2005@163.com} \address{Shangbin Cui \newline Department of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China} \email{cuisb3@yahoo.com.cn} \thanks{Submitted November 4, 2010. Published December 6, 2010.} \thanks{Supported by grant 10771223 from the National Natural Science Foundation of China} \subjclass[2000]{76A15, 35B65, 35Q35} \keywords{Liquid crystal flow; initial value problem; regularity of solutions} \begin{abstract} In this note we consider the regularity of solutions to 3-D nematic liquid crystal flows, we prove that if either $u\in L^{q}(0,T;L^p(\mathbb{R}^3))$, $\frac{2}{q}+\frac{3}{p}\leq1$, $3