\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 177, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/177\hfil Li\'enard type equation] {Li\'enard type p-Laplacian neutral Rayleigh equation with a deviating argument} \author[A. Anane, O. Chakrone, L. Moutaouekkil\hfil EJDE-2010/177\hfilneg] {Aomar Anane, Omar Chakrone, Loubna Moutaouekkil} % in alphabetical order \address{Universit\'e Mohamed I, Facult\'e des Sciences, D\'epartement de Math\'ematiques et Informatique, Oujda, Maroc} \email[Aomar Anane]{anane@sciences.univ-oujda.ac.ma} \email[Omar Chakrone]{chakrone@yahoo.fr} \email[Loubna Moutaouekkil]{loubna\_anits@yahoo.fr} \thanks{Submitted September 15, 2010. Published December 22, 2010.} \subjclass[2000]{34C25, 34B15} \keywords{Periodic solution; neutral Rayleigh equation; Li\'enard equation; \hfill\break\indent Deviating argument; p-Laplacian; Man\'asevich-Mawhin continuation} \begin{abstract} Based on Man\'asevich-Mawhin continuation theorem, we prove the existence of periodic solutions for Li\'enard type $p$-Laplacian neutral Rayleigh equations with a deviating argument, $$ (\phi_p(x(t)-c x(t-\sigma))')'+f(x(t))x'(t)+ g(t,x(t-\tau(t)))=e(t). $$ An example is provided to illustrate our results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} The existence of periodic solutions for Li\'enard type $p$-Laplacian equation with a deviating argument \begin{equation} \label{e1.1} (\phi_p(x'(t)))'+f(x(t))x'(t)+ g(t,x(t-\tau(t)))=e(t) \end{equation} has been studied using the coincidence degree theory \cite{l1}. Zhu and Lu \cite{z2}, studied the existence of periodic solution for $p$-Laplacian neutral functional differential equation with a deviating argument when $p>2$ \begin{equation} \label{e1.2} (\phi_p(x(t)-c x(t-\sigma))')'+g(t,x(t-\tau(t)))=e(t). \end{equation} They obtained some results by transforming \eqref{e1.2} into a two-dimensional system to which Mawhin's continuation theorem was applied. Peng \cite{p1} discussed the existence of periodic solution for $p$-Laplacian neutral Rayleigh equation with a deviating argument \begin{equation} \label{e1.3} (\phi_p(x(t)-c x(t-\sigma))')'+f(x'(t))+g(t,x(t-\tau(t)))=e(t) \end{equation} and obtained the existence of periodic solutions under the assumption $f(0)=0$ and $\int_0^T e(t)dt=0$. Throughout this paper, $2
0$ is
fixed. $g$ is continuous function defined on $\mathbb{R}^2$ and
$T$-periodic in the first argument, $c$ and $\sigma$ are constants
such that $|c|\neq1$.
\section{Preliminaries}
Let $\mathcal{C}_T=\{x\in\mathcal{C}(\mathbb{R},\mathbb{R}):
x(t+T)=x(t)\}$ and
$\mathcal{C}_T^{1}=\{x\in\mathcal{C}^{1}(\mathbb{R},\mathbb{R}):
x(t+T)=x(t)\}$.
$\mathcal{C}_T$ is a Banach space endowed with the norm
$\|x\|_{\infty}=\max|x(t)|_{t\in[0,T]}$. $\mathcal{C}_T^{1}$ is a
Banach space endowed with the norm
$\|x\|=\max\{\|x\|_{\infty},\|x'\|_{\infty}\}$. In what follows, we
will use $\|.\|_p$ to denote the $L^{P}$-norm. We also define a
linear operator $A:\mathcal{C}_T\to \mathcal{C}_T$,
$$
(Ax)(t)=x(t)-cx(t-\sigma).
$$
\begin{lemma}[\cite{l2,z1}] \label{lem2.1}
If $|c|\neq1$, then $A$ has continuous bounded inverse on
$\mathcal{C}_T$, and
\begin{itemize}
\item[(1)] $\|A^{-1}x\|_\infty\leq\frac{ \|x\|_\infty}{ |1-|c||}$,
for all $x\in\mathcal{C}_T$;
\item[(2)]
\[
(A^{-1}x)(t)= \begin{cases}
\sum_{j\geq0}c^{j}x(t-j\sigma), &|c|<1\\
-\sum_{j\geq1}c^{-j}x(t+j\sigma), &|c|>1.
\end{cases} %E4
\]
\item[(3)]
$$
\int_0^T|(A^{-1}x)(t)|dt\leq\frac{1}{|1-|c||}\int_0^T|x(t)|dt,
\quad \forall x\in\mathcal{C}_T.
$$
\end{itemize}
\end{lemma}
\begin{lemma}[\cite{p1}]\label{lem2.2}
If $|c|\neq1$ and $p>1$, then
\begin{equation} \label{e2.1}
\int_0^T|(A^{-1}x)(t)|^pdt\leq\frac{
1}{ |1-|c||^p}\int_0^T|x(t)|^pdt,\quad \forall
x\in\mathcal{C}_T.
\end{equation}
\end{lemma}
For the $T$-periodic boundary value problem
\begin{equation} \label{e2.2}
(\phi_p(x'(t)))'=\widetilde{f}(t,x,x'),\quad
x(0)=x(T),\quad x'(0)=x'(T),
\end{equation}
where $\widetilde{f}\in\mathcal{C}(\mathbb{R}^{3},\mathbb{R})$, we
have the following result.
\begin{lemma}[\cite{m1}] \label{lem2.3}
Let $\Omega$ be an open bounded set in $\mathcal{C}_T^{1}$, and
let the following conditions hold:
\begin{itemize}
\item [(i)] For each $\lambda\in(0,1)$, the problem
$$
(\phi_p(x'(t)))'=\lambda\widetilde{f}(t,x,x'),\quad
x(0)=x(T),\quad x'(0)=x'(T)
$$ has no solution on $\partial\Omega$.
\item [(ii)] The equation
$$
F(a)=\frac{1}{T}\int^T_0\widetilde{f}(t,a,0)dt=0
$$
has no solution on $\partial\Omega\cap\mathbb{R}$.
\item [(iii)] The Brouwer degree of
$F$, $\deg(F,\Omega\cap\mathbb{R},0)\neq0$.
\end{itemize}
Then the $T$-periodic boundary value problem \eqref{e2.2}
has at least one periodic solution on $\overline{\Omega}$.
\end{lemma}
\section{Main results}
\begin{theorem}\label{thm3.1}
Suppose that $p>2$ and there exist constants $r_1\geq0$,
$r_2\geq 0$, $d>0$ and $k>0$ such that
\begin{itemize}
\item [(A1)] $|f(x)|\leq k+r_1|x|^{p-2}$ for $x\in\mathbb{R}$;
\item [(A2)] $x[g(t,x)-e(t)]<0$ for $|x|>d $ and $ t\in\mathbb{R}$;
\item [(A3)] $\lim_{x\to -\infty}\frac{ |g(t,x)-e(t)|}{ |x|^{p-1}}=r_2$.
\end{itemize}
Then \eqref{e1.4} has at least one $T$-periodic solution if
$$
\frac{1}{2^{p-1}}(1+|c|)T^{p-1}(r_1+Tr_2)<|1-|c||^p.
$$
\end{theorem}
\begin{proof}
Consider the homotopic equation of \eqref{e1.4} as
follows:
\begin{equation} \label{e3.1}
(\phi_p(x(t)-c x(t-\sigma))')'+\lambda f(x(t))x'(t)+\lambda
g(t,x(t-\tau(t)))=\lambda e(t),\quad \lambda\in(0,1).
\end{equation}
We claim that the set of all possible periodic solution of
\eqref{e3.1} are bounded in $\mathcal{C}_T^{1}$.
Let $x(t)\in \mathcal{C}_T^{1}$ be an arbitrary solution of
\eqref{e3.1} with period $T$. By integrating two sides of
\eqref{e3.1} over $[0,T]$, and noticing that $x'(0)=x'(T)$, we have
\begin{equation} \label{e3.2}
\int _0^T[g(t,x(t-\tau(t)))- e(t)]dt=0.
\end{equation}
By the integral mean value theorem, there is a constant
$\xi\in[0,T]$ such that
$g(\xi,x(\xi-\tau(\xi)))- e(\xi)=0$. So
from assumption (A2), we can get $|x(\xi-\tau(\xi))|\leq d$.
Let $\xi-\tau(\xi)=mT+\overline{\xi}$, where
$\overline{\xi}\in[0,T]$, and $m$ is an integer. Then, we have
$$
|x(t)|=|x(\overline{\xi})+\int_{\overline{\xi}}^{t}x'(s)ds|\leq
d+\int_{\overline{\xi}}^{t}|x'(s)|ds,\quad
t\in[\overline{\xi},\overline{\xi}+T],
$$
and
$$
|x(t)|=|x(t-T)|=|x(\overline{\xi})-\int_{t-T}^{\overline{\xi}}x'(s)ds|\leq
d+\int_{t-T}^{\overline{\xi}}|x'(s)|ds,\quad
t\in[\overline{\xi},\overline{\xi}+T].
$$
Combining the above two inequalities, we obtain
\begin{equation} \label{e3.3}
\begin{aligned}
\|x\|_{\infty}
&=\max_{t\in[0,T]}|x(t)|
=\max_{t\in[\overline{\xi},\overline{\xi}+T]}|x(t)|\\
&\leq\max_{t\in[\overline{\xi},\overline{\xi}+T]}
\Big\{d+\frac{1}{2}\Big(\int_{\overline{\xi}}^{t}
|x'(s)|ds+\int_{t-T}^{\overline{\xi}}|x'(s)|ds\Big)\Big\}\\
&\leq d+\frac{1}{2}\int_0^T|x'(s)|ds.
\end{aligned}
\end{equation}
In view of $\frac{1}{
2^{p-1}}(1+|c|)T^{p-1}(r_1+Tr_2)<|1-|c||^p$, there
exist a constant $\varepsilon>0$ such that
$$
\frac{1}{ 2^{p-1}}(1+|c|)T^{p-1}(r_1+T(r_2+\varepsilon))<|1-|c||^p.
$$
From assumption (A3), there exist a constant
$\rho>d$ such that
\begin{equation} \label{e3.4}
|g(t,x(t-\tau(t)))-
e(t)|dt\leq(r_2+\varepsilon)|x|^{p-1}\;\;\;for\;
t\in\mathbb{R}\;\;and\; \;x<-\rho.
\end{equation}
Denote $E_1=\{t\in[0,T],x(t-\tau(t))\leq-\rho\}$,
$E_2=\{t\in[0,T],|x(t-\tau(t))|<\rho\}$,
$E_3=\{t\in[0,T],x(t-\tau(t))\geq\rho\}$.
By \eqref{e3.2}, it is easy to see that
\begin{equation} \label{e3.5}
\Big(\int_{E_1}+\int_{E_2}+\int_{E_3}\Big)[g(t,x(t-\tau(t)))-
e(t)]dt=0.
\end{equation}
Hence
\begin{equation} \label{e3.6}
\begin{aligned}
\int_{E_3}|g(t,x(t-\tau(t)))-
e(t)|dt
&=-\int_{E_3}[g(t,x(t-\tau(t)))- e(t)]dt\\&
=\Big(\int_{E_1}+\int_{E_2}\Big)[g(t,x(t-\tau(t)))-e(t)]dt\\
& \leq \Big(\int_{E_1}+\int_{E_2}\Big)|g(t,x(t-\tau(t)))- e(t)|dt.
\end{aligned}
\end{equation}
Therefore, by \eqref{e3.4} and \eqref{e3.6}, we obtain
\begin{equation} \label{e3.7}
\begin{aligned}
\int_0^T|g(t,x(t-\tau(t)))-e(t)|dt
&=\Big(\int_{E_1}+\int_{E_2}+\int_{E_3}\Big)|g(t,x(t-\tau(t)))-
e(t)|dt\\
&\leq 2\Big(\int_{E_1}+\int_{E_2}\Big)|g(t,x(t-\tau(t)))- e(t)|dt\\
&\leq 2 \int_{E_1}(r_2+\varepsilon)|x(t-\tau(t))|^{p-1}dt
+2\widetilde{g}_{\rho}T\\
& \leq 2 (r_2+\varepsilon)T \|x\|_{\infty}^{p-1}+2\widetilde{g}_{\rho}T.
\end{aligned}
\end{equation}
Where $\widetilde{g}_{\rho}=\max_{t\in E_2}|g(t,x(t-\tau(t)))-
e(t)|$. Multiplying both sides of \eqref{e3.1} by
$(Ax)(t)=x(t)-cx(t-\sigma)$ and integrating them over $[0,T]$, we
have
\begin{equation} \label{e3.8}
\begin{aligned}
\|Ax'\|_p^p
& =\lambda\int_0^T (Ax)(t)\left[f(x(t))x'(t)+
g(t,x(t-\tau(t)))- e(t)\right]dt\\
& \leq (1+|c|)\|x\|_{\infty}\int_0^T\left [|f(x(t))x'(t)| +
|g(t,x(t-\tau(t)))- e(t)|\right]dt.
\end{aligned}
\end{equation}
From assumption (A1), we obtain.
\begin{equation} \label{e3.9}
\int_0^T|f(x(t))x'(t)|dt \leq k\int_0^T|x'(t)|dt+ r_1
\int_0^T|x'(t)||x(t)|^{p-2}dt.
\end{equation}
Using H\"older inequality, and substituting \eqref{e3.3}
into \eqref{e3.9}, we obtain
\begin{equation} \label{e3.10}
\int_0^T|f(x(t))x'(t)|dt \leq
kT^{1/q}\|x'\|_p+r_1T^{1/q}\|x'\|_p
\Big(d+\frac{1}{2}\int_0^T|x'(t)|dt\Big)^{p-2}.
\end{equation}
From \eqref{e3.3} and \eqref{e3.7}, we have
\begin{equation} \label{e3.11}
\int_0^T|g(t,x(t-\tau(t)))- e(t)|dt \leq
2\;\widetilde{g}_{\rho}\; T + 2(r_2+\varepsilon)T
\Big(d+\frac{1}{2}\int_0^T|x'(t)|dt\Big)^{p-1}.
\end{equation}
Substituting \eqref{e3.10}, \eqref{e3.11}
and \eqref{e3.3} into \eqref{e3.8}, we obtain
\begin{equation} \label{e3.12}
\begin{aligned}
& \|Ax'\|_p^p\\
&\leq (1+|c|)\Big[ kT^{1/q}\|x'\|_p
\Big(d+\frac{1}{2}\int_0^T|x'(t)|dt\Big)\\
&\quad +\Big(d+\frac{1}{2} \int_0^T|x'(t)|dt\Big)^{p-1}r_1T^{1/q}\|x'\|_p\\
&\quad +2(r_2+\varepsilon)T
\Big(d+\frac{1}{2}\int_0^T|x'(t)|dt\Big)^p
+2\widetilde{g}_{\rho} T
\Big(d+\frac{1}{2}\int_0^T|x'(t)|dt\Big)\Big].
\end{aligned}
\end{equation}
Case(1). If $\int_0^T|x'(t)|dt=0$, from \eqref{e3.3}, we have
$\|x\|_{\infty}