\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 25, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/25\hfil Parabolic equations] {Parabolic equations with Robin type boundary conditions in a non-rectangular domain} \author[A. Kheloufi, B.-K. Sadallah\hfil EJDE-2010/25\hfilneg] {Arezki Kheloufi, Boubaker-Khaled Sadallah} % in alphabetical order \address{Arezki Kheloufi \newline Department of Sciences and Techniques, Faculty of Technology \\ B\'{e}jaia University, 6000. B\'{e}jaia, Algeria} \email{arezkinet2000@yahoo.fr} \address{Boubaker-Khaled Sadallah \newline Department of Mathematics, E.N.S. \\ 16050 Kouba. Algiers, Algeria} \email{sadallah@ens-kouba.dz} \thanks{Submitted July 29, 2009. Published February 10, 2010.} \thanks{Supported by grant 08MDU735 from EGIDE under the CMEP Program.} \subjclass[2000]{35K05, 35K20} \keywords{Parabolic equation; non-rectangular domains; Robin condition; \hfill\break\indent anisotropic Sobolev space} \begin{abstract} In this article, we study the parabolic equation $\partial_{t}u-c^2(t)\partial_x^2u=f$ in the non-necessarily rectangular domain $$ \Omega =\{ (t,x)\in\mathbb{R}^2:00\quad \text{for all } t\in [0,T]. \label{2} \end{equation} The most interesting point of the parabolic problem studied here is the fact that $\varphi_1(0)=\varphi_2(0)$ or $\varphi_1(T)=\varphi_2(T)$. In this case the domain $\Omega $ is not rectangular and cannot be transformed into a regular domain without the appearance of some degenerate terms in the parabolic equation; see, for example Sadallah \cite{Sad1}. The solvability of this kind of problems with Cauchy-Dirichlet boundary conditions has been investigated in \cite{lab1,Lab1,Sad2, Sad3}. In Sadallah \cite{Sad3}, the same equation is studied by another approach making use of the so-called Schur's Lemma and gives the same result obtained in \cite{Sad2} by the \textit{a priori} estimates technique. In \cite{lab1} and \cite{Lab1}, the authors deal with the heat equation (i.e., the case where $c(t)=1$) set in a non-rectangular domain with a right-hand side taken in $L^{p}$, where $p\in ] 1,\infty[ $, and have obtained optimal regularity results by the operators sum method. These results are generalized in \cite{Lab2} to a parabolic equation of the type \[ \partial_{t}u(t,x)-\partial_x^2u(t,x) +\lambda m(t,x)u(t,x)=f(t,x) \] where $\lambda $ is a positive spectral parameter and $m(.)$ some positive weight functions. Hofmann and Lewis \cite{Hof} have also considered the classical heat equation with Neumann boundary condition in noncylindrical domains satisfying some conditions of Lipschitz's type. The authors showed that the optimal $L^{p}$ regularity holds for $p=2$ and the situation gets progressively worse as $p$ approaches $1$. In Savar\'{e} \cite{Sav}, parabolic problems in noncylindrical domains are considered in the Hilbertian case. The author obtains some regularity results under assumption on the geometrical behavior of the boundary which cannot include our triangular domain. The plan of this paper is as follows. In Section 2, we derive some technical lemmas which will allow us to prove an \textit{a priori} estimate (in a sense to be defined later). In Section 3, there are two main steps. First, we prove that \eqref{eP'} admits a (unique) solution in the case of a domain which can be transformed into a rectangle. Secondly, for $T$ small enough, we prove that the result holds true in the case of a triangular domain under some assumptions on the coefficient $c$ and the functions $(\beta_i,\varphi_i)_{i=1,2}$ to be made more precise later on. The method used here is based on the approximation of the triangular domain by a sequence of subdomains $(\Omega_{n})_{n}$ which can be transformed into regular domains (rectangles) and we establish an \textit{a priori} estimate of the type \[ \| u_{n}\|_{H^{1,2}(\Omega_{n})}\leq K\| f\|_{L^2(\Omega_{n})}, \] where $u_{n}$ is the solution of \eqref{eP'} in $\Omega_{n}$ and $K$ is a constant independent of $n$, which allows us to pass to the limit. Finally, in Section 4 we study \eqref{eP'} in the case where $T$ is not necessarily small. \section{Preliminaries} Let $(\beta_i)_{i=1,2}$ be continuous real-valued functions on $] 0,T[ $. Assume that there exists a constant $l>0$ such that \begin{gather} \big| \frac{(1+\beta_2(t))}{A(t)}\big| \leq l , \label{2.1} \\ \big| \frac{\beta_1(t)(1+\beta_2(t))}{A(t)}\big| \leq l, \label{2.2} \end{gather} where \begin{equation} A(t)=\beta_1(t)\beta_2(t)+\beta _1(t)-\beta_2(t)\neq 0, \label{2.3} \end{equation} for every $t\in ] 0,T[ $. \begin{lemma}\label{lem1} Assume that $\beta_1$ and $\beta_2$ fulfil the conditions \eqref{2.1}, \eqref{2.2} and \eqref{2.3}. Then, for a fixed $t\in ] 0,1 [ $, there exists a positive constant $K_1$ independent of $t$, such that for each $u\in H_{\gamma }^2(0,1)$ \[ \| u^{^{(j)}}\|_{L^2( 0,1)}\leq K_1\| u^{^{(2)}}\|_{L^2(0,1)},j=0,1, \] where \[ H_{\gamma }^2(0,1) =\{ u\in H^2( 0,1):u'(0)+\beta_1(t) u(0)=0 ,\; u'(1)+\beta_2(t)u(1)=0\} . \] \end{lemma} \begin{proof} Let $t\in ] 0,1[ $ and $f$ an arbitrary fixed element of $ L^2(0,1)$. Then the solution of the problem \begin{gather*} u''=f \\ u'(0)+\beta_1(t)u(0)=0\\ u'(1)+\beta_2(t)u(1)=0, \end{gather*} can be written in the form \[ u(y) = \int_0^{y}\Big\{ \int_0^{x}f(s) ds\Big\} dx+yu'(0)+u(0), \] where \begin{gather*} u(0)=\frac{\int_0^{1}f(s)ds+\beta_2( t)\int_0^{1}\{ \int_0^{x}f(s)ds\} dx}{ A(t)} \\ u'(0)=-\beta_1(t)u(0). \end{gather*} The uniqueness of the solution is easy to check, thanks to the boundary conditions and the condition \eqref{2.3}. Using the Cauchy-Schwarz inequality, we obtain the following two estimates \begin{gather*} | u(0)| \leq C| \frac{(1+\beta_2(t))}{A(t)}| \| f\|_{L^2(0,1)} \\ | u'(0)| \leq C| \frac{\beta_1(t)(1+\beta_2(t))}{ A(t)}| \| f\|_{L^2(0,1)}, \end{gather*} which will allow us to obtain the desired estimates, thanks to the conditions \eqref{2.1}, \eqref{2.2}. \end{proof} \begin{lemma}\label{lem2} Under the assumptions \eqref{2.1}, \eqref{2.2} and \eqref{2.3} on $(\beta_i)_{i=1,2}$ and for a fixed $t\in ]0,1[ $, there exists a constant $C_1$ (independent of $a$ and $b$) such that \[ \| v^{(j)}\|_{L^2(a,b) }^2\leq C_1(b-a)^{2(2-j)}\| v^{(2)}\|_{L^2(a,b) }^2,\quad j=0,1, \] for each $v\in H_{\gamma }^2(a,b)$, with \[ H_{\gamma }^2(a,b)=\{ v\in H^2(a,b) :v'(a)+\frac{\beta_1(t)}{b-a} v(a)=0,\; v'(b)+\frac{\beta_2(t)}{b-a}v(b)=0\} . \] \end{lemma} \begin{proof} It is a direct consequence of Lemma \ref{lem1} by using the affine change of variable $[0,1] \to [a,b]$, $x \to (1-x)a+xb=y$. \end{proof} \section{Solution of the problem \eqref{eP'}} \subsection{A domain that can be transformed into a rectangle} Let \[ \Omega =\{ (t,x)\in \mathbb{R} ^2:00$ independent of $n$ such that \[ \| u_{n}\|_{H^{1,2}(\Omega_{n})}^2\leq K\| f_{n}\|_{L^2(\Omega _{n})}^2\leq K\| f\|_{L^2(\Omega)}^2. \] \end{theorem} To prove Theorem \ref{theo2}, we need some preliminary results. \begin{lemma}\label{lem6} For every $\epsilon >0$ satisfying $(\varphi_2(t)-\varphi_1(t))\leq \epsilon $, there exists a constant $C>0$ independent of $n$, such that \[ \| \partial_x^{j}u_{n}\|_{L^2(\Omega _{n})}^2\leq C\epsilon ^{2(2-j)}\| \partial _x^2u_{n}\|_{L^2(\Omega_{n})}^2, \quad j=0,1. \] \end{lemma} \begin{proof} Replacing in Lemma \ref{lem2} $v$ by $u_{n}$ and $] a,b[$ by $] \varphi_1(t),\varphi_2(t)[ $, for a fixed $t$, we obtain \begin{align*} \int_{\varphi_1(t)}^{\varphi_2(t) }(\partial_x^{j}u_{n})^2dx & \leq C(\varphi_2( t)-\varphi_1(t))^{2(2-j) }\int_{\varphi_1(t)}^{\varphi_2(t)}( \partial_x^2u_{n})^2dx \\ & \leq C\epsilon ^{2(2-j)}\int_{\varphi_1(t) }^{\varphi_2(t)}(\partial_x^2u_{n})^2dx \end{align*} where $C$ is the constant of Lemma \ref{lem2}. Integrating with respect to $t$, we obtain the desired estimates. \end{proof} \begin{proposition}\label{prop1} There exists a constant $C>0$ independent of $n$ such that \[ \| \partial_{t}u_{n}\|_{L^2(\Omega_{n}) }^2+\| \partial_x^2u_{n}\|_{L^2(\Omega _{n})}^2\leq C\| f\|_{L^2(\Omega )}^2. \] \end{proposition} Then Theorem \ref{theo2} is a direct consequence of Lemma \ref{lem6} and Proposition \ref{prop1}, since $\epsilon $ is independent of $n$. \begin{proof}[Proposition \ref{prop1}] Thanks to the density results, Lemma \ref{lem2} and Remark \ref{remq1}, it is sufficient to prove the first part of the proposition (Relationship \eqref{9} below) in the case when $u_{n}\in\{v\in H^2(\Omega_{n}),\partial_xv+\beta_i(t)v\big|_{\Gamma_{n,i}}=0,i=1,2\}$ without assuming the Cauchy condition $u_{n/t=a_{n}}=0$. For this end, we develop the inner product in $L^2(\Omega_{n})$ \begin{align*} \| f_{n}\|_{L^2(\Omega_{n})}^2 & = \langle \partial_{t}u_{n}-c^2\partial_x^2u_{n},\partial _{t}u_{n}-c^2\partial_x^2u_{n}\rangle \\ & = \| \partial_{t}u_{n}\|_{L^2(\Omega _{n})}^2+\| c^2.\partial_x^2u_{n}\| _{L^2(\Omega_{n})}^2-2\langle \partial _{t}u_{n},c^2\partial_x^2u_{n}\rangle . \end{align*} Calculating the last term of the previous relation, we obtain \begin{align*} \langle \partial_{t}u_{n},c^2\partial_x^2u_{n}\rangle & = \int_{\Omega_{n}}\partial_{t}u_{n}.c^2\partial_x^2u_{n} \,dt\,dx \\ & = -\int_{\Omega_{n}}c^2\partial_x\partial _{t}u_{n}.\partial_xu_{n}\,dt\,dx+\int_{\partial \Omega _{n}}c^2\partial _{t}u_{n}.\partial_xu_{n}\nu_xd\sigma . \end{align*} So, \begin{align*} &-2\langle \partial_{t}u_{n},c^2\partial _x^2u_{n}\rangle\\ & = \int_{\Omega_{n}}c^2\partial _{t}(\partial_xu_{n})^2\,dt\,dx-2\int_{\partial \Omega _{n}}c^2\partial_{t}u_{n}.\partial _xu_{n}\nu_xd\sigma \\ & = -\int_{\Omega_{n}}2cc'(\partial _xu_{n})^2\,dt\,dx+\int_{\partial \Omega_{n}}c^2( \partial_xu_{n})^2\nu_{t}d\sigma -2\int_{\partial \Omega_{n}}c^2\partial_{t}u_{n}.\partial _xu_{n}\nu_xd\sigma \\ & = \int_{\partial \Omega_{n}}c^2[(\partial _xu_{n})^2\nu_{t}-2\partial_{t}u_{n}.\partial_xu_{n}\nu_x ]d\sigma -\int_{\Omega_{n}}2cc'(\partial_xu_{n})^2\,dt\,dx, \end{align*} where $\nu_{t},\nu_x$ are the components of the outward normal vector at the boundary of $\Omega_{n}$. We shall rewrite the boundary integral making use of the boundary conditions. On the part of the boundary of $\Omega_{n}$ where $t=a_{n}$, we have $\nu_x=0$ and $\nu_{t}=-1$. The corresponding boundary integral \[ A_1=-\int_{\varphi_2(a_{n})}^{\varphi_1( a_{n})}c^2(\partial_xu_{n}) ^2dx=\int_{\varphi_1(a_{n})}^{\varphi_2( a_{n})}c^2(\partial_xu_{n})^2dx \ge0. \] On the part of the boundary of $\Omega_{n}$ where $t=T$, we have $\nu_x=0$ and $\nu_{t}=1$. Accordingly the corresponding boundary integral \[ A_2=\int_{\varphi_1(T)}^{\varphi_2(T) }c^2(\partial_xu_{n})^2dx \] is nonnegative. On the parts of the boundary where $x=\varphi_i(t)$, $i=1,2$, we have \[ \nu_x=\frac{(-1)^{i}}{\sqrt{1+(\varphi_i')^2(t)}}, \quad \nu_{t}=\frac{(-1)^{i+1}\varphi_i'(t)}{ \sqrt{1+(\varphi_i')^2(t)}} \] and $\partial_xu_{n}(t,\varphi_i(t))+\beta _i(t)u_{n}(t,\varphi_i(t))=0$, $i=1,2$. Consequently, the corresponding integral is \begin{align*} &\int_{a_{n}}^{T}c^2\varphi_1'(t) [\partial_xu_{n}(t,\varphi_1(t))] ^2dt-2\int_{a_{n}}^{T}(\beta_1c^2)(t) \partial_{t}u_{n}(t,\varphi_1(t)).u_{n}( t,\varphi_1(t))dt\\ &-\int_{a_{n}}^{T}c^2\varphi_2'(t) [\partial_xu_{n}(t,\varphi_2(t))] ^2dt+2\int_{a_{n}}^{T}(\beta_2c^2)(t) \partial_{t}u_{n}(t,\varphi_2(t)).u_{n}( t,\varphi_2(t))dt. \end{align*} By setting \begin{gather*} I_{n,k} =(-1)^{k+1}\int_{a_{n}}^{T}c^2\varphi _{k}'(t)[\partial_xu_{n}( t,\varphi _{k}(t))]^2dt,k=1,2, \\ J_{n,k} =(-1)^{k}2\int_{a_{n}}^{T}(\beta _{k}c^2)(t)\partial_{t}u_{n}(t,\varphi _{k}(t)).u_{n}(t,\varphi_{k}(t))dt,k=1,2, \end{gather*} we have \begin{equation} -2\langle \partial_{t}u_{n},c^2\partial _x^2u_{n}\rangle \geq -| I_{n,1}| -| I_{n,2}| -| J_{n,1}| -| J_{n,2}| -\int_{\Omega_{n}}2cc'(\partial_xu_{n})^2\,dt\,dx. \label{9} \end{equation} \end{proof} \subsection*{1. Estimation of $I_{n,k},k=1,2$} \begin{lemma}\label{lem7} There exists a constant $K>0$ independent of $n$ such that \[ | I_{n,k}| \leq K\epsilon \| \partial _x^2u_{n}\|_{L^2(\Omega_{n})}^2, \quad k=1,2. \] \end{lemma} \begin{proof} We convert the boundary integral $I_{n,1}$ into a surface integral by setting \begin{align*} [\partial_xu_{n}(t,\varphi_1(t))]^2 & = -\frac{\varphi_2(t) -x}{\varphi_2(t)-\varphi_1(t)}[ \partial_xu_{n}(t,x)]^2\big|_{x=\varphi_1(t) }^{x=\varphi_2(t)} \\ &= -\int_{\varphi_1(t)}^{\varphi_2( t)} \frac{\partial }{\partial x}\{ \frac{\varphi _2(t)-x}{ \varphi_2(t)-\varphi_1(t)}[\partial _xu_{n}(t,x)]^2\} dx\\ &= -2\int_{\varphi_1(t)}^{\varphi_2( t)} \frac{\varphi_2(t)-x}{\varphi_2( t)-\varphi_1(t)}\partial_xu_{n}( t,x)\partial_x^2u_{n}(t,x)dx \\ &\quad +\int_{\varphi_1(t)}^{\varphi_2(t) } \frac{1}{\varphi_2(t)-\varphi_1(t)}[ \partial_xu_{n}(t,x)]^2dx. \end{align*} Then \begin{align*} I_{n,1} & = \int_{a_{n}}^{T}c^2(t)\varphi _1'(t)[\partial_xu_{n}(t,\varphi_1(t))]^2dt \\ & = \int_{\Omega_{n}}c^2(t)\frac{\varphi _1'(t)}{\varphi_2(t)-\varphi_1(t) }(\partial_xu_{n})^2\,dt\,dx \\ &\quad -2\int_{\Omega_{n}}c^2(t)\frac{\varphi_2( t)-x}{\varphi_2(t)-\varphi_1(t)} \varphi_1'(t)(\partial_xu_{n}) (\partial_x^2u_{n})\,dt\,dx. \end{align*} Thanks to Lemma \ref{lem6}, we can write \[ \int_{\varphi_1(t)}^{\varphi_2(t) }[ \partial_xu_{n}(t,x)]^2dx \leq C[\varphi _2(t)-\varphi_1(t)] ^2\int_{\varphi_1(t)}^{\varphi_2(t)}[\partial _x^2u_{n}(t,x)]^2dx. \] Therefore, \[ \int_{\varphi_1(t)}^{\varphi_2(t)}[ \partial_xu_{n}(t,x)]^2\frac{| \varphi_1'| }{\varphi_2-\varphi_1}dx \leq C| \varphi_1'| [\varphi _2-\varphi_1]\int_{\varphi_1(t) }^{\varphi_2(t)}[\partial_x^2u_{n}( t,x)]^2dx, \] consequently, \begin{align*} | I_{n,1}| & \leq C\int_{\Omega _{n}}c^2(t)| \varphi_1'| [\varphi _2-\varphi_1](\partial_x^2u_{n})^2\,dt\,dx +2\int_{\Omega_{n}}c^2(t)| \varphi _1'| | \partial _xu_{n}| | \partial_x^2u_{n}| \,dt\,dx, \end{align*} since $| \frac{\varphi_2(t)-x}{\varphi_2( t)-\varphi_1(t)}| \leq 1$. So, for all $ \epsilon >0$, we have \begin{align*} | I_{n,1}| & \leq C\int_{\Omega _{n}}c^2(t)| \varphi_1'| [\varphi _2-\varphi_1](\partial_x^2u_{n})^2\,dt\,dx \\ & \quad +\int_{\Omega_{n}}\epsilon c^2(t)( \partial_x^2u_{n})^2\,dt\,dx+\frac{1}{\epsilon }\int_{\Omega_{n}}c^2(t)(\varphi _1')^2( \partial_xu_{n})^2\,dt\,dx. \end{align*} Lemma \ref{lem6} yields \[ \frac{1}{\epsilon }\int_{\Omega_{n}}c^2(t)( \varphi_1')^2(\partial_xu_{n})^2\,dt\,dx \leq C\frac{1}{\epsilon }\int_{\Omega _{n}}c^2(t)(\varphi_1') ^2[\varphi_2-\varphi_1] ^2(\partial_x^2u_{n})^2\,dt\,dx. \] Thus, there exists a constant $M>0$ independent of $n$ such that \begin{align*} | I_{n,1}| & \leq C\int_{\Omega _{n}}c^2(t)[| \varphi_1'| | \varphi_2-\varphi_1| +\frac{1}{\epsilon }(\varphi_1') ^2| \varphi_2-\varphi_1| ^2](\partial_x^2u_{n})^2\,dt\,dx \\ &\quad +\int_{\Omega_{n}}c^2(t)\epsilon ( \partial_x^2u_{n})^2\,dt\,dx \\ & \leq M\epsilon \int_{\Omega_{n}}(\partial _x^2u_{n})^2\,dt\,dx, \end{align*} because $| \varphi_1'(\varphi _2-\varphi_1)| \leq \epsilon $ and $c^2(t)$ is bounded. The inequality \[ | I_{n,2}| \leq K\epsilon \| \partial _x^2u_{n}\|_{L^2(\Omega_{n})}^2 \] can be proved by a similar argument. \subsection*{Estimation of $J_{n,k}$, $k=1,2$} We have \begin{align*} J_{n,1} & = -2\int_{a_{n}}^{T}(\beta_1c^2)( t)\partial_{t}u_{n}(t,\varphi_1(t) ).u_{n}(t,\varphi_1(t))dt \\ & = -\int_{a_{n}}^{T}(\beta_1c^2)(t) [\partial_{t}u_{n}^2(t,\varphi_1(t))] dt. \end{align*} By setting $ h(t)=u_{n}^2(t,\varphi_1(t))$, we obtain \begin{align*} J_{n,1} & = -\int_{a_{n}}^{T}\beta_1c^2. \big[h'(t)-\varphi_1'(t)\partial _xu_{n}^2(t,\varphi_1(t))\big]dt \\ & = -\beta_1c^2.h(t)\big]_{a_{n}}^{T}+ \int_{a_{n}}^{T}(\beta_1c^2)'.h( t)dt+\int_{a_{n}}^{T}\beta_1c^2.\varphi_1'(t) \partial_xu_{n}^2(t,\varphi_1(t))dt. \end{align*} Thanks to \eqref{2}, \eqref{3.5a} and the fact that $u_{n}^2(a_{n},\varphi_1(a_{n}))=0$, we have \[ -\beta_1c^2.h(t)\big]_{a_{n}}^{T}+ \int_{a_{n}}^{T}(\beta_1c^2)'.h( t)dt\geq 0. \] The last boundary integral in the expression of $J_{n,1}$ can be treated by a similar argument used in Lemma \ref{lem7}. So, we obtain the existence of a positive constant $K$ independent of $n$, such that \begin{equation} \big| \int_{a_{n}}^{T}\beta_1c^2.\varphi_1'(t)\partial_xu_{n}^2(t,\varphi_1( t))dt\big| \leq K\epsilon \| \partial _x^2u_{n}\|_{L^2(\Omega_{n})}^2. \label{3.7} \end{equation} By a similar method, we obtain \begin{align*} J_{n,2} & = \beta_2(t)c^2(t) u_{n}^2(t,\varphi_2(t))\big] _{a_{n}}^{T}-\int_{a_{n}}^{T}(\beta_2c^2) '.u_{n}^2(t,\varphi_2(t))dt \\ & \quad -\int_{a_{n}}^{T}\beta_2c^2.\varphi_2'(t) \partial_xu_{n}^2(t,\varphi_2(t))dt. \end{align*} Thanks to \eqref{2}, \eqref{3.5b} and the fact that $u_{n}^2(a_{n},\varphi_2(a_{n}))=0$, we have \[ \beta_2(t)c^2(t)u_{n}^2( t,\varphi_2(t))\big]_{a_{n}}^{T}-\int_{a_{n}}^{T} (\beta_2c^2)'.u_{n}^2(t,\varphi _2(t))dt\geq 0. \] Then \begin{equation} | -\int_{a_{n}}^{T}\beta_2c^2.\varphi_2'(t)\partial_xu_{n}^2(t,\varphi_2( t))dt| \leq K\epsilon \| \partial _x^2u_{n}\|_{L^2(\Omega_{n})}^2 \label{3.8} \end{equation} where $K$ is a positive constant independent of $n$. Now, we can complete the proof of Proposition \ref{prop1}. Summing up the estimates \eqref{8}, \eqref{9}, \eqref{3.7} and \eqref{3.8}, and making use of Lemma \ref{lem6}, we then obtain \begin{align*} &\| f_{n}\|_{L^2(\Omega_{n})}^2\\ &\geq \| \partial_{t}u_{n}\|_{L^2(\Omega _{n})}^2+\| c^2\partial_x^2u_{n}\| _{L^2(\Omega_{n})}^2-K\epsilon \| \partial_x^2u_{n}\|_{L^2(\Omega_{n})}^2 -K_2\epsilon\| \partial_x^2u_{n}\| _{L^2(\Omega_{n})}^2 \\ & \geq \| \partial_{t}u_{n}\|_{L^2( \Omega_{n})}^2+(d_1^2-K\epsilon -K_2\epsilon)\| \partial_x^2u_{n}\|_{L^2(\Omega_{n})}^2 \end{align*} where $K_2$ is a positive number. Then, it is sufficient to choose $\epsilon $ such that $(d_1^2-K\epsilon -K_2\epsilon)>0$, to get a constant $K_0>0$ independent of $n$ such that \[ \| f_{n}\|_{L^2(\Omega_{n})}^2 \geq K_0(\| \partial_{t}u_{n}\|_{L^2(\Omega _{n})}^2+\| \partial_x^2u_{n}\|_{L^2(\Omega_{n})}^2). \] However, \[ \| f_{n}\|_{L^2(\Omega_{n})} \leq \| f\|_{L^2(\Omega )}, \] then, there exists a constant $C>0$, independent of $n$ satisfying \[ \| \partial_{t}u_{n}\|_{L^2(\Omega_{n}) }^2+\| \partial_x^2u_{n}\|_{L^2(\Omega _{n})}^2\leq C\| f_{n}\|_{L^2(\Omega _{n})}^2\leq C\| f\|_{L^2(\Omega ) }^2. \] This completes the proof of Proposition \ref{prop1}. \end{proof} \subsection*{Passage to the limit} We are now in position to prove the first main result of this work. \begin{theorem}\label{theo3} Assume that the following conditions are satisfied \begin{itemize} \item[(1)] $(\varphi_i)_{i=1,2}$ fulfil the assumptions \eqref{3.2} and \eqref{3.3}. \item[(2)] the coefficient $c$ verifies the conditions \eqref{5} and \eqref{8}. \item[(3)] $(\beta_i)_{i=1,2}$ fulfil the conditions \eqref{2}, \eqref{2.1}, \eqref{2.2} and \eqref{2.3}. \item[(4)] $(\varphi_i,\beta_i,c)_{i=1,2}$ fulfil the conditions \eqref{1}, \eqref{3.5a} and \eqref{3.5b}. \end{itemize} Then, for $T$ small enough, \eqref{eP'} admits a (unique) solution $u$ belonging to \[ H_{\gamma }^{1,2}(\Omega )=\{ u\in H^{1,2}( \Omega );(\partial_xu+\beta_i(t) u)\big|_{\Gamma_i}=0,i=1,2\} , \] where $\Gamma_i$, $i=1,2$ are the parts of the boundary of $\Omega $ where $x=\varphi_i(t)$. \end{theorem} \begin{proof} Choose a sequence $(\Omega_{n})_{n\in \mathbb{N}}$ of the domains defined above, such that $\Omega_{n}\subseteq \Omega $ with $(a_{n})$ a decreasing sequence to $0$, as $n\to \infty $. Then, we have $\Omega_{n}\to \Omega$, as $n\to \infty $. Consider the solution $u_{n}\in H^{1,2}(\Omega_{n})$ of the Robin boundary value problem \begin{gather*} \partial_{t}u_{n}-c^2(t)\partial_x^2u_{n}=f_{n} \quad \text{in }\Omega_{n} \\ u_{n/t=a_{n}}=0 \\ \partial_xu_{n}+\beta_i(t)u_n\big|_{\Gamma_{n,i}}=0,\quad i=1,2, \end{gather*} where $\Gamma_{n,i}$ are the parts of the boundary of $\Omega_{n}$ where $ x=\varphi_i(t)$, $i=1,2.$\ Such a solution $u_{n}$ exists by Theorem \ref{theo1}. Let $\widetilde{u_{n}}$ the $0-$extension of $u_{n}$ to $\Omega $. In virtue of Theorem \ref{theo2}, we know that there exists a constant $K>0$ such that \[ \| \widetilde{u_{n}}\|_{L^2(\Omega ) }^2+\| \widetilde{\partial_{t}u_{n}}\|_{L^2( \Omega )}^2+\| \widetilde{\partial_xu_{n}}\| _{L^2(\Omega )}^2+\| \widetilde{\partial _x^2u_{n}}\|_{L^2(\Omega )}^2\leq K\| f\|_{L^2(\Omega )}^2. \] This means that $\widetilde{u_{n}}$, $\widetilde{\partial _{t}u_{n}}$, $ \widetilde{\partial_x^{j}u_{n}}$, for $j=1,2$ are bounded functions in $ L^2(\Omega )$. So, for a suitable increasing sequence of integers $n_{k}$, $k=1,2,\dots$, there exist functions $u,v$ and $v_{j}$, $j=1,2$ in $L^2(\Omega )$ such that \begin{gather*} \widetilde{u_{n_{k}}} \rightharpoonup u \quad \text{weakly in }L^2( \Omega ),\; k\to \infty \\ \widetilde{\partial_{t}u_{n_{k}}} \rightharpoonup v \quad \text{weakly in } L^2(\Omega ), \; k\to \infty \\ \widetilde{\partial_x^{j}u_{n_{k}}} \rightharpoonup v_{j} \quad \text{weakly in }L^2(\Omega ), \; k\to \infty ,\; j=1,2. \end{gather*} Clearly $v=\partial_{t}u$, $v_1=\partial_xu$ and $v_2=\partial_x^2u$ in the sense of distributions in $\Omega $. So, $u\in H^{1,2}(\Omega )$ and \[ \partial_{t}u-c^2(t)\partial_x^2u=f\quad \text{in } \Omega . \] On the other hand, the solution $u$ satisfies the boundary conditions \[ \partial_xu+\beta_i(t)u\big|_{\Gamma_i}=0,\quad i=1,2, \] since for all $n\in \mathbb{N}$, $u\big|_{\Omega_{n}}=u_{n}$. This proves the existence of solution to \eqref{eP'}. The uniqueness of the solution is easy to check, thanks to the hypothesis \eqref{1}. \end{proof} \section{The case of an arbitrary $T$} Assume that $\Omega$ satisfies \eqref{3.2}. In the case where $T$ is not in the neighborhood of zero, we set $\Omega =D_1\cup D_2\cup \Gamma_{T_1}$ where \begin{gather*} D_1=\{ (t,x)\in \mathbb{R}^2:0