\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 31, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/31\hfil Stability for a non-local problem] {Stability for a non-local non-autonomous system of fractional order differential equations \\ with delays} \author[A. M. A. El-Sayed, F. M. Gaafar, E. M. A. Hamadalla\hfil EJDE-2010/31\hfilneg] {Ahmed M. A. El-Sayed, Fatma M. Gaafar, Eman M. A. Hamadalla} % in alphabetical order \address{Ahmed M. A. El-Sayed \newline Faculty of Science, Alexandria University, Alexandria, Egypt} \email{amasayed@hotmail.com} \address{Fatma M. Gaafar \newline Faculty of Science, Damanhour, Alexandria University, Alexandria, Egypt} \email{gaafarfatma@yahoo.com} \address{Eman M. A. Hamadalla \newline Faculty of Science, Alexandria University, Alexandria, Egypt} \email{emanhamdalla@hotmail.com} \thanks{Submitted October 12, 2009. Published February 26, 2010.} \subjclass[2000]{34A12, 34A30, 34D20} \keywords{Riemann-Liouvile derivatives; nonlocal non-autonomous system; \hfill\break\indent time-delay system; stability analysis} \begin{abstract} In this article, we establish sufficient conditions for the existence, uniqueness and uniformly stability of solutions for a class of nonlocal non-autonomous system of fractional-order delay differential equations with several delays. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Let $ x(t)=(x_1(t),x_2(t),\dots ,x_n(t))'$, where $'$ denoted the transpose of the matrix. Let $ \alpha \in(0,1] $ and $ i=1,2,\dots ,n$. Consider the nonlocal problem \begin{gather} D^{\alpha}x_i(t) = \sum_{j=1}^n a_{ij}(t) x_j(t) + \sum_{j=1}^n b_{ij}(t) x_j(t-r_j) + h_i(t) , \quad t> 0 \label{1}\\ x(t)=\Phi(t) \quad \text{for } t<0 ,\quad\text{and}\quad \lim_{t\to 0^-} \Phi(t) = O \label{2}\\ I^{\beta} x(t)|_{t=0}=O , \quad \beta \in (0,1] \label{3} \end{gather} where $D^{\alpha}$ denoted the Riemann-Liouville derivative of order $\alpha$; $A(t) = (a_{ij}(t))_{n \times n}$, $B(t) = (b_{ij}(t))_{n \times n}$, $H(t) = (h_i(t))_{n \times 1} $, $ \Phi(t) = (\phi_i(t))_{n \times 1}$ are given matrices; $O$ is the zero matrix; $r_j\geq 0 $ are constants. Fractional differential equations has been studied by various researchers because they appear in various fields: physics, mechanics, engineering, electrochemistry, economics; see for example \cite{71}-\cite{7}, \cite{54}-\cite{75} and references therein. In this work, we discuss the existence, uniqueness and stability of solution of the non-autonomous time-varying delay system \eqref{1}-\eqref{3}. Abd El-Salam and El-Sayed \cite{1} proved the existence of a unique uniformly stable solution for the non-autonomous system \[ ^cD_a^\alpha x(t) = A(t) x(t) + f(t) \quad x(0) = x^0 , \quad t>0 \] where $^cD_a^\alpha$ is the Caputo fractional derivatives (see \cite{5}-\cite{6}), $A(t)$ and $f(t)$ are continuous matrices. El-Sayed \cite{11} proved the existence and uniqueness of the solution $u(t)$ of the problem \begin{gather*} ^cD^{\alpha}_a u(t) + CD_a^{\beta}u(t-r) = Au(t) + Bu(t-r), \quad 0\leq\beta\leq\alpha\leq1\\ u(t) = g(t),\quad t\in[a-r,a], \; r>0 \end{gather*} by the method of steps, where $A,B,C$ are bounded operators defined on a Banach space $X$. Zhang \cite{2} established the existence of a unique solution for the delay fractional differential equation \[ D^{\alpha} x(t)=A_0x(t) + A_1x(t-r) + f(t), \quad t>0, \quad x(t)=\phi(t), \quad t\in [-r,0] \] by the method of steps, where $A_0, A_1$ are constant matrices. a study of finite time stability was shown there. Here we prove the existence of a unique solution for \eqref{1}-\eqref{3}, of the form \[ x_i(t) = \begin{cases} \phi_i(t) , &t < 0\\ 0 , & t = 0\\ I^\alpha \{\sum_{j=1}^n a_{ij}(t) x_j(t) + \sum_{j=1}^n b_{ij}(t) x_j(t-r_j) + h_i(t)\} , & t > 0. \end{cases} \] This solution is in $C((-\infty,T])$, $T<\infty$, and is uniformly stable. \section{Preliminaries} In this section, we introduce notation, definitions, and preliminary facts which are used thought this paper. \begin{definition} \label{def1} \rm The fractional (arbitrary) order integral of a function $f \in L_1[a,b] $ of order $ \alpha \in R^+ $ is defined by \[ I^{\alpha}_a f(t) = \int_a^t \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} f(s)\, ds. \] where $\Gamma$ is the gamma function; see \cite{4,5,54,6}. \end{definition} \begin{definition} \label{def2}\rm The Riemann-liouville fractional (arbitrary) order derivatives of order $\alpha \in (n-1,n) $ of the function $f$ is defined by \[ D^{\alpha}_a f(t) = \frac{d^n}{dt^n} I^{n-\alpha}_a f(t) = \frac{1}{\Gamma(n-\alpha)} (\frac{d}{dt})^n \int_a^t (t - s)^{n-\alpha-1} f(s) ds , \quad t \in [a,b]; \] see \cite{4,5,54,6}. \end{definition} The concept of stability can be related to that of continuous dependence of solution on their initial value. Consider the non-autonomous linear system \begin{equation}\label{5} x'(t) = A(t) x(t) \end{equation} with the initial condition $x(t_0) = x^0$. \begin{definition} \label{def3}\rm The solution $x=0$ of \eqref{5} is called stable if for any $\epsilon>0,t_0\geq 0$, there exist $ \delta(\epsilon,t_0)>0 $ such that $\|x(t,t_0,x^0)\|<\epsilon$ for $t\geq t_0$ as soon as $\|x^0\|<\delta$. And the solution $x=0$ of \eqref{5} will be called uniformly stable if $ \delta(\epsilon,t_0)$ can be chosen independent of $t_0: \delta(\epsilon,t_0)\equiv \delta(\epsilon)$; see \cite{3}. \end{definition} \section{Existence and Uniqueness} Let $ X = ( C_{n}(I) , \| \cdot \|_{1} ) $, where $C_n (I)$ be the class of continuous column $n$-vectors functions. For $ x \in C_n[0,T] $, define the norm $ \| x \| = \sum_{i=1}^n \sup_{t\in [0,T]} \{ e^{-Nt} |x_i(t)| \}$. For a matrix $B$ define the norm $\| B \| = \sum_{i=1}^n |b_i| = \sum_{i=1}^n\sup_{t,j} | b_{ij} |$. \begin{theorem} \label{thm1} Let $ a_{ij}, b_{ij}, h_i, \phi_i$ be in $C(I) $. Then there exist a unique solution $ x \in X $ of \eqref{1}-\eqref{3} \end{theorem} \begin{proof} For $t>0$, equation \eqref{1} can be written as \[ \frac{d}{dt} I^{1-\alpha} x_i(t) =\sum_{j=1}^n a_{ij}(t) x_j(t) + \sum_{j=1}^n b_{ij}(t) x_j(t-r_j) + h_i(t) \] integrating both sides of the above equation, we obtain \[ I^{1-\alpha} x_i(t) - I^{1-\alpha} x_i(t)|_{t=0} = \int_0^t \{\sum_{j=1}^n a_{ij}(t) x_j(t)+\sum_{j=1}^n b_{ij}(s) x_j(s-r_j) + h_i(s)\} \,ds \] then \[ I^{1-\alpha} x_i(t) = \int_0^t \{\sum_{j=1}^n a_{ij}(t) x_j(t)+\sum_{j=1}^n b_{ij}(s) x_j(s-r_j) + h_i(s)\}\, ds\,. \] Applying the operator by $I^\alpha$, on both sides, \[ I x_i(t) = I^{\alpha+1} \big\{\sum_{j=1}^n a_{ij}(t) x_j(t) + \sum_{j=1}^n b_{ij}(t) x_j(t-r_j) + h_i(t)\big\} \] differentiating both side, we obtain \begin{equation}\label{4} x_i(t) = I^\alpha \{\sum_{j=1}^n a_{ij}(t) x_j(t) + \sum_{j=1}^n b_{ij}(t) x_j(t-r_j) + h_i(t)\}, \quad i=1,2,\dots ,n \end{equation} Now let $F : X \to X $, defined by \[ Fx_i = I^{\alpha} \big\{ \sum_{j=1}^n a_{ij}(t) x_j(t) + \sum_{j=1}^n b_{ij}(t) x_j(t-r_j) + h_i(t)\big\} \] then \begin{align*} |Fx_i-Fy_i| &= |I^{\alpha} \{ \sum_{j=1}^n a_{ij}(t) \{x_j(t)-y_j(t)\} + \sum_{j=1}^n b_{ij}(t) \{x_j(t-r_j)-y_j(t-r_j)\}\}|\\ &= \big| \int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}\{ \sum_{j=1}^na_{ij}(s) \{x_j(s)-y_j(s)\}\\ &\quad + \sum_{j=1}^n b_{ij}(s) \{x_j(s-r_j)-y_j(s-r_j)\}\}d s\big| \\ &\leq \int_0^t \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} \sum_{j=1}^n |a_{ij}(s)| | x_j(s) - y_j(s) | d s \\ &\quad + \int_0^t \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} \sum_{j=1}^n |b_{ij}(s)| | x_j(s-r_j) - y_j(s-r_j) | d s \\ &\leq \sum_{j=1}^n \sup_{t, \forall j} |a_{ij}(t)| \int_0^t \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} | x_j(s) - y_j(s) | d s \\ &\quad + \sum_{j=1}^n \sup_{t, \forall j} |b_{ij}(t)| \int_0^t \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} | x_j(s-r_j) - y_j(s-r_j) | d s\\ &\leq \sum_{j=1}^n a_i \int_0^{t} \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} | x_j(s) - y_j(s) | d s \\ &\quad +\sum_{j=1}^n b_i \int_0^{r_j} \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} | x_j(s-r_j) - y_j(s-r_j) | d s\\ &\quad + \sum_{j=1}^n b_i \int_{r_j}^t \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} | x_j(s-r_j) - y_j(s-r_j) | d s\\ &\leq a_i \sum_{j=1}^n \int_0^{t} \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} | x_j(s) - y_j(s) | d s\\ &\quad + b_i \sum_{j=1}^n \int_{r_j}^t \frac{(t - s)^{\alpha-1}}{\Gamma(\alpha)} | x_j(s-r_j) - y_j(s-r_j) | d s \end{align*} and \begin{align*} &e^{-Nt}|Fx_i-Fy_i|\\ &\leq a_i \sum_{j=1}^n\int_{0}^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s)} e^{-Ns}|x_j(s)-y_j(s)|d s \\ &\quad + b_i \sum_{j=1}^n\int_{r_j}^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s+r_j)} e^{-N(s-r_j)}|x_j(s-r_j)-y_j(s-r_j)|d s \\ &\leq a_i \sum_{j=1}^n \sup_t\{e^{-Nt}|x_j(t)-y_j(t)|\} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s)} d s\\ &\quad + b_i \sum_{j=1}^n\int_{0}^{t-r_j} \frac{(t-\theta-r_j)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-\theta)} e^{-N\theta}|x_j(\theta)-y_j(\theta)|d \theta \\ &\leq a_i \sum_{j=1}^n \sup_t\{e^{-Nt}|x_j(t)-y_j(t)|\} \frac{1}{N^\alpha} \int_0^{Nt} \frac{u^{\alpha-1} e^{-u}}{\Gamma(\alpha)} du\\ &\quad +b_i \sum_{j=1}^n \sup_t\{e^{-Nt}|x_j(t)-y_j(t)|\} \int_{0}^{t-r_j} \frac{(t-\theta-r_j)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-\theta)} d \theta \\ &\leq \frac{a_i}{N^\alpha}\|x-y\|+b_i\sum_{j=1}^n \sup_t\{e^{-Nt}|x_j(t)-y_j(t)|\}\int_0^{t-r_j}\frac{u^{\alpha-1}}{\Gamma(\alpha)} e^{-Nu}e^{-Nr_j} du\\ &\leq \frac{a_i}{N^\alpha}\|x-y\|+b_i\sum_{j=1}^n \sup_t\{e^{-Nt}|x_j(t)-y_j(t)|\} \frac{e^{-Nr_j}}{N^\alpha}\int_0^{N(t-r_j)} \frac{u^{\alpha-1}e^{-u}}{\Gamma(\alpha)} du\\ &\leq \frac{a_i}{N^\alpha} \|x - y\| + b_i \sum_{j=1}^n \sup_t\{e^{-Nt}|x_j(t)-y_j(t)|\} \frac{e^{-Nr_j}}{N^\alpha}\\ &\leq \frac{a_i}{N^\alpha} \|x - y\| + \frac{b_i}{N^\alpha} \sum_{j=1}^n \sup_te^{-Nt}|x_j(t)-y_j(t)|\\ &\leq \frac{a_i+b_i}{N^\alpha} \|x - y\|\,. \end{align*} Then \begin{align*} \| F x - F y \| &= \sum_{i=1}^n \sup_t e^{-Nt} |Fx_i-Fy_i|\\ &\leq \sum_{i=1}^n \frac{a_i+b_i}{N^\alpha} \| x - y \| \\ &\leq \frac{\|A\| + \|B\|}{N^\alpha} \| x - y \|. \end{align*} Now choose $N$ large enough such that $\frac{\|A\| + \|B\|}{N^\alpha} < 1$, so the map $ F : X \to X $ is a contraction and it has a fixed point $ x=F x $ and hence, there exist a unique column vector $x \in X$ which is the solution of the integral equation \eqref{4}. We now prove the equivalence between the integral equation \eqref{4} and the nonlocal problem \eqref{1}-\eqref{3}. Indeed, since $ x \in C_n(I) $ and $ I^{1-\alpha}x(t) \in C_n(I)$ applying the operator $ I^{1-\alpha} $ on both sides of \eqref{4}, we obtain \begin{align*} I^{1-\alpha} x_i(t)&= I^{1-\alpha} I^\alpha \{\sum_{j=1}^n a_{ij}(t) x_j(t)+\sum_{j=1}^n b_{ij}(t) x_j(t-r_j)+h_i(t)\}, \quad i=1,2,\dots ,n \\ &= I\{\sum_{j=1}^n a_{ij}(t) x_j(t) + \sum_{j=1}^n b_{ij}(t) x_j(t-r_j)+h_i(t)\}\,. \end{align*} Differentiating both sides, \[ D I^{1-\alpha} x_i (t) = D I \{\sum_{j=1}^n a_{ij}(t) x_j(t) + \sum_{j=1}^n b_{ij}(t) x_j(t-r_j) + h_i(t)\},. \] Then \[ D^{\alpha} x_i(t) = \sum_{j=1}^n a_{ij}(t) x_j(t)+ \sum_{j=1}^n b_{ij}(t) x_j(t-r_j) + h_i(t) , \quad t> 0 \] which proves the equivalence of \eqref{4} and \eqref{1}. We want to prove that $ \lim_{t\to 0^+} x_i = 0$. Since $ x_j(s), a_{ij}(s), h_i(s) $ are continuous on $[0,T]$, there exist constants $l_j, L_j, m_i, M_i$ such that $l_j\leq a_{ij}(s)x_j(s)\leq L_j$ and $ m_i \leq h_i(s) \leq M_i$. We have \[ I^\alpha \{\sum_{j=1}^n a_{ij}(t) x_j(t) + h_i(t)\}=\int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \big\{\sum_{j=1}^n a_{ij}(s) x_j(s) + h_i(s)\big\} d s \] which implies \begin{align*} \big\{\sum_{j=1}^nl_j+m_i\big\} \int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}\,d s &\leq I^\alpha\{\sum_{j=1}^n a_{ij}(t) x_j(t)+h_i(t)\}\\ & \leq \{\sum_{j=1}^nL_j+M_i\}\int_0^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \,ds \end{align*} which in turn implies \[ \{\sum_{j=1}^nl_j+m_i\} \frac{t^{\alpha}}{\Gamma(\alpha+1)} \leq I^\alpha\{\sum_{j=1}^n a_{ij}(t) x_j(t)+h_i(t)\} \leq \{\sum_{j=1}^n L_j+M_i\} \frac{t^{\alpha}}{\Gamma(\alpha+1)} \] and \[ \lim_{t\to 0^+} I^\alpha\{\sum_{j=1}^n a_{ij}(t) x_j(t)+h_i(t)\} = 0. \] Since $ b_{ij}(s), \phi_j(s-r_j) $ are continuous on $[0,r_j]$, there exist constants $ k_j, K_j $ such that $ k_j \leq b_{ij}(s) \phi_j(s-r_j) \leq K_j $. Also $ b_{ij}(s), x_j(s-r_j) $ are continuous on $[r_j,T]$, then there exist a constants $ k^*_j, K^*_J $ such that $ k^*_j \leq b_{ij}(s) x_j(s-r_j)\leq K^*_j $. Let $ k = \min_{\forall j} \{k_j, k^*_j\} $ and $ K = \max_{\forall j} \{K_j,K^*_j\}, $ we have \begin{align*} &I^\alpha\sum_{j=1}^n b_{ij}(t) x_j(t-r_j)\\ &= \int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \sum_{j=1}^n b_{ij}(s) x_j(s-r_j)d s\\ &= \int_0^{r_j}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}\sum_{j=1}^n b_{ij}(s) \phi_j(s-r_j)d s+\int_{r_j}^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \sum_{j=1}^n b_{ij}(s) x_j(s-r_j)d s \end{align*} which implies \begin{align*} &\sum_{j=1}^nk_j\int_0^{r_j}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} d s+\sum_{j=1}^n k^*_j\int_{r_j}^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \,d s\\ &\leq I^\alpha\sum_{j=1}^n b_{ij}(t)x_j(t-r_j) \\ &\leq \sum_{j=1}^n K_j \int_0^{r_j} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} d s+\sum_{j=1}^n K^*_j \int_{r_j}^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}\,ds \end{align*} which implies \begin{align*} &\sum_{j=1}^n k_j \Big(\frac{t^{\alpha}}{\Gamma(\alpha+1)} -\frac{(t-r_j)^{\alpha}}{\Gamma(\alpha+1)}\Big) +\sum_{j=1}^n k^*_j\frac{(t-r_j)^{\alpha}}{\Gamma(\alpha+1)} \leq I^\alpha\sum_{j=1}^n b_{ij}(t) x_j(t-r_j) \\ & \leq \sum_{j=1}^n K_j \Big(\frac{t^{\alpha}}{\Gamma(\alpha+1)} -\frac{(t-r_j)^{\alpha}}{\Gamma(\alpha+1)}\Big) +\sum_{j=1}^n K^*_j \frac{(t-r_j)^{\alpha}}{\Gamma(\alpha+1)}\,. \end{align*} Then \[ k \frac{t^{\alpha}}{\Gamma(\alpha+1)} \leq I^\alpha\sum_{j=1}^n b_{ij}(t) x_j(t-r_j) \leq K \frac{t^{\alpha}}{\Gamma(\alpha+1)} \] and \[ \lim_{t\to 0^+} I^\alpha\sum_{j=1}^n b_{ij}(t) x_j(t-r_j) = 0. \] Then from \eqref{4} $ \lim_{t\to 0^+} x_i = 0$. \end{proof} Now for $t \in (-\infty , T], T<\infty$, the solution of \eqref{1}-\eqref{3} takes the form \[ x_i(t) = \begin{cases} \phi_i(t) , & t < 0\\ 0 , & t = 0\\ I^\alpha \{\sum_{j=1}^n a_{ij}(t) x_j(t) + \sum_{j=1}^n b_{ij}(t) x_j(t-r_j) + b_i(t)\} , & t > 0 \end{cases} \] \section{Stability} In this section we study the stability of the solution of the nonlocal problem \eqref{1}-\eqref{3}. \begin{definition} \label{def5} \rm The solution of the non-autonomous linear system \eqref{1} is stable if for any $ \epsilon>0$, there exist $\delta>0 $ such that for any two solutions $ x(t) = (x_1(t),x_2(t),\dots ,x_n(t))' $ and $ \widetilde{x}(t) = (\widetilde{x}_1(t), \widetilde{x}_2(t),\dots ,\widetilde{x}_n(t))' $ with the initial conditions \eqref{2}-\eqref{3} and $\{ I^\beta {\widetilde{x}}(t)|_{t=0} = 0$, $ \beta \in (0,1] , \widetilde{x}(t) = \widetilde{\Phi} (t) $ for $t<0$ and $\lim_{t\to 0} \widetilde{\Phi}(t) = O\}$, respectively, one has $\|\Phi(t) - \widetilde{\Phi}(t)\| \leq \delta$, then $\|x(t) - \widetilde{x}(t)\| < \epsilon $ for all $ t\geq0$. \end{definition} \begin{theorem} \label{thm2} The solution of the nonlocal delay system \eqref{1}-\eqref{3} is uniformly stable. \end{theorem} \begin{proof} Let $ x(t) $ and $ \widetilde{x}(t) $ be two solutions of the system \eqref{1} under the conditions \eqref{2}-\eqref{3} and $I^\beta \widetilde{x}(t)|_{t=0} = 0$, $\widetilde{x}(t) = \widetilde{\Phi}(t)$, $t<0$ and $\lim_{t\to 0} \widetilde{\Phi}(t) = O$, respectively. Then for $t>0$, from \eqref{4}, we have \begin{align*} |x_i-\widetilde{x}_i| &= | I^{\alpha} \{ \sum_{j=1}^n a_{ij}(t) ( x_j(t) - \widetilde{x}_j(t)) + \sum_{j=1}^n b_{ij}(t) ( x_j(t-r_j) - \widetilde{x}_j(t-r_j)\}|\\ &\leq \int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \{\sum_{j=1}^n|a_{ij}(s)| |x_j(s)-\widetilde{x}_j(s)|\\ &\quad +\sum_{j=1}^n|b_{ij}(s)| |x_j(s-r_j)-\widetilde{x}_j(s-r_j)|\}d s \\ &\leq \sum_{j=1}^n \sup_{t, \forall j} |a_{ij}(t)| \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} |x_j(s)-\widetilde{x}_j(s)| d s \\ &\quad + \sum_{j=1}^n \sup_{t, \forall j} |b_{ij}(t)| \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} |x_j(s-r_j)-\widetilde{x}_j(s-r_j)| d s \\ &\leq \sum_{j=1}^n a_i \int_0^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} |\phi_j(s)-\widetilde{\phi}_j(s)|\,ds \\ &\quad +\sum_{j=1}^n b_i \int_0^{r_j}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} |\phi_j(s-r_j)-\widetilde{\phi}_j(s-r_j)|d s \\ &\quad + \sum_{j=1}^n b_i \int_{r_j}^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} |x_j(s-r_j) - \widetilde{x}_j(s-r_j)| d s \end{align*} and \begin{align*} &e^{-Nt} |x_i-\widetilde{x}_i|\\ &\leq a_i\sum_{j=1}^n\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s)} e^{-Ns}|x_j(s)-\widetilde{x}_j(s)|d s\\ &\quad + b_i\sum_{j=1}^n\int_{0}^{r_j} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s+r_j)} e^{-N(s-r_j)}|\phi_j(s-r_j)-\widetilde{\phi}_j(s-r_j)|d s\\ &\quad + b_i\sum_{j=1}^n\int_{r_j}^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s+r_j)} e^{-N(s-r_j)}|x_j(s-r_j)-\widetilde{x}_j(s-r_j)|d s \\ &\leq a_i \sum_{j=1}^n \sup_t\{e^{-Nt}|x_j(t)-\widetilde x_j(t)|\} \int^{t}_0 \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s)} d s \\ &\quad + b_i \sum_{j=1}^n\int^{0}_{-r_j} \frac{(t-\theta-r_j)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-\theta)} e^{-N\theta}|\phi_j(\theta)-\widetilde{\phi}_j(\theta)|d \theta \\ &\quad + b_i \sum_{j=1}^n\int_{0}^{t-r_j} \frac{(t-\theta-r_j)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-\theta)} e^{-N\theta}|x_j(\theta)-\widetilde{x}_j(\theta)|d \theta \\ &\leq \frac{a_i}{N^\alpha} \|x_j(t)-\widetilde x_j(t)\| \int_0^{Nt} \frac{u^{\alpha-1} e^{-u}}{\Gamma(\alpha)} du\\ &\quad + b_i \sum_{j=1}^n \sup_t\{e^{-Nt}|\phi_j(t)-\widetilde{\phi}_j(t)|\} \int^{0}_{-r_j} \frac{(t-\theta-r_j)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-\theta)} d \theta \\ &\quad + b_i \sum_{j=1}^n \sup_t\{e^{-Nt}|x_j(t)-\widetilde{x}_j(t)|\} \int_{0}^{t-r_j} \frac{(t-\theta-r_j)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-\theta)} d \theta \\ & \leq \frac{a_i}{N^\alpha} \|x_j(t)-\widetilde x_j(t)\|\\ & \quad + b_i\sum_{j=1}^n \sup_t\{e^{-Nt}|\phi_j(t)-\widetilde{\phi}_j(t)|\} \frac{e^{-Nr_j}}{N^\alpha}\int^{Nt}_{N(t-r_j)} \frac{u^{\alpha-1} e^{-Nu}}{\Gamma(\alpha)} du\\ &\quad + b_i \sum_{j=1}^n \sup_t\{e^{-Nt}|x_j(t)-\widetilde{x}_j(t)|\} \frac{e^{-Nr_j}}{N^\alpha} \int_0^{N(t-r_j)} \frac{u^{\alpha-1} e^{-u}}{\Gamma(\alpha)} du\\ &\leq \frac{a_i}{N^\alpha}\|x_j(t)-\widetilde x_j(t)\|+\frac{b_i}{N^\alpha}\sum_{j=1}^n e^{-Nr_j} \sup_t\{e^{-Nt}|x_j(t)-\widetilde{x}_j(t)|\}\\ &\quad +\frac{b_i}{N^\alpha}\sum_{j=1}^n e^{-Nr_j} \sup_t\{e^{-Nt}|\phi_j(t)-\widetilde{\phi}_j(t)| \} \\ &\leq \frac{a_i}{N^\alpha}\|x_j(t)-\widetilde x_j(t)\|+\frac{b_i}{N^\alpha}\sum_{j=1}^n \sup_t\{e^{-Nt}|x_j(t)-\widetilde{x}_j(t)|\}\\ &\quad + \frac{b_i}{N^\alpha}\sum_{j=1}^n \sup_t\{e^{-Nt}|\phi_j(t)-\widetilde{\phi}_j(t)|\} \\ &\leq \frac{a_i + b_i}{N^\alpha} \| x-\widetilde{x} \| + \frac{b_i}{N^\alpha}\| \Phi-\widetilde{\Phi} \|\,. \end{align*} Then \begin{align*} \|x-\widetilde{x}\| &= \sum_{i=1}^n \sup_t e^{-Nt} |x_i-\widetilde{x}_i\\ & \leq \sum_{i=1}^n \frac{a_i+b_i}{N^\alpha} \|x-\widetilde{x}\| +\sum_{i=1}^n \frac{b_i}{N^\alpha} \|\Phi-\widetilde{\Phi}\|\\ &\leq \frac{\| A \|+\|B\|}{N^\alpha} \| x-\widetilde{x} \| + \frac{\|B\|}{N^\alpha} \|\Phi-\widetilde{\Phi}\|; \end{align*} i.e., \[ \Big(1 - \frac{\| A \|+\| B \|}{N^\alpha}\Big) \| x-\widetilde{x} \| \leq \frac{\| A \|}{N^\alpha} \| \Phi-\widetilde{\Phi} \| \] and \[ \| x-\widetilde{x} \| \leq \Big(1 - \frac{\|A\|+\|B\|}{N^\alpha} \Big)^{-1} \|\Phi-\widetilde{\Phi}\|; \] therefore, for $\delta>0$ such that $\|\Phi-\widetilde{\Phi}\|<\delta$, we can find $ \epsilon=\big(1-\frac{\|A\|+\|B\|}{N^\alpha} \big)^{-1}\delta $ such that $ \| x-\widetilde{x} \| \leq \epsilon $ which proves that the solution $ x(t) $ is uniformly stable. \end{proof} \begin{thebibliography}{00} \bibitem{1} S. A. Abd-Salam, A. M. A. El-Sayed; \emph{On the stability of some fractional-order non-autonomous systems}, E. J. Qualitative Theory of Diff. Equ., No. 6 (2007), 1-14. \bibitem{3} C. Corduneanu; \emph{Principle of differential and integral equations}, Allyn and Bacon, Inc., Boston, Massachusetts (1971). \bibitem{11} A. M. A. El-Sayed; \emph{Fractional differential-difference equations}, J. of frac. Calculus vol. 10 (1996), 101-107. \bibitem{111} A. M. A. El-Sayed; \emph{Nonlinear functional differential equations of arbitrary orders}, Nonlinear Analysis: Theory, Methods and Applications, Vol. 33, No. 2 (1998), 181-186. \bibitem{71} M. Garh, A. Rao, S. L. Kalla; emph{Fractional generalization of temperature fields problems in oil strata}, Mat. Bilten 30 (2006) 71-84. \bibitem{72} L. Gaul, P. Klein, S. Kempfle; Damping description involving fractional operators, Mech. Syst. Signal Process. 5 (1991) 81-88. \bibitem{73} R. Hilfer; Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. \bibitem{7} A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; \emph{Theory and Applications of Fractional Differential Equations}, Elsevier Science B.V., Amsterdam, 2006. \bibitem{4} K. S. Miller, B. Ross; \emph{An introduction to the fractional calculus and fractional differential equations}, John Wiley, New York (1993). \bibitem{5} I. Podlubny, A. M. A. El-Sayed; \emph{On two definitions of fractional calculus}, preprint UEF (ISBN 80-7099-252-2), Solvak Academy of Science-Institute of Experimental phys, (1996), 03-06. \bibitem{54} I. Podlubny; \emph{Fractional differential equations}, Acad. press, San Diego-New York-London (1999). \bibitem{6} S. G. Samko, A. A. Kilbas, O. I. Marichev; \emph{Fractional integral and derivatives}, Gordon and Breach science Publisher, (1993). \bibitem{74} R. K. Saxena, S. L. Kalla; \emph{On a fractional generalization of free electron laser equation}, Appl. Math. Comput. 143 (2003), 89-97. \bibitem{75} H. M. Srivastava, R. K. Saxena; \emph{Operators of fractional integration and their applications}, Appl. Math. Comput. 118 (2001), 1-52. \bibitem{2} X. Zhang; \emph{Some results of linear fractional order time-delay system}, Appl. Math. Comput. 197 (2008), 407-411. \end{thebibliography} \end{document}