\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 32, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/32\hfil Elliptic equations with a concave term] {Singular elliptic equations involving a concave term and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions} \author[M. Bouchekif, A. Matallah\hfil EJDE-2010/32\hfilneg] {Mohammed Bouchekif, Atika Matallah} % in alphabetical order \address{Mohammed Bouchekif \newline Universit\'{e} Aboubekr Belkaid, D\'{e}partement de Math\'{e}matiques, BP 119 (13000) Tlemcen - Alg\'{e}rie} \email{m\_bouchekif@yahoo.fr} \address{Atika Matallah \newline Universit\'{e} Aboubekr Belkaid, D\'{e}partement de Math\'{e}matiques, BP 119 (13000) Tlemcen - Alg\'{e}rie.} \email{atika\_matallah@yahoo.fr} \thanks{Submitted September 28, 2009. Published March 3, 2010.} \subjclass[2000]{35A15, 35B25, 35B33, 35J60} \keywords{Variational methods; critical Caffarelli-Kohn-Nirenberg exponent; \hfill\break\indent concave term; singular and sign-changing weights; Palais-Smale condition} \begin{abstract} In this article we establish the existence of at least two distinct solutions to singular elliptic equations involving a concave term and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction} This article shows the existence of at least two solutions to the problem \begin{equation} \label{p-lambda-mu} \begin{gathered} -\mathop{\rm div}\big(\frac{\nabla u}{|x|^{2a}}\big) -\mu \frac{u}{|x|^{2(a+1)}}=\lambda h(x) \frac{| u| ^{q-2}u}{|x|^{c}}+k(x)\frac{| u|^{2_{\ast }-2}u}{|x| ^{2_{\ast }b}} \quad \text{in }\Omega \backslash\{0\}\\ u=0 \quad \text{on}\ \partial \ \Omega \end{gathered} \end{equation} where $\Omega \subset\mathbb{R}^{N}$ is an open bounded domain, $N\geq 3$, $0\in \Omega $, $a<( N-2) /2$, $a\leq b0$ such that $(\mathcal{P}_{\lambda ,0})$ for $\lambda $ fixed in $(0,\Lambda _{0})$ has at least two positive solutions by using sub-super method and the Mountain Pass Theorem, problem \eqref{p-lambda-mu} for $\lambda =\Lambda _{0}$ has also a positive solution and no positive solution for $\lambda>\Lambda _{0}$. When $\mu >0$, $a=b=c=0$, Chen \cite{C} studied the asymptotic behavior of solutions to problem \eqref{p-lambda-mu} by using the Moser's iteration. By applying the Ekeland Variational Principle he obtained a first positive solution, and by the Mountain Pass Theorem he proved the existence of a second positive solution. Recently, Bouchekif and Matallah \cite{BA} extended the results of \cite{C} to problem $(\mathcal{P}_{\lambda ,\mu })\ $with $a=c=0$, $0\leq b<1$, they established the existence of two positive solutions under some sufficient conditions for $\lambda $ and $\mu $. Lin \cite{Lin} considered a more general problem \eqref{p-lambda-mu} with $0\leq a<(N-2)/2$, $a\leq b0$. For the case $h\not\equiv 1$ or $k\not\equiv 1$, we refer the reader to \cite{BA2,HH,T,W} and the references therein. Tarantello \cite{T} studied the problem \eqref{p-lambda-mu} for $\mu=0$, $a=b=c=0$, $q=\lambda =1$, $k\equiv 1$ and $h$ not necessarily equals to $1$, satisfying some conditions. Recently, problem \eqref{p-lambda-mu} in $\Omega = \mathbb{R}^{N}$ with $q=1$ has considered in \cite{BA2}. Wu \cite{W} showed the existence of multiple positive solutions for problem \eqref{p-lambda-mu} with $a=b=c=0$, $10$, the function \begin{equation} \label{e1.4} u_{\varepsilon }(x)=C_{0}\varepsilon ^{\frac{2}{2_{\ast }-2} }\Big(\varepsilon ^{\frac{2\sqrt{\bar{\mu }_{a}-\mu }}{\sqrt{ \bar{\mu }_{a}-\mu }-b}}|x|^{\frac{2_{\ast }-2}{2} (\sqrt{\bar{\mu }_{a}}-\sqrt{\bar{\mu }_{a}-\mu })}+|x|^{\frac{2_{\ast }-2}{2}(\sqrt{\bar{\mu } _{a}}+\sqrt{\bar{\mu }_{a}-\mu })}\Big)^{-\frac{2}{2_{\ast }-2 }} \end{equation} with a suitable positive constant $C_{0}$, is a weak solution of \[ -\mathop{\rm div}\big(|x|^{-2a}\nabla u\big) -\mu | x| ^{-2(a+1)}u=|x| ^{-2_{\ast}b}|u|^{2_{\ast }-2}u\quad \text{in }\mathbb{R}^{N}\backslash \{0\}. \] Furthermore, \begin{equation} \int_{\mathbb{R}^{N}}|x|^{-2a}|\nabla u_{\varepsilon }|^{2}dx -\mu \int_{\mathbb{R}^{N}}|x|^{-2(a+1)}u_{\varepsilon }^{2}dx =\int_{\mathbb{R}^{N}}|x|^{-2_{\ast }b}|u_{\varepsilon }|^{2_{\ast }}dx =A_{a,b,\mu}, \label{0} \end{equation} where $A_{a,b,\mu }$ is the best constant, \begin{equation} \label{e1.6} A_{a,b,\mu }=\inf_{u\in H_{\mu }\backslash \{0\}} E_{a,b,\mu }(u)=E_{a,b,\mu }(u_{\varepsilon }), \end{equation} with \[ E_{a,b,\mu }(u):=\frac{\int_{\mathbb{R}^{N}} |x|^{-2a}|\nabla u|^{2}dx-\mu \int_{\mathbb{R}^{N}} |x|^{-2(a+1)}u^{2}dx}{( \int_{\mathbb{R}^{N}} |x|^{-2_{\ast }b}|u|^{2_{\ast }}dx)^{2/2_{\ast }}}. \] Also in \cite{K} and \cite{Lin}, they proved that for $0\leq a<(N-2)/2$, $a\leq b0$ as \begin{equation} v_{\varepsilon }(x)=(2.2_{\ast }\varepsilon ^{2}( \bar{\mu }_{a}-\mu ))^{\frac{1}{2_{\ast }-2}}\Big(\varepsilon ^{2}| x|^{\frac{( 2_{\ast }-2)(\sqrt{\bar{\mu }_{a}}-\sqrt{\bar{\mu }_{a}-\mu })}{2} }+| x|^{\frac{2_{\ast }-2}{2}(\sqrt{\bar{\mu } _{a}}+\sqrt{\bar{\mu }_{a}-\mu })}\Big)^{-\frac{2}{2_{\ast }-2 }} \end{equation} is a weak solution of \[ -\mathop{\rm div}(|x|^{-2a}\nabla u)-\mu | x| ^{-2(a+1)}u =|x| ^{-2_{\ast}b}|u|^{2_{\ast }-2}u\quad \text{in } \mathbb{R}^{N}\backslash \{0\}, \] and satisfies \begin{equation} \int_{\mathbb{R}^{N}}|x|^{-2a}|\nabla v_{\varepsilon }|^{2}dx -\mu \int_{\mathbb{R}^{N}}|x|^{-2(a+1)}v_{\varepsilon }^{2}dx =\int_{\mathbb{R}^{N}}|x|^{-2_{\ast }b}|v_{\varepsilon }|^{2_{\ast }}dx =B_{a,b,\mu}, \end{equation} where $B_{a,b,\mu }$ is the best constant, \begin{equation} B_{a,b,\mu }:=\inf_{u\in H_{\mu }\backslash \{0\}} E_{a,b,\mu }(u)=E_{a,b,\mu }(v_{\varepsilon }). \end{equation} A natural question that arises in concert applications is to see what happens if these elliptic (degenerate or non-degenerate) problems are affected by a certain singular perturbations. In our work we prove the existence of at least two distinct nonnegative critical points of energy functional associated to problem \eqref{p-lambda-mu} by splitting the Nehari manifold (see for example Tarantello \cite{T} or Brown and Zhang \cite{BZ}). In this work we consider the following assumptions: \begin{itemize} \item[(H)] $h$ is a continuous function defined in $\bar{\Omega}$ and there exist $h_{0}$ and $\rho_{0}$ positive such that $h(x)\geq h_{0}$ for all $x\in B(0,2\rho _{0})$, where $B(a,r)$ is a ball centered at $a$ with radius $r$; \item[(K)] $k$ is a continuous function defined in $\bar{\Omega}$ and satisfies $k(0)=\max_{x\in \bar{\Omega} }k(x)>0$, $k(x)=k(0)+o (x^{\beta })$ for $x\in B(0,2\rho _{0})$ with $\beta>2_{\ast }\sqrt{\bar{\mu }_{a}-\mu }$; \end{itemize} and one of the following two assumptions \begin{itemize} \item[(A1)] $N >2(|b|+1)$ and \[ (a,\mu )\in ]-1,0[ \times ] 0, \bar{\mu }_{a}-b^{2}[ \cup [ 0,\tfrac{N-2}{2}[ \times] a(a-N+2),\bar{\mu }_{a}-b^{2}[ , \] \item[(A2)] $N \geq 3$, $(a,\mu )\in [0,\frac{N-2}{2}[ \times [ 0,\bar{\mu }_{a}[$. \end{itemize} Following the method introduced in \cite{T,HH}, we obtain the following existence result. \begin{theorem} \label{thm1} Suppose that $a<(N-2)/2$, $a\leq b0$ such that for $\lambda \in ( 0,\Lambda ^{\ast })$ problem \eqref{p-lambda-mu} has at least two nonnegative solutions in $H_{\mu }$. \end{theorem} This paper is organized as follows. In section 2 we give some preliminaries. Section 3 is devoted to the proof of Theorem \ref{thm1}. \section{Preliminary results} We start by giving the following definitions. Let $E$ be a Banach space and a functional $I\in \mathcal{C}^{1}(E,\mathbb{R) }$. We say that $(u_{n})$ is a Palais Smale sequence at level $l$ ($(PS)_l$ in short) if $I(u_{n})\to l$ \ and $I'(u_{n})\to 0$ in $E'$ (dual of $E$) as $n\to \infty $. We say also that $I$ satisfies the Palais Smale condition at level $l$ if any $(PS)_l$ sequence has a subsequence converging strongly in $E$. Define \begin{equation} w_{\varepsilon }:= \begin{cases} u_{\varepsilon } &\text{if }(a,\mu )\in ] -1,0[ \times ] 0,\bar{\mu }_{a}-b^{2}[ \cup [0,\tfrac{N-2}{2} [ \times ] a(a-N+2) , \bar{\mu}_{a}-b^{2}[, \\ v_{\epsilon } &\text{if }(a,\mu )\in [ 0,\tfrac{N-2}{2} [ \times [ 0,\bar{\mu }_{a}[ , \end{cases} \label{e2.1} %u \end{equation} and \begin{equation} \begin{aligned} &S_{a,b,\mu }:=\\ &\begin{cases} A_{a,b,\mu }&\text{if }(a,\mu )\in ] -1,0[ \times ] 0,\bar{\mu }_{a}-b^{2}[ \cup [0,\tfrac{N-2}{2}[ \times ] a(a-N+2) , \bar{\mu}_{a}-b^{2}[, \\ B_{a,b,\mu }&\text{if }(a,\mu )\in [ 0,\tfrac{N-2}{2}[ \times [ 0,\bar{\mu }_{a}[ ,. \end{cases} \label{s} \end{aligned} \end{equation} Since our approach is variational, we define the functional $I_{\lambda ,\mu }$ as \[ I_{\lambda ,\mu }(u)=\frac{1}{2}\| u\|_{\mu ,a}^{2}-\frac{\lambda }{q}\int_{\Omega }h(x)| x| ^{-c}|u|^{q}dx-\frac{1}{2_{\ast }} \int_{\Omega }k(x)|x| ^{-2_{\ast }b}|u|^{2_{\ast }}dx, \] for $u\in H_{\mu }$. By \eqref{ee} and \eqref{e1.3} we can guarantee that $I_{\lambda ,\mu }$ is well defined in $H_{\mu }$ and $I_{\lambda ,\mu }\in C^{1}(H_{\mu }, \mathbb{R})$. $u\in H_{\mu }$ is said to be a weak solution of \eqref{p-lambda-mu} if it satisfies \[ \int_{\Omega }(|x|^{-2a}\nabla u\nabla v-\mu | x| ^{-2(a+1)}uv-\lambda h( x) |x|^{-c}|u|^{q-2}uv-k(x) |x| ^{-2_{\ast }b}|u|^{2_{\ast }-2}uv)dx=0 \] for all $v\in H_{\mu }$. By the standard elliptic regularity argument, we have that $u\in C^{2}(\Omega \backslash \{ 0\} )$. In many problems as \eqref{p-lambda-mu}, $I_{\lambda ,\mu }$ is not bounded below on $H_{\mu }$ but is bounded below on an appropriate subset of $H_{\mu }$ and a minimizer in this set (if it exists) may give rise to solutions of the corresponding differential equation. A good candidate for an appropriate subset of $H_{\mu }$ is the so called Nehari manifold \[ \mathcal{N}_{\lambda }=\{u\in H_{\mu }\backslash \{0\}, \langle I_{\lambda ,\mu }'( u),u\rangle =0\}. \] It is useful to understand $\mathcal{N}_{\lambda }$ in terms of the stationary points of mappings of the form \[ \Psi _{u}(t)=I_{\lambda ,\mu }(tu),\text{ \ }t>0, \] and so \[ \Psi _{u}'(t)=\langle I_{\lambda ,\mu }'(tu),u\rangle =\frac{1}{t}\langle I_{\lambda ,\mu }'(tu),tu\rangle . \] An immediate consequence is the following proposition. \begin{proposition} \label{prop1} Let $u\in H_{\mu }\backslash \{0\}$ and $t>0$. Then $tu\in \mathcal{N}_{\lambda }$ if and only if $\Psi _{u}'(t)=0$. \end{proposition} Let $u$ be a local minimizer of $I_{\lambda ,\mu }$, then $\Psi _{u}$ has a local minimum at $t=1$. So it is natural to split $\mathcal{N}_{\lambda }$ into three subsets $\mathcal{N}_{\lambda }^{+}$, $\mathcal{N}_{\lambda }^{-}$ and $\mathcal{N}_{\lambda }^{0}$ corresponding respectively to local minimums, local maximums and points of inflexion. We define \begin{align*} \mathcal{N}_{\lambda }^{+} &=\big\{u\in \mathcal{N}_{\lambda }: (2-q)\| u\|_{\mu ,a}^{2}-(2_{\ast }-q)\int_{\Omega }k(x)\frac{|u| ^{2_{\ast }}}{|x|^{2_{\ast }b}}dx>0\big\}\\ &=\{u\in \mathcal{N}_{\lambda }:(2-2_{\ast })\| u\|_{\mu ,a}^{2}+( 2_{\ast }-q)\lambda \int_{\Omega }h(x)\frac{|u|^{q}}{ |x| ^{c}}dx>0\}. \end{align*} Note that $\mathcal{N}_{\lambda }^{-}$ and $\mathcal{N}_{\lambda }^{0}$ similarly by replacing $>$ by $<$ and $=$ respectively. \begin{equation} c_{\lambda }:=\inf_{u\in \mathcal{N}_{\lambda }}I_{\lambda ,\mu }( u);\text{ }c_{\lambda }^{+}:=\inf_{u\in \mathcal{N}_{\lambda }^{+}}I_{\lambda ,\mu }(u);\quad c_{\lambda }^{-}:=\inf_{u\in \mathcal{N}_{\lambda }^{-}}I_{\lambda ,\mu }(u). \end{equation} The following lemma shows that minimizers on $\mathcal{N}_{\lambda }$ are critical points for $I_{\lambda ,\mu }$. \begin{lemma} \label{lem1} Assume that $u$ is a local minimizer for $I_{\lambda ,\mu }$ on $\mathcal{N} _{\lambda }$ and that $u\notin \mathcal{N}_{\lambda }^{0}$. Then $I_{\lambda ,\mu }'(u)=0$. \end{lemma} The proof of the above lemma is essentially the same as that of \cite[Theorem 2.3]{BZ}. \begin{lemma} \label{lem2} Let \[ \Lambda _1:=\Big(\frac{2-q}{2_{\ast }-q}\Big)^{\frac{2-q}{2_{\ast }-q} }\Big(\frac{2_{\ast }-2}{(2_{\ast }-q)C_1}\Big)| h^{+}| _{\infty }^{-1}|k^{+}|_{\infty }(S_{a,b,\mu })^{\frac{N( 2-q)}{4(a+1-b)}}, \] where $\eta ^{+}(x)=\max (\eta (x),0)$, and $|\eta ^{+}|_{\infty}=\sup_{x\in \Omega }ess|\eta ^{+}(x)|$. Then $\mathcal{N}_{\lambda }^{0}=\emptyset$ for all $\lambda \in( 0,\Lambda _1)$. \end{lemma} \begin{proof} Suppose that $\mathcal{N}_{\lambda }^{0}\neq \emptyset $. Then for $u\in \mathcal{N}_{\lambda }^{0}$, we have \begin{gather*} \| u\|_{\mu ,a}^{2}=\frac{2_{\ast }-q}{2-q}\int_{\Omega }k(x)\frac{|u|^{2_{\ast }}}{|x| ^{2_{\ast }b}}dx, \\ \| u\|_{\mu ,a}^{2}=\lambda \frac{2_{\ast }-q}{2_{\ast }-2} \int_{\Omega }h(x)\frac{|u|^{q}}{ |x| ^{c}}dx. \end{gather*} Moreover by (H), (K), Caffarelli-Kohn-Nirenberg and H\"{o}lder inequalities, we obtain \begin{gather*} \| u\|_{\mu ,a}^{2}\geq \Big(\frac{2-q}{( 2_{\ast }-2)|k^{+}|_{\infty }}( S_{a,b,\mu }) ^{2_{\ast }/2}\Big)^{2/(2_{\ast }-2)}, \\ \| u\|_{\mu ,a}^{2}\leq \Big(\lambda \frac{2_{\ast }-q}{ 2_{\ast }-2}(S_{a,b,\mu })^{-q/2}C_1| h^{+}| _{\infty }\Big)^{2/(2-q)}. \end{gather*} Thus $\lambda \geq \Lambda _1$. From this, we can conclude that $\mathcal{N}_{\lambda }^{0}=\emptyset $ if $\lambda \in (0,\Lambda _1)$. \end{proof} Thus we conclude that $\mathcal{N}_{\lambda }=\mathcal{N}_{\lambda }^{+}\cup \mathcal{N}_{\lambda }^{-}$ for all $\lambda \in (0,\Lambda _1)$. \begin{lemma} \label{lem3} Let $c_{\lambda }^{+}$, $c_{\lambda }^{-}$ defined in \eqref{e2.1}. Then there exists $\delta _{0}>0$ such that \[ c_{\lambda }^{+}<0\; \forall \lambda \in (0,\Lambda _1)\quad \text{and}\quad c_{\lambda }^{-}>\delta _{0}\;\forall \lambda \in (0,\frac{q}{2}\Lambda _1). \] \end{lemma} \begin{proof} Let $u\in \mathcal{N}_{\lambda }^{+}$. Then \[ \int_{\Omega }k(x)\frac{|u|^{2_{\ast }}}{ | x| ^{2_{\ast }b}}dx<\frac{2-q}{2_{\ast }-q}\| u\|_{\mu ,a}^{2}, \] which implies \begin{align*} c_{\lambda }^{+} &\leq I_{\lambda ,\mu }(u)\\ &= \big(\frac{1}{2}-\frac{1}{q}\big)\| u\|_{\mu ,a}^{2}+\big(\frac{1}{q}-\frac{1}{2_{\ast }}\big)\int_{\Omega }k(x) \frac{|u|^{2_{\ast }}}{| x|^{2_{\ast }b}}dx \\ &< -\frac{(2-q)(2_{\ast }-2)}{2.2_{\ast }q} \| u\|_{\mu ,a}^{2} < 0. \end{align*} Let $u\in \mathcal{N}_{\lambda }^{-}$. Then \[ \frac{2-q}{2_{\ast }-q}\| u\|_{\mu ,a}^{2}<\int_{\Omega }k(x)\frac{|u|^{2_{\ast }}}{|x| ^{2_{\ast }b}}dx. \] Moreover by (H), (K) and Caffarelli-Kohn-Nirenberg inequality, we have \[ \int_{\Omega }k(x)\frac{|u|^{2_{\ast }}}{ | x| ^{2_{\ast }b}}dx\leq ( S_{a,b,\mu }) ^{-2_{\ast }/2}\| u\|_{\mu ,a}^{2_{\ast }}| k^{+}|_{\infty }. \] This implies \[ \| u\|_{\mu ,a}>\big(\frac{2-q}{(2_{\ast }-2) |k^{+}|_{\infty }}\big)^{1/(2_{\ast }-2) }(S_{a,b,\mu })^{2_{\ast }/(2(2_{\ast }-2))}. \] On the other hand, \[ I_{\lambda ,\mu }(u)\geq \| u\|_{\mu ,a}^{q}\Big(\big(\frac{1}{2}-\frac{1}{2_{\ast }}\big)\| u\|_{\mu ,a}^{2-q}-\lambda \frac{2_{\ast }-q}{2_{\ast }q}(S_{a,b,\mu })^{-q/2}C_1|h^{+}|_{\infty }\Big) \] Thus, if $\lambda \in (0,\frac{q}{2}\Lambda _1)$ we get $I_{\lambda ,\mu }(u)\geq \delta _{0}$, where \begin{align*} \delta _{0} &:= \Big(\tfrac{2-q}{(2_{\ast }-2)| k^{+}| _{\infty }}\Big)^{\frac{q}{2_{\ast }-2}}( S_{a,b,\mu })^{\frac{2_{\ast }q}{2(2_{\ast }-2) }} \Big(\big(\frac{1}{2}-\frac{1}{2_{\ast }}\big)(S_{a,b,\mu })^{ \frac{2_{\ast }(2-q)}{2(2_{\ast }-2)}}\big( \tfrac{2-q}{(2_{\ast }-q) |k^{+}|_{\infty }} \big)^{\frac{2-q}{2_{\ast }-2}}\\ &\quad -\lambda \tfrac{2_{\ast }-q}{2_{\ast }-2}(S_{a,b,\mu })^{-q/2}C_1|h^{+}|_{\infty }\Big). \end{align*} \end{proof} As in \cite[Proposition 9]{W}, we have the following result. \begin{lemma} \label{lem4} \begin{itemize} \item[(i)] If $\lambda \in (0,\Lambda _1)$, then there exists a $(PS)_{c_{\lambda }}$ sequence $( u_{n})\subset \mathcal{N}_{\lambda }$ for $I_{\lambda ,\mu }$. \item[(ii)] If $\lambda \in (0,\frac{q}{2}\Lambda _1)$, then there exists a $(PS)_{c_{\lambda }^{-}}$ sequence $(u_{n})\subset \mathcal{N}_{\lambda }^{-}$ for $I_{\lambda ,\mu }$. \end{itemize} \end{lemma} We define \begin{gather*} K^{+}:=\big\{u\in \mathcal{N}_{\lambda }:\int_{\Omega }k( x)\frac{|u|^{2_{\ast }}}{|x|^{2_{\ast }b}}dx>0\big\}, \quad K_{0}^{-}:=\big\{u\in \mathcal{N} _{\lambda }:\int_{\Omega }k(x)\frac{|u|^{2_{\ast }}}{|x|^{2_{\ast }b}}dx\leq 0\big\}, \\ H^{+}:=\{u\in \mathcal{N}_{\lambda }:\int_{\Omega }h( x)\frac{|u|^{q}}{|x|^{c}} dx>0\}, \quad H_{0}^{-}:=\{u\in \mathcal{N}_{\lambda }: \int_{\Omega }h(x)\frac{|u|^{q}}{ |x|^{c}}dx\leq 0\}, \end{gather*} and \[ t_{\rm max}=t_{\rm max}(u):=\big(\frac{2-q}{2_{\ast }-2}\big)^{1/( 2_{\ast }-2)}\| u\|_{\mu ,a}^{2/( 2_{\ast }-2) } \Big(\int_{\Omega }k(x)\frac{|u|^{2_{\ast }}}{| x| ^{2_{\ast }b}}dx \Big)^{-1/(2_{\ast}-2)}, \] for $u\in K^{+}$. Then we have the following result. \begin{proposition} \label{prop2} For $\lambda \in (0,\Lambda _1)$ we have \begin{itemize} \item[(1)] If $u\in K^{+}\cap H_{0}^{-}$ then there exists unique $t^{+}>t_{\rm max}$ such that $t^{+}u\in \mathcal{N}_{\lambda }^{-}$and \[ I_{\lambda ,\mu }(t^{+}u)\geq I_{\lambda ,\mu }( tu) \quad \text{for } t\geq t_{\rm max}; \] \item[(2)] If $u\in K^{+}\cap H^{+}$, then there exist unique $t^{-}$, $t^{+}$ such that $00$ such that $tu\in \mathcal{N}_{\lambda }$. \item[(4)] If $u\in K_{0}^{-}\cap H^{+}$, then there exists unique $00$, contradiction. \end{proof} \subsection*{Existence of a local minimum for $I_{\lambda , \mu }$ on $\mathcal{N}_{\lambda }^{-}$} To prove the existence of a second nonnegative solution we need the following results. \begin{lemma} \label{lem5} Let $(u_{n})$ is a $(PS)_l$ sequence with $u_{n}\rightharpoonup u$ in $H_{\mu }$. Then there exists positive constant $\tilde{C}:=C(a,b,N,q,|h^{+}|_{\infty },S_{a,b,\mu })$ such that \[ I_{\lambda ,\mu }'(u)=0\quad \text{and}\quad I_{\lambda ,\mu }(u)\geq -\tilde{C}\lambda ^{2/(2-q)}. \] \end{lemma} \begin{proof} It is easy to prove that $I_{\lambda ,\mu }'(u) =0$, which implies that $\langle I_{\lambda ,\mu }^{'}(u),u\rangle =0$, and \[ I_{\lambda ,\mu }(u)-\frac{1}{2_{\ast }}\langle I_{\lambda ,\mu }^{'}(u),u\rangle =( \frac{1}{2}-\frac{1}{2_{\ast }})\| u\|_{\mu ,a}^{2} -\lambda (\frac{1}{q}-\frac{1}{2_{\ast }})\int_{\Omega }h(x) \frac{|u|^{q}}{|x|^{c}}dx. \] By Caffarelli-Kohn-Nirenberg, H\"{o}lder and Young inequalities we find that \[ I_{\lambda ,\mu }(u)\geq ( \frac{1}{2}-\frac{1}{2_{\ast }} ) \| u\|_{\mu ,a}^{2}-\lambda \frac{2_{\ast }-q}{ 2_{\ast }q}(S_{a,b,\mu })^{-q/2}C_1|h^{+}|_{\infty }\| u\| _{\mu ,a}^{q}. \] There exists $\tilde{C}$ such that \[ (\frac{1}{2}-\frac{1}{2_{\ast }})t^{2}-\lambda \frac{2_{\ast }-q }{2_{\ast }q}(S_{a,b,\mu })^{-q/2}C_1|h^{+}|_{\infty }t^{q}\geq -\tilde{C}\text{ }\lambda ^{2/(2-q)} \quad \text{for all }t\geq 0. \] Then we conclude that $I_{\lambda ,\mu }(u)\geq -\tilde{C}\text{ }\lambda ^{2/(2-q)}$. \end{proof} \begin{lemma} \label{lem6} Let $(u_{n})$ in $H_{\mu }$ be such that \begin{gather} I_{\lambda ,\mu }(u_{n})\to l0$ such that for all $\lambda \in (0,\Lambda _{4})$ we have $l^{\ast }>0$ and $\underset{t\geq 0}{\text{ }\sup }I_{\lambda ,\mu }(t\tilde{v}_{\varepsilon })0$ be such that \[ (\frac{1}{2}-\frac{1}{2_{\ast }})|k^{+}|_{\infty }(S_{a,b,\mu })^{2_{\ast }/( 2_{\ast }-2)}- \tilde{C}\lambda ^{2/(2-q)}>0\quad \text{for all }\lambda \in (0,\Lambda _{2}). \] Then \[ f(0)=0<(\frac{1}{2}-\frac{1}{2_{\ast }})| k^{+}| _{\infty }(S_{a,b,\mu })^{2_{\ast }/( 2_{\ast }-2)}-\tilde{C}\lambda ^{2/(2-q)}\quad \text{for all } \lambda \in (0,\Lambda _{2}). \] By the continuity of $f(t)$, there exists $t_1>0$ small enough such that \[ f(t)<(\frac{1}{2}-\frac{1}{2_{\ast }})|k^{+}|_{\infty }(S_{a,b,\mu })^{2_{\ast }/( 2_{\ast }-2) }-\tilde{C}\lambda ^{2/(2-q)}\quad \text{for all }t\in (0,t_1). \] On the other hand, \[ \max_{t\geq 0}\tilde{f}(t)=(\frac{1}{2}-\frac{1}{2_{\ast }}) |k^{+}|_{\infty }(S_{a,b,\mu }) ^{2_{\ast }/(2_{\ast }-2)}+O(\varepsilon ^{\frac{N-2( a+1-b)}{ 2(a+1-b)}}). \] Then \begin{align*} \sup_{t\geq 0} I_{\lambda ,\mu }(t\tilde{v}_{\varepsilon }) &< (\frac{1}{2}-\frac{1}{2_{\ast }})|k^{+}|_{\infty }(S_{a,b,\mu }) ^{2_{\ast }/(2_{\ast }-2)}+O(\varepsilon ^{\frac{N-2(a+1-b)}{2(a+1-b)}})\\ &\quad -\lambda \frac{t_1^{q}}{q}h_{0}\int_{B(0,\rho _{0}) }\frac{ |\tilde{v}_{\varepsilon }|^{q}}{|x|^{c}}dx. \end{align*} Let $0<\varepsilon <\rho _{0}^{(2_{\ast }-2) \sqrt{\bar{\mu }_{a}-\mu }}$ then \begin{align*} &\int_{B(0,\rho _{0})}\frac{|\tilde{v}_{\varepsilon }| ^{q}}{|x|^{c}}dx \\ &= \int_{B(0,\rho _{0})}| x| ^{-c}(\varepsilon ^{\frac{2\sqrt{ \bar{\mu }_{a}-\mu }}{\sqrt{\bar{\mu }_{a}-\mu }-b}}|x|^{\frac{2_{\ast }-2}{2}(\sqrt{\bar{\mu }_{a}}-\sqrt{ \bar{\mu }_{a}-\mu })}+|x| ^{\frac{2_{\ast }-2}{2}(\sqrt{\bar{\mu }_{a}}+\sqrt{\bar{\mu }_{a}-\mu } )})^{-\frac{2q}{2_{\ast }-2}}dx \\ &\geq C_{2}. \end{align*} Now, taking $\varepsilon =\lambda ^{\frac{2(2_{\ast }-2)}{ 2_{\ast }-q}}$ we get $\lambda <\rho _{0}^{(2-q)\sqrt{\bar{\mu}_{a}-\mu }}$ and \[ \sup_{t\geq 0} I_{\lambda ,\mu }(t\tilde{v}_{\varepsilon })<(\frac{1}{2}-\frac{1}{2_{\ast }})|k^{+}|_{\infty }(S_{a,b,\mu }) ^{2_{\ast }/(2_{\ast }-2)}+O(\lambda ^{2/( 2-q)})-\lambda \frac{t_1^{q}}{q}h_{0}C_{2}. \] Choosing $\Lambda _{3}>0$ such that \[ O(\lambda ^{2/(2-q)})-\lambda \frac{t_1^{q}}{q}h_{0}C_{2}<- \tilde{C}\lambda ^{2/( 2-q)}\quad \text{for all }\lambda \in (0,\Lambda _{3}). \] Then if we take $\Lambda _{4}=\min \{\Lambda _{2},\Lambda _{3},\rho _{0}^{(2-q)\sqrt{\bar{\mu }_{a}-\mu }}\}$ we deduce that \[ \sup_{t\geq 0} J_{\lambda }(t\tilde{v}_{\varepsilon })0$. Similarly as the proof of Proposition \ref{prop3}, we conclude that $I_{\lambda ,\mu }$ has a minimizer $v_{\lambda }$ in $\mathcal{N}_{\lambda }^{-}$ for all $\lambda \in ( 0,\Lambda ^{\ast })$ such that $I_{\lambda ,\mu }(v_{\lambda }) =c_{\lambda }^{-}>0$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1}] By Propositions \ref{prop2} and \ref{prop4}, there exists $\Lambda ^{\ast }>0$ such that \eqref{p-lambda-mu} has two nonnegative solutions $u_{\lambda }\in \mathcal{N}_{\lambda }^{+}$ and $v_{\lambda }\in \mathcal{ N}_{\lambda }^{-}$ since $\mathcal{N}_{\lambda }^{+}\cap \mathcal{N} _{\lambda }^{-}=\emptyset$. \end{proof} \begin{thebibliography}{00} \bibitem{AB} A. Ambrosetti, H. Br\'{e}zis, G. Cerami: Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519--543. \bibitem{BA} M. Bouchekif, A. Matallah: Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent, Appl. Math. Lett. 22 (2009), 268-275. \bibitem{BA2} M. Bouchekif, A. Matallah: On singular nonhomogeneous elliptic equations involving critical Caffarelli-Kohn-Nirenberg exponent, Ricerche math. doi 10. 1007/s 11587-009-0056-y. \bibitem{BL} H. Br\'{e}zis, E. Lieb: A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490. \bibitem{BZ} K.J. Brown, Y. Zhang: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations 193 (2003), 481-499. \bibitem{CK} L. Caffarelli, R. Kohn, L. Nirenberg: First order interpolation inequality with weights, Compos. Math. 53 (1984), 259--275. \bibitem{CW} F. Catrina, Z. Wang: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), 229-257. \bibitem{C} J. Chen: Multiple positive solutions for a class of nonlinear elliptic equations, J. Math. Anal. Appl. 295 (2004), 341-354. \bibitem{CC} K.S. Chou, C.W. Chu: On the best constant for a weighted Sobolev-Hardy Inequality, J. London Math. Soc. 2 (1993), 137-151. \bibitem{E} L.C. Evans: Partial differential equations, in: graduate studies in mathematics 19, Amer. Math. Soc. Providence, Rhode Island, (1998). \bibitem{FG} A. Ferrero, F. Gazzola: Existence of solutions for singular critical growth semilinear elliptic equations. J. Differential Equations 177 (2001), 494-522. \bibitem{HH} T.S. Hsu, H.L. Lin: Multiple positive solutions for singular elliptic equations with concave-convex nonlinearities and sign-changing weights. Boundary Value Problems, doi: 10 1155/2009/584203. \bibitem{K} D. Kang, G. Li, S. Peng: Positive solutions and critical dimensions for the elliptic problem involving the Caffarelli-Kohn-Nirenberg inequalities, Preprint. \bibitem{Lin} M. Lin: Some further results for a class of weighted nonlinear elliptic equations, J. Math. Anal. Appl. 337(2008), 537-546. \bibitem{X.} B. J. Xuan: The solvability of quasilinear Br\'{e}zis-Nirenberg-type problems with singular weights, Nonlinear Anal. 62 (4) (2005), 703-725. \bibitem{X} B. J. Xuan, S. Su, Y. Yan: Existence results for Br\'{e}zis-Nirenberg problems with Hardy potential and singular coefficients, Nonlinear Anal. 67 (2007), 2091-2106. \bibitem{T} G. Tarantello: On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincar\'{e} Anal. Non. Lin\'{e}aire 9 (1992), 281-304. \bibitem{W} T. F. Wu: On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function, J. Math. Anal. Appl. 318 (2006), 253-270. \end{thebibliography} \end{document}