\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 36, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/36\hfil Neutral functional differential equation] {Neutral functional differential equations of second-order with infinite delays} \author[R. Ye, G. Zhang\hfil EJDE-2010/36\hfilneg] {Runping Ye, Guowei Zhang} % in alphabetical order \address{Runping Ye \newline Education Department of Suqian College, Jiangsu, 223800, China} \email{yeziping168@sina.com} \address{Guowei Zhang \newline Department of Mathematics, Northeastern University, Shenyang, 110004, China} \email{gwzhangneum@sina.com} \thanks{Submitted November 24, 2009. Published March 9, 2010.} \thanks{Supported by grant Z2009004 from the Science and Technology Foundation of Suqian, China.} \subjclass[2000]{34K30, 34K40, 47D09} \keywords{Neutral functional differential equations; mild solution; \hfill\break\indent Hausdorff measure of noncompactness; phase space} \begin{abstract} This work shows the existence of mild solutions to neutral functional differential equations of second-order with infinite delay. The Hausdorff measure of noncompactness and fixed point theorem are used, without assuming compactness on the associated family of operators. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} Differential equations with delays are often more realistic to describe natural phenomena than those without delays, and neutral differential equations arise in many areas of applied mathematics. These two reasons may explain, why they have received much attention in the previous decades. Among the published works, we have \cite{SB,BDM, DFL,Her2,HH1,HH2,EHM,Y} and references therein. Existence and stability have been studied by Hale \cite{HJK',HJK}, Travis and Webb \cite{TW1}, and Webb \cite{WE1}. second-order differential equations and integrodifferential equations in Banach spaces have been studied in \cite{KDS,HC} and \cite{EM}, respectively. In this article, we investigate the existence of mild solutions for the neutral functional differential equation \begin{gather} \frac{d}{dt}(x'(t)+g(t,x_t))=Ax(t)+f(t,x_t), \quad t\in J=[0,b], \label{e1.1} \\ x_0=\varphi\in{\mathcal{B}},\quad x'(0)=z\in X\,.\label{e1.2} \end{gather} We also consider the second order problem \begin{gather} \frac{d}{dt}(x'(t)+g(t,x_t,x'(t)))=Ax(t)+f(t,x_t,x'(t)), \quad t\in J=[0,b], \label{e1.3} \\ x_0=\varphi\in\mathcal{B},\quad x'(0)=z\in X,\label{e1.4} \end{gather} where $A$ is the infinitesimal generator of a strongly continuous cosine family $\{C(t):t\in \mathbb{R}\}$ of bounded linear operators on a Banach space X. In both cases, the history $x_t : (-\infty, 0] \to X, x_t (\theta)= x(t+\theta)$, belongs to some abstract phase space $\mathcal{B}$ defined axiomatically; $g,f$ are appropriate functions. In this paper, we prove the existence of mild solution of the initial value problems \eqref{e1.1}-\eqref{e1.2} and \eqref{e1.3}-\eqref{e1.4} under the conditions under assumptions on Hausdorff's measure of noncompactness. \section{Preliminaries} Now we introduce some definitions, notation and preliminary facts which are used throughout this paper. We say that a family $\{C(t):t\in \mathbb{R}\}$ of operators in $B(X)$ is a strongly continuous cosine family if \begin{itemize} \item[(i)] $C(0)=I$ (I is the identity operator in $X$); \item[(ii)] $C(t+s)+C(t-s)=2C(t)C(s)$ for all $s,t\in \mathbb{R}$; \item[(iii)] The map $t\to C(t)x$ is strongly continuous for each $x\in X$. \end{itemize} The strongly continuous sine family $\{S(t):t\in \mathbb{R}\}$, associated to the given strongly continuous cosine family $\{C(t):t\in \mathbb{R}\}$, is defined by \[ S(t)x = \int_0^t C(s)x ds, x \in X, t \in \mathbb{R}. \] For more details on strongly continuous cosine and sine families, we refer the reader to the books by Goldstein \cite{JAG} and Fattorini \cite{HOF}. The operator $A$ is the infinitesimal generator of a strongly continuous cosine function of bounded linear operators, $(C(t))_{t\in R}$, on $X$ and $S(t)$ is the sine function associated with $(C(t))_{t\in R}$. We designate by $ N$, $ \widetilde{N}$ certain constants such that $\|C(t)\| \leq N$ and $\|S(t)\| \leq \widetilde{N} $ for every $t \in J$. We refer the reader to \cite{HOF} for the necessary concepts about cosine functions. Next we only mention a few results and notations needed to establish our results. As usual we denote by $D(A)$ the domain of $ A$ endowed with the graph norm $\|x\|_A = \|x\| + \|Ax\|$, $x \in D(A)$. In this work we employ an axiomatic definition of the phase space $\mathcal{B}$ which is similar to that introduced by Hale and Kato \cite{HJK} and it is appropriate to treat retarded differential equations with infinite delay. \begin{definition}[\cite{HJK}]\label{dn1} \rm Let $\mathcal{B}$ be a linear space of functions mapping $(-\infty, 0]$ into $X $ endowed with a seminorm $\|\cdot\|_{\mathcal{B}}$ and that satisfies the following cinditions: \begin{itemize} \item[(A)] If $x :(-\infty,\sigma +b]\to X, b>0$, such that $x_\sigma \in \mathcal{B}$ and $x|_{[\sigma,\sigma+b] }\in C([\sigma, \sigma +b] : X)$, then for every $t \in [\sigma, \sigma +b)$ the following conditions hold: \begin{itemize} \item[(i)] $x_t $ is in $\mathcal{B}$, \item[(ii)] $\|x(t)\|\le H\|x_t\|_{\mathcal{B}}$, \item[(iii)] $\|x_t\|_{\mathcal{B}}\leq K(t - \sigma)\sup\{\|x(s)\|: \sigma \leq s\leq t\} + M(t+\sigma)\|x_{\sigma} \|_{\mathcal{B}}$, \end{itemize} where $H>0$ is a constant; $K,M:[0,\infty)\to[1,\infty)$, $K$ is continuous, $M$ is locally bounded and $H,K,M $ are independent of $x(\cdot)$. \item[(A1)] For the function $x(\cdot)$ in (A), $x_t$ is a $\mathcal{B}$-valued continuous function on $[\sigma,\sigma+b)$. \item[(B)] The space $\mathcal{B}$ is complete. \end{itemize} \end{definition} \begin{definition}[\cite{BJ}] \label{dn2} \rm The Hausdorff's measure of noncompactness is defined as $\chi_{Y} (B)=\inf \{r>0,B$ can be covered by finite number of balls with radius $r\}$. for bounded set $B$ in any Banach space $Y$. \end{definition} \begin{lemma}[\cite{BJ}]\label{lm1} Let $Y$ be a real Banach space and $B,C\subseteq Y$ be bounded, the following properties are satisfied: \begin{itemize} \item[(1)] {B} is pre-compact if and only if $\chi_{Y}(B)=0$; \item[(2)] $\chi_{Y}(B)=\chi_{Y}(\overline{B})=\chi_{Y}(conv B)$, where $\overline{B}$ and $conv B$ are the closure and the convex hull of $B$ respectively; \item[(3)] $\chi_{Y}(B)\leq \chi_{Y}(C)$ when $B\subseteq C$; \item[(4)] $\chi_{Y}(B+C)\leq \chi_{Y}(B)+\chi_{Y}(C)$ where $B+C={\{x+y: x\in B,y\in C}\}$; \item[(5)] $\chi_{Y}(B\cup C)\leq \max{\{\chi_{Y}(B),\chi_{Y}(C)}\}$; \item[(6)] $\chi_{Y}(\lambda B)=|\lambda|\chi_{Y}(B)$ for any $\lambda\in R$; \item[(7)] If the map $Q:D(Q)\subseteq Y\to Z$ is Lipschitz continuous with constant $k$, then $\chi_{Z}(QB)\leq k\chi_{Y}(B)$ for any bounded subset $B\subseteq D(Q)$, where $Z$ is a Banach space; \item[(8)] If ${\{W_n}\}_{n=1}^{+\infty}$ is a decreasing sequence of bounded closed nonempty subsets of $Y$ and $\lim_{n\to \infty}\chi_{Y}(W_n)=0$, then $\cap_{n=1}^{+\infty}W_n$ is nonempty and compact in $Y$. \end{itemize} \end{lemma} \begin{definition}[\cite{BJ}]\label{dn3} \rm The map $Q:W\subseteq Y\to Y$ is said to be a $\chi_{Y}-contraction$ if $Q$ is bounded continuous and there exists a positive constant $k<1$ such that $\chi_{Y}(Q(C))\leq k\chi_{Y}(C))$ for any bounded closed subset $C\subseteq W$, where $Y$ is a Banach space. \end{definition} \begin{lemma}[Darbo-Sadovskii \cite{BJ}]\label{lm3} If $W\subseteq Y$ is bounded closed and convex, the map $Q:W\to W$ is a $\chi_{Y}-contraction$, then the map $Q$ has at least one fixed point in $W$. \end{lemma} In this paper we denote $\chi$ the Hausdorff's measure of noncompactness of $X$, $\chi_{C}$ the Hausdorff's measure of noncompactness of $C([0,b];X)$ and $\chi_{{C^{1}}}$ the Hausdorff's measure of noncompactness of $C^{1}([0,b];X)$. To discuss the existence results we need the following auxiliary results. \begin{lemma}[\cite{BJ}]\label{lm4} \quad \begin{itemize} \item[(1)] If $W\subset C([a,b];X)$ is bounded, then $\chi(W(t))\leq\chi_C(W)$, for $t\in[a,b]$, where $W(t)={\{u(t):u\in W}\}\subseteq X$; \item[(2)] If $W$ is equicontinuous on $[a,b]$, then $\chi(W(t))$ is continuous for $t\in[a,b]$, and \[ \chi_{C}(W)=\sup{\{\chi(W(t)),t\in[a,b]}\}; \] \item[(3)] If $W\subset C([a,b];X)$ is bounded and equicontinuous, then $\chi(W(t))$ is continuous for $t\in[a,b]$, and \[ \chi(\int_a^t W(s)ds )\leq \int_a^t\chi W(s)ds \] for all $t\in [a,b]$, where $ \int_a^t W(s)ds={\{\int_a^t x(s)ds:x\in W}\}$. \end{itemize} \end{lemma} The following lemmas are easy to prove. \begin{lemma}\label{lm5} If the semigroup $S(t)$ is equicontinuous and $\eta\in L([0,b];\mathbb{R}^+)$, then the set ${\{\int_0^t S(t-s)u(s)ds, \|u(s)\|\leq \eta(s) \text{ for a.e. } s\in[0,b]}\}$ is equicontinuous for $t\in[0,b]$. \end{lemma} \begin{lemma}[\cite{GD}]\label{lm6} Let $W\subset C^{1}(J;X)$ be bounded and $W'$ be equicontinuous, then \[ \chi_{{C^{1}}}(W)=\max{\{\chi_{{C}}(W),\chi_{{C}}(W')}\} =\max{\{\max_{t\in J}\chi_{{C}}(W(t)),\max_{t\in J}\chi_{{C}}(W'(t))}\}, \] where $W'={\{u':u\in W}\}$, $J=[a,b]$. \end{lemma} \section{Main results} Now we define the mild solution for the initial value problem\eqref{e1.1}-\eqref{e1.2}. \begin{definition}\label{dn3.1} \rm A function $x:(-\infty ,b]\to X$ is a mild solution of the initial value problem \eqref{e1.1}-\eqref{e1.2}, if $x_0=\varphi$, $x(\cdot)|_J \in C(J;X)$ and for $t\in J$, \[ x(t)=C(t)\varphi(0)+S(t)(z+g(0,\varphi))-\int_0^t C(t-s)g(s,x_s)ds+\int_0^tS(t-s)f(s,x_s)ds. \] \end{definition} For \eqref{e1.1}-\eqref{e1.2}, we assume the following hypotheses: \begin{itemize} \item[(H1f)] $f:J\times{\mathcal{B}}\to X$ satisfies the following two conditions: \begin{itemize} \item[(1)] For each $x:(-\infty,b]\to X$, $x_0\in{\mathcal{B}}$ and $x|_J \in C(J;X)$, the function $t\to {f(t,x_t)}$ is strongly measurable and $f(t,\cdot)$ is continuous for a.e. $t\in J$; \item[(2)] There exist an integrable function $\alpha:J\to [0,+\infty)$ and a monotone continuous nondecreasing function $\Omega:[0,+\infty)\to(0,+\infty)$, such that $\|f(t,v)\|\leq\alpha(t)\Omega(\|v\|_{\mathcal{B}})$, for all $t\in J, v\in \mathcal{B}$; \item[(3)] There exists an integrable function $\eta:J\to [0,+\infty)$, such that \[ \chi(S(s)f(t,D))\leq \eta(t)\sup_{-\infty \leq \theta \leq 0}\chi(D(\theta))\quad\text{for a.e. }s,t\in J, \] where $D(\theta)={\{v(\theta):v\in D}\}$. \end{itemize} \item[(H1g)] The function $g(\cdot)$ is continuous and $g(t,\cdot)$ satisfies a Lipschitz condition; that is, there exists a positive constant $L_g$, such that \[ \|g(t,v_1)-g(t,v_2)\|\leq L_g\|v_1 - v_2\|_{\mathcal{B}}, \quad (t,v_i)\in J \times {\mathcal{B}}, \; i=1,2. \] \item[(H1)] \begin{itemize} \item[(1)] $K_b(NbL_g+\widetilde{N}\int_0^b\alpha(s)ds\limsup _{\tau\to\infty}\frac{\Omega(\tau)}{\tau})<1$ \item[(2)] $ K_bNL_gb +\int_{0}^{b}\eta(s)ds<1$. \end{itemize} \end{itemize} In this section, $y : (-\infty, b]\to X $ is the function defined by $y_0 =\varphi$ and $y(t) = C(t)\varphi(0)+S(t)(z+g(0,\varphi))$ on $J$. Clearly, $\|y_t\|_{\mathcal{B}}\leq K_b\|y\|_b +M_b\|\varphi\|_{\mathcal{B}}$, where \[ K_b=\sup_{0\leq t\leq b}K(t),\quad M_b=\sup_{0\leq t\leq b}M(t),\|y\|_b=\sup_{0\leq t\leq b}\|y(t)\|. \] Now we are in position to estate our main results. \begin{theorem}\label{tm1} If the hypotheses {\rm (H1f), (H1g), (H1)} are satisfied, then the initial value problem \eqref{e1.1}-\eqref{e1.2} has at least one mild solution. \end{theorem} \begin{proof} Let $S(b)$ be the space $S(b)={\{x:(-\infty,b]}\to X \mid x_0=0,\;x|_J\in C(J;X)\}$ endowed with supremum norm $\|\cdot\|_b$ . Let $\Gamma : S(b)\to S(b)$ be the map defined by \begin{equation} (\Gamma x)(t)= \begin{cases} 0, & t\in (-\infty,0],\\ -\int_0^t C(t-s)g(s,x_s+y_s)ds\\ +\int_0^tS(t-s)f(s,x_s+y_s)ds, & t\in J. \end{cases} \label{e3.1} \end{equation} It is easy to see that $\|x_t+y_t\|_{\mathcal{B}}\leq K_b\|y\|_b+M_b\|\varphi\|_{\mathcal{B}}+K_b\|x\|_t$, where $\|x\|_t=\sup_{0\leq s\leq t}\|x(s)\|$. Thus, $\Gamma$ is well defined and with values in $S(b)$. In addition, from the axioms of phase space, the Lebesgue dominated convergence theorem and the conditions (H1f) (H1g), we can show that $\Gamma$ is continuous. \noindent {\em Step 1.} There exists $k> 0$ such that $\Gamma(B_k)\subset B_k$, where $B_k={\{x\in S(b):\|x\|_b\leq k}\}$. In fact, if we assume that the assertion is false, then for $k > 0$ there exist $x_k\in B_k$ and $t_k\in I$ such that $k <\|\Gamma x_k(t_k)\|$. This yields \begin{align*} k &<\|\Gamma x_k(t_k)\|\\ &\leq N\int_0^{t_k}(L_g\|x_{ks}+y_s\|_{\mathcal{B}}+\|g(s,0)\|)ds +\widetilde{N} \int_0^{t_k}\alpha(s)\Omega(\|x_{ks}+y_s\|_{\mathcal{B}})ds \\ &\leq N\int_0^bL_g(K_b\|y\|_b+M_b\|\varphi\|_{\mathcal{B}} +K_bk+\|g(s,0)\|)ds\\ &\quad +\widetilde{N}\int_0^b\alpha(s)ds\Omega(K_b\|y\|_b +M_b\|\varphi\|_{\mathcal{B}}+K_bk) \end{align*} which implies \begin{align*} 1& 0$ such that $\Gamma(B_k)\subset B_k:={\{x\in S^{1}(b):\|x\|_{1b}\leq k}\}$. In fact, if we assume that the assertion are false, then for $k> 0$ there exist $x_k\in B_k$ and $t_k\in J$ such that $k <\|\Gamma x_k(t_k)\|_1$. This yields \begin{align*} k &<\|\Gamma x_k(t_k)\|_1\\ &=\|\Gamma x_k(t_k)\|+\|(\Gamma x_k)'(t_k)\| \\ &\leq N\int_0^{t_k}(L_g(\|x_{ks}+y_s\|_{\mathcal{B}} +\|x_k'(s)+y'(t)\|)+\|g(s,0,0)\|)ds\\ &\quad+\int_0^{t_k}\widetilde{N}\alpha(s)\Omega(\|x_{ks} +y_s\|_{\mathcal{B}}+\|x_k'(s)+y'(t)\|)ds\\ &\quad +L_g(\|x_{kt_k}+y_{t_k}\|_{\mathcal{B}}+\|x_k'(t_k)+y'(t_k)\|) +\|g(t_k,0,0)\|\\ &\quad +\int_0^{t_k}\|A\|\widetilde{N}(L_g(\|x_{ks} +y_s\|_{\mathcal{B}}+\|x_k'(s)+y'(s)\|)+\|g(s,0,0)\|)ds\\ &\quad +\int_0^{t_k}N\alpha(s)\Omega(\|x_{ks}+y_s\|_{\mathcal{B}} +\|x_k'(s)+y'(s)\|)ds \\ &\leq bNL_g(K_bk+K_b\|y\|_b+M_b\|\varphi\|_{\mathcal{B}}+k +\|y'\|_b)+N\int_0^b\|g(s,0,0)\|ds\\ &\quad +\widetilde{N}\int_0^b\alpha(s)ds \Omega(K_bk+K_b\|y\|_b+M_b\|\varphi\|_{\mathcal{B}}+k+\|y'\|_b)\\ &\quad +L_g(K_bk+K_b\|y\|_b+M_b\|\varphi\|_{\mathcal{B}} +k+\|y'\|_b)+\|g(t_k,0,0)\|\\ &\quad +b\|A\|\widetilde{N}L_g(K_bk+K_b\|y\|_b +M_b\|\varphi\|_{\mathcal{B}}+k+\|y'\|_b) +\|A\|\widetilde{N}\int_0^b\|g(s,0,0)\|ds\\ &\quad +N\int_0^b\alpha(s)ds\Omega(K_bk+K_b\|y\|_b +M_b\|\varphi\|_{\mathcal{B}}+k+\|y'\|_b), \end{align*} which implies \begin{align*} 1& 0$ and that $\|C(t)\| = 1$ and $\|S(t)\|=1$ for every $t \in R$. \item[(d)] If $\Phi$ denotes the group of translations on $X$ defined by $\Phi(t)x(\xi) = \widetilde{x}(\xi + t)$, where $\widetilde{x}$ is the extension of $x$ with period $2\pi$, then $C(t) =\frac{1}{2} (\Phi(t) + \Phi(-t))$; $A = B^2$ where $B$ is the infinitesimal generator of the group $\Phi$ and $E = {\{x \in H^1(0,\pi): x(0) = x(\pi) = 0}$, see \cite{HOF} for details. \end{itemize} In the next applications, $\mathcal{B}$ will be the phase space $X\times L^2(h,X)$. \subsection{A second order neutral equation} Now we discuss the existence of solutions for the second order neutral differential equation \begin{gather} \begin{aligned} &\frac{\partial}{\partial t}( \frac{\partial u(t, \xi)}{ \partial t} + \int_{-\infty}^t\int_0^{\pi} b(t-s,\eta, \xi)u(s,\eta) d\eta ds )\\ &=\frac{{\partial}^ 2u(t, \xi )}{ \partial {\xi}^2 }+ \int_{-\infty}^{t}F(t, t-s,\xi,u(s, \xi)) ds, \quad t \in [0, a], \xi \in [0,\pi], \end{aligned} \label{e4.1}\\ u(t, 0) = u(t,\pi) = 0, \quad t\in[0, a], \label{e4.2} \\ u(\tau, \xi ) =\varphi(\tau,\xi),\quad \tau \leq 0,\; 0 \leq \xi \leq \pi, \label{e4.3} \end{gather} where $\varphi \in X \times L^2(h;X)$, and \begin{itemize} \item[(a)] The functions $b(s, \eta, \xi)$, $\frac{\partial b(s,\eta,\xi )}{\partial \xi}$ are measurable, $b(s, \eta,\pi) = b(s, \eta, 0) = 0$ and \[ L_g := \max {\{(\int_{0}^{\pi}\int_{-\infty}^{0}\int_{0}^{\pi}\frac {1}{ h(s)}(\frac{{\partial}^i b(s, \eta, \xi)}{\partial \xi^i})^2 d\eta ds d\xi)^{1/2} : i = 0, 1}\} < \infty; \] \item[(b)] The function $F :\mathbb{R}^4 \to \mathbb{R}$ is continuous and there is continuous function $\mu:\mathbb{R}^2\to \mathbb{R}$ such that \[ \int_{-\infty}^0\frac{\mu(t,s)^2}{h(s)}ds<\infty \] and $|F(t, s,\xi,x)|\leq \mu(t, s)|x|$, $(t,s,\xi,x)\in \mathbb{R}^4;$ \end{itemize} Assuming that conditions (a),(b) are satisfied, problem \eqref{e4.1}-\eqref{e4.3} can be modelled as the abstract Cauchy problem \eqref{e1.1}-\eqref{e1.2} by defining \begin{gather} g(t,\psi)(\xi ) := \int_{-\infty}^{0}\int_0^{\pi} b(s, \nu, \xi)\psi(s, \nu) d\nu ds, \label{e4.4} \\ f (t,\psi)(\xi ) := \int_{-\infty}^{0} F ( t, s, \xi,\psi(s, \xi) ) ds. \label{e4.5} \end{gather} Moreover, $\|f (t,\psi)\| \leq d(t)\|\psi\|_{\mathcal{B}}$ for every $t \in[0,a]$, where $ d(t) := (\int_{-\infty}^0\frac{ \mu(t, s)^2}{ h(s)} ds)^{1/2}$ is a Lebesgue integrable function. The next result is a consequence of Theorem \ref{tm1}. \begin{proposition} \label{prop4.1} Let the previous conditions be satisfied. If \[ ( 1+ (\int_{-a}^{0}h(\tau ) d\tau )^{1/2})( aL_g + \int_0^a d(t) dt ) < 1, \] then there exists a mild solution of \eqref{e4.1}-\eqref{e4.3}. \end{proposition} \subsection*{ Acknowledgements} The authors express their gratitude to the anonymous referee for his or her valuable comments and suggestions. \begin{thebibliography}{00} \bibitem{SB} S. Baghlt, M. Benchohra; Perturbed functional and neutral functional evolution equations with infinite delay in Fr\'{e}chet spaces, {\it Electron. J. Differential Equations}, 2008(69) (2008), 1-19. \bibitem{KDS} K. Balachandran, D. G. Park, S. M. Anthoni; Existence of Solutions of Abstract Nonlinear Second-Order Neutral Functional Integrodifferential Equations, {\it Comput. Math. Appl.}, 46 (2003), 1313-1324. \bibitem{BJ} J. Banas, K. Goebel; Measure of noncompactness in Banach space, Lecture Notes in Pure and Applied mathematics 60, New York: M. Dekker, 1980. \bibitem{BDM} M. Benchohra, S. Djebali, T. Moussaoui; Boundary value problems for double perturbed first order ordinary differential systems, {\it Electron. J. Qual. Theory Differ. Equ.}, 2006(11) (2006), 1-10. \bibitem{DFL} Q. Dong, Z. Fan, G. Li; Existence of solutions to nonlocal neutral functional differential and integrodifferential equations, {\it Int. J. Nonlinear Sci.}, 5(2) (2008), 140-151. \bibitem{HOF} H. O. Fattorini; Second Order Linear Differential Equations in Banach Spaces, North-Holland Math. Stud., 108, Amsterdam: North-Holland, 1985. \bibitem{JAG}J. A. Goldstein; Semigroups of Linear Operators and Applications, New York: Oxford Univ. Press, 1985. \bibitem{GD} D. Guo, V. Lakshmikantham, X. Liu; Nonlinear Integral Equations in Abstract Spaces, London: Kluwer Academic Publishers, 1996. \bibitem{HJK'} J. K. Hale; Functional Differential Equations, Applied Mathematical Sciences 3, New York: Springer Verlag, 1971. \bibitem{HJK} J. K. Hale, J. Kato; Phase space for retarded equations with infinite delay, {\it Funkcial Ekvac}, 21 (1978) 11-41. \bibitem{HC} H. R. Henriquez, C. H. Vasquez; Differentiability of solutions of second-order functional differential equations with unbounded delay, {\it J. Math. Anal.Appl.}, 280(2) (2003), 284-312. \bibitem{Her2} E. Hern\'{a}ndez; Existence results for a class of semi-linear evolution equations,{\it Electron. J. Differential Equations}, 2001 (2001) 1-14. \bibitem{HH1} E.Hern\'{a}ndez, H.R. Henr\'{i}quez, Existence results for partial neutral functional differential equations with unbounded delay, {\it J. Math. Anal. Appl.}, 221 (1998) 452-475. \bibitem{HH2} E. Hern\'{a}ndez, H. R. Henr\'{i}quez; Existence of periodic solutions of partial neutral functional differential equations with unbounded delay, {\it J. Math. Anal. Appl.}, 221 (1998) 499-522. \bibitem{EM} E. Hern\'andez, M. A. Mgkibben; Some Comments on: Existence of Solutions of Abstract Nonlinear Second-Order Neutral Functional Integrodifferential Equations, {\it Comput. Math. Appl.}, 50 (2005), 655-669. \bibitem{EHM} E. Hern\'{a}ndez M., M. Rabello, H. R. Henr\'{\i}quez; Existence results of solution for impulsive partial neutral functional Differential equations, {\it J. Math. Anal.Appl.}, 331 (2007) 1135-1158. \bibitem{YH} Y. Hino, S. Murakami, T. Naito; Functional Differential Equations with Infinite Delay, Lecture Notes in Math. 1473, Berlin: Springer-Verlag, 1991. \bibitem{JK} J. Kisynski; On cosine operator functions and one parameter group of operators, {\it Studia Math.}, 49 (1972), 93-105. \bibitem{TW1} C. C. Travis, G. F. Webb; Existence and stability for partial functional differential equations, {\it Trans. Amer. Math. Soc.}, 200 (1974), 395-418. \bibitem{WE1} G. F. Webb; Autonomos nonlinear functional differential equations and nonlinear semi-groups, {\it J. Math. Anal. Appl.}, 46 (1974), 1-12. \bibitem{Y} R. Ye, Q. Dong, G. Li; Existence of solutions for double perturbed neutral functional evolution equation, {\it Int. J. Nonlinear Sci.}, 8(3) (2009), 360-367. \end{thebibliography} \end{document}