\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 41, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/41\hfil Multiplicity results] {Multiplicity results for {\lowercase {\em p}}-sublinear {\lowercase {\em p}}-Laplacian problems involving indefinite eigenvalue problems via Morse theory} \author[K. Perera, R. P. Agarwal, D. O'Regan\hfil EJDE-2010/41\hfilneg] {Kanishka Perera, Ravi P. Agarwal, Donal O'Regan} \address{Kanishka Perera \newline Department of Mathematical Sciences\\ Florida Institute of Technology\\ Melbourne, FL 32901, USA} \email{kperera@fit.edu} \address{Ravi P. Agarwal \newline Department of Mathematical Sciences\\ Florida Institute of Technology\\ Melbourne, FL 32901, USA} \email{agarwal@fit.edu} \address{Donal O'Regan \newline Department of Mathematics\\ National University of Ireland\\ Galway, Ireland} \email{donal.oregan@nuigalway.ie} \thanks{Submitted December 2, 2009. Published March 19, 2010.} \subjclass[2000]{35J20, 47J10, 58E05} \keywords{$p$-Laplacian problems; $p$-sublinear; multiplicity results; \hfill\break\indent indefinite eigenvalue problems; Morse theory} \begin{abstract} We establish some multiplicity results for a class of $p$-sublinear $p$-Laplacian problems involving indefinite eigenvalue problems using Morse theory. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} The purpose of this note is to establish some multiplicity results for a class of $p$-sublinear $p$-Laplacian problems involving indefinite eigenvalue problems using Morse theory. As motivation, we begin by recalling a well-known result for the semilinear elliptic boundary value problem \begin{equation} \label{1.1} \begin{gathered} - \Delta u = f(x,u) \quad \text{in } \Omega\\ u = 0 \quad \text{on } \partial\Omega \end{gathered} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^n$, $n \ge 1$, $f$ is a Carath\'{e}odory function on $\Omega \times \mathbb{R}$ satisfying the sublinear growth condition \begin{equation} \label{1.2} |f(x,t)| \le C\, (|t|^{r-1} + 1) \end{equation} for some $r \in (1,2)$, and $C$ denotes a generic positive constant. Weak solutions of \eqref{1.1} coincide with the critical points of the $C^1$-functional \[ \Phi(u) = \int_\Omega \frac{1}{2}\, |\nabla u|^2 - F(x,u), \quad u \in H^1_0(\Omega) \] where $F(x,t) = \int_0^s f(x,s)\, ds$ is the primitive of $f$. By \eqref{1.2}, $\Phi$ is bounded from below and satisfies the (PS) condition. Assume that \begin{equation} \label{1.3} \lim_{t \to 0}\, \frac{f(x,t)}{t} = \lambda, \quad \text{uniformly a.e.}, \end{equation} which implies $f(x,0) = 0$ a.e.\ and hence \eqref{1.1} has the trivial solution $u(x) \equiv 0$. Let $\lambda_1 < \lambda_2 \le \dots$ denote the Dirichlet eigenvalues of the negative Laplacian on $\Omega$. If $\lambda > \lambda_1$ and is not an eigenvalue, then \eqref{1.1} has at least two nontrivial solutions. Indeed, if $\lambda_k < \lambda < \lambda_{k+1}$, then the (cohomological) critical groups of $\Phi$ at zero are given by \[ C^q(\Phi,0) \approx \delta_{qk}\, \mathcal{G} \] where $\mathcal{G}$ is the coefficient group and $\delta_{\cdot,\cdot}$ denotes the Kronecker delta (see, e.g., Chang \cite{MR94e:58023} or Mawhin and Willem \cite{MR90e:58016}), so $\Phi$ has two nontrivial critical points by the following ``three critical points theorem'' of Chang \cite{MR622618} and Liu and Li \cite{MR802575}. \begin{proposition} \label{prop1.1} Let $\Phi$ be a $C^1$-functional defined on a Banach space. If $\Phi$ is bounded from below, satisfies {\em (PS)}, and $C^k(\Phi,0) \ne 0$ for some $k \ge 1$, then $\Phi$ has two nontrivial critical points. \end{proposition} \begin{remark} \rm Li and Willem \cite{MR96a:58045} used a local linking to obtain a similar result when $\lambda$ is an eigenvalue and $f$ satisfies a suitable sign condition near zero. \end{remark} The above result can be extended to the corresponding $p$-sublinear $p$-Laplacian problem \begin{equation} \label{1.7} \begin{gathered} - \Delta_p\, u = f(x,u) \quad \text{in } \Omega\\ u = 0 \quad \text{on } \partial\Omega \end{gathered} \end{equation} where $\Delta_p\, u = \mathop{\rm div} \big(|\nabla u|^{p-2}\, \nabla u\big)$ is the $p$-Laplacian of $u$, $p \in (1,\infty)$, and $f$ now satisfies \eqref{1.2} with $r \in (1,p)$. Then the associated variational functional \[ \Phi(u) = \int_\Omega \frac{1}{p}\, |\nabla u|^p - F(x,u), \quad u \in W^{1,p}_0(\Omega) \] is bounded from below and satisfies (PS). Assume that \begin{equation} \label{1.8} \lim_{t \to 0}\, \frac{f(x,t)}{|t|^{p-2}\, t} = \lambda, \quad \text{uniformly a.e.} \end{equation} The associated quasilinear eigenvalue problem \begin{gather*} - \Delta_p\, u = \lambda\, |u|^{p-2}\, u \quad \text{in } \Omega\\ u = 0 \quad \text{on } \partial\Omega \end{gather*} is far more complicated. It is known that the first eigenvalue $\lambda_1$ is positive, simple, and has an associated eigenfunction $\varphi_1$ that is positive in $\Omega$ (see Anane \cite{MR89e:35124} and Lindqvist \cite{MR90h:35088, MR1139483}). Moreover, $\lambda_1$ is isolated in the spectrum $\sigma(- \Delta_p)$, so the second eigenvalue $\lambda_2 = \inf\, \sigma(- \Delta_p) \cap (\lambda_1,\infty)$ is well-defined. In the ODE case $n = 1$, where $\Omega$ is an interval, the spectrum consists of a sequence of simple eigenvalues $\lambda_k \nearrow \infty$, and the eigenfunction $\varphi_k$ associated with $\lambda_k$ has exactly $k-1$ interior zeroes (see, e.g., Dr{\'a}bek \cite{MR94e:47084}). In the PDE case $n \ge 2$, an increasing and unbounded sequence of eigenvalues can be constructed using a standard minimax scheme involving the Krasnoselskii's genus, but it is not known whether this gives a complete list of the eigenvalues. Perera \cite{MR1998432} used a minimax scheme involving the $\mathbb{Z}_2$-cohomological index of Fadell and Rabinowitz \cite{MR57:17677} to construct a new sequence of eigenvalues $\lambda_k \nearrow \infty$ such that if $\lambda_k < \lambda < \lambda_{k+1}$ in \eqref{1.8}, then \[ C^k(\Phi,0) \ne 0 \] and hence $\Phi$ has two nontrivial critical points by Proposition \ref{prop1.1}. Thus, problem \eqref{1.7} has at least two nontrivial solutions when $\lambda > \lambda_1$ is not an eigenvalue from this particular sequence. Note that \eqref{1.8} implies $tf(x,t) > 0$ for $t \ne 0$ near zero when $\lambda > 0$. Naturally we may ask whether these results hold without such a sign condition. More specifically, can we replace \eqref{1.8} with \begin{equation} \label{1.91} \lim_{t \to 0}\, \frac{f(x,t)}{|t|^{p-2}\, t} = \lambda\, V(x), \quad \text{uniformly a.e.} \end{equation} and let $V$ change sign? This leads us to the indefinite eigenvalue problem \begin{equation} \label{1.92} \begin{gathered} - \Delta_p\, u = \lambda\, V(x)\, |u|^{p-2}\, u \quad \text{in } \Omega\\ u = 0 \quad \text{on } \partial\Omega. \end{gathered} \end{equation} We assume that the weight function $V \in L^s(\Omega)$ for some \begin{equation} \label{1.94} s\, \begin{cases} > n/p, & p \le n\\[5pt] = 1, & p > n. \end{cases} \end{equation} Then the smallest positive and largest negative eigenvalues of \eqref{1.92} are given by \[ \lambda^+_1 = \inf_{\substack{u \in W^{1,p}_0(\Omega)\\[1pt] \int_\Omega V(x)\, |u|^p > 0}}\, \frac{\int_\Omega |\nabla u|^p}{\int_\Omega V(x)\, |u|^p}, \quad \lambda^-_1 = \sup_{\substack{u \in W^{1,p}_0(\Omega)\\[1pt] \int_\Omega V(x)\, |u|^p < 0}}\, \frac{\int_\Omega |\nabla u|^p}{\int_\Omega V(x)\, |u|^p}, \] respectively. Noting that \eqref{1.91} implies \begin{equation} \label{1.93} F(x,t) = \frac{\lambda}{p}\, V(x)\, |t|^p + o(|t|^p) \quad\text{as $t \to 0$, uniformly a.e.}, \end{equation} we shall prove the following result. \begin{theorem} \label{thm1.2} Assume \eqref{1.2} with $r \in (1,p)$, $V \in L^s(\Omega)$ with $s$ satisfying \eqref{1.94}, and \eqref{1.93}. If $\lambda \notin (\lambda^-_1,\lambda^+_1)$ and is not an eigenvalue of \eqref{1.92}, then problem \eqref{1.7} has at least two nontrivial solutions. \end{theorem} Since $\lambda^-_1 = - \infty$ when $V \ge 0$ a.e.\ and $\lambda^+_1 = + \infty$ when $V \le 0$ a.e., this theorem applies in all possible cases: \begin{itemize} \item[(i)] $V$ changes sign: $\dots < \lambda^-_1 < 0 < \lambda^+_1 < \dots$, \item[(ii)] $V \ge 0$ a.e. and $\not\equiv 0$: $- \infty = \lambda^-_1 < 0 < \lambda^+_1 < \dots$, \item[(iii)] $V \le 0$ a.e. and $\not\equiv 0$: $\dots < \lambda^-_1 < 0 < \lambda^+_1 = + \infty$, \item[(iv)] $V \equiv 0$: $- \infty = \lambda^-_1 < \lambda^+_1 = + \infty$ (in this case the theorem is vacuously true). \end{itemize} Our proof will be based on an abstract framework for indefinite eigenvalue problems introduced in Perera, Agarwal, and O'Regan \cite{PeAgO'R}, which we will recall in the next section. \section{Preliminaries} In this section we recall an abstract framework for indefinite eigenvalue problems introduced in Perera, Agarwal, and O'Regan \cite{PeAgO'R}. Let $(W,\|\cdot\|)$ be a real reflexive Banach space with the dual $(W^\ast,\|\cdot\|)$ and the duality pairing $(\cdot,\cdot)$. We consider the nonlinear eigenvalue problem \begin{equation} \label{4.0.1} A_p\, u = \lambda\, B_p\, u \end{equation} in $W^\ast$, where $A_p \in C(W,W^\ast)$ is \begin{itemize} \item[(A1)] $(p-1)$-homogeneous and odd for some $p \in (1,\infty)$: \[ A_p(\alpha u) = |\alpha|^{p-2}\, \alpha\, A_p\, u \quad \forall u \in W,\, \alpha \in \mathbb{R}, \] \item[(A2)] uniformly positive: $\exists\, c_0 > 0$ such that \[ (A_p\, u,u) \ge c_0\, \|u\|^p \quad \forall u \in W, \] \item[(A3)] a potential operator: there is a functional $I_p \in C^1(W,\mathbb{R})$, called a potential for $A_p$, such that \[ I_p'(u) = A_p\, u \quad \forall u \in W, \] \item[(A4)] of type $(S)$: for any sequence $\{u_j\} \subset W$, \[ u_j \rightharpoonup u, \quad (A_p\, u_j,u_j - u) \to 0 \implies u_j \to u, \] \end{itemize} and $B_p \in C(W,W^\ast)$ is \begin{itemize} \item[(B1)] $(p-1)$-homogeneous and odd, \item[(B2)] a compact potential operator. \end{itemize} The following proposition is often useful for verifying (A4). \begin{proposition}[{\cite[Proposition 1.0.3]{PeAgO'R}}] \label{prop2.1} If $W$ is uniformly convex and \[ (A_p\, u,v) \le r\, \|u\|^{p-1}\, \|v\|, \quad (A_p\, u,u) = r\, \|u\|^p \quad \forall u, v \in W \] for some $r > 0$, then (A4) holds. \end{proposition} By \cite[Proposition 1.0.2]{PeAgO'R}, the potentials $I_p$ and $J_p$ of $A_p$ and $B_p$ satisfying $I_p(0) = 0 = J_p(0)$ are given by \[ I_p(u) = \frac{1}{p}\, (A_p\, u,u), \quad J_p(u) = \frac{1}{p}\, (B_p\, u,u), \] respectively, and are $p$-homogeneous and even. Let \[ \mathcal{M} = \{u \in W : I_p(u) = 1\}, \quad \mathcal{M}^\pm = \{u \in \mathcal{M} : J_p(u) \gtrless 0\}. \] Then $\mathcal{M} \subset W \setminus \{0\}$ is a bounded complete symmetric $C^1$-Finsler manifold radially homeomorphic to the unit sphere in $W$, $\mathcal{M}^\pm$ are symmetric open submanifolds of $\mathcal{M}$, and the positive (resp. negative) eigenvalues of \eqref{4.0.1} coincide with the critical values of the even $C^1$-functionals \[ \Psi^\pm(u) = \frac{1}{J_p(u)}, \quad u \in \mathcal{M}^\pm \] (see \cite[Sections 9.1 and 9.2]{PeAgO'R}). Denote by $\mathcal{F}^\pm$ the classes of symmetric subsets of $\mathcal{M}^\pm$ and by $i(M)$ the Fadell-Rabinowitz cohomological index of $M \in \mathcal{F}^\pm$. Then \begin{gather*} \lambda^+_k := \inf_{\substack{M \in \mathcal{F}^+\\[1.5pt] i(M) \ge k}}\, \sup_{u \in M}\, \Psi^+(u), \quad 1 \le k \le i(\mathcal{M}^+),\\ \lambda^-_k := \sup_{\substack{M \in \mathcal{F}^-\\ i(M) \ge k}}\, \inf_{u \in M}\, \Psi^-(u), \quad 1 \le k \le i(\mathcal{M}^-) \end{gather*} define nondecreasing (resp. nonincreasing) sequences of positive (resp. negative) eigenvalues of \eqref{4.0.1} that are unbounded when $i(\mathcal{M}^\pm) = \infty$ (see \cite[Theorems 9.1.2 and 9.2.1]{PeAgO'R}). When $\mathcal{M}^\pm = \emptyset$, we set $\lambda^\pm_1 = \pm \infty$ for convenience. Now we consider the operator equation \begin{equation} \label{2.6} A_p\, u = F'(u) \end{equation} where $F \in C^1(W,\mathbb{R})$ with $F'$ compact, whose solutions coincide with the critical points of the functional \[ \Phi(u) = I_p(u) - F(u), \quad u \in W. \] The following proposition is useful for verifying the (PS) condition for $\Phi$. \begin{proposition}[{\cite[Lemma 3.1.3]{PeAgO'R}}] \label{prop2.2} Every bounded {\em (PS)} sequence of $\Phi$ has a convergent subsequence. \end{proposition} Suppose that $u = 0$ is a solution of \eqref{2.6} and the asymptotic behavior of $F$ near zero is given by \begin{equation} \label{2.21} F(u) = \lambda\, J_p(u) + o(\|u\|^p) \quad\text{as } u \to 0. \end{equation} \begin{proposition}[{\cite[Proposition 9.4.1]{PeAgO'R}}] \label{prop2.3} Assume (A1) - (A4), (B1), (B2), and \eqref{2.21} hold, $F'$ is compact, and zero is an isolated critical point of $\Phi$. \begin{itemize} \item[(i)] If $\lambda^-_1 < \lambda < \lambda^+_1$, then $C^q(\Phi,0) \approx \delta_{q0}\, \mathbb{Z}_2$. \item[(ii)] If $\lambda^-_{k+1} < \lambda < \lambda^-_k$ or $\lambda^+_k < \lambda < \lambda^+_{k+1}$, then $C^k(\Phi,0) \ne 0$. \end{itemize} \end{proposition} \section{Proof of Theorem \ref{thm1.2}} First let us verify that our problem fits into the abstract framework of the previous section. Let $W = W^{1,p}_0(\Omega)$, \[ (A_p\, u,v) = \int_\Omega |\nabla u|^{p-2}\, \nabla u \cdot \nabla v, \quad (B_p\, u,v) = \int_\Omega V(x)\, |u|^{p-2}\, uv, \] and \[ F(u) = \int_\Omega F(x,u). \] Then (A1) and (B1) are clear, $(A_p\, u,u) = \|u\|^p$ in (A2), and (A3) and (B2) hold with \[ I_p(u) = \frac{1}{p} \int_\Omega |\nabla u|^p, \quad J_p(u) = \frac{1}{p} \int_\Omega V(x)\, |u|^p, \] respectively. By the H\"{o}lder inequality, \[ (A_p\, u,v) \le \Big(\int_\Omega |\nabla u|^p\Big)^{1-\tfrac{1}{p}} \Big(\int_\Omega |\nabla v|^p\Big)^{1/p} = \|u\|^{p-1}\, \|v\|, \] so (A4) follows from Proposition \ref{prop2.1}. By \eqref{1.2} and \eqref{1.93}, \eqref{2.21} also holds. Since $\lambda \notin (\lambda^-_1,\lambda^+_1)$ and is not an eigenvalue of \eqref{1.92}, it now follows from Proposition \ref{prop2.3} that $C^k(\Phi,0) \ne 0$ for some $k \ge 1$. By \eqref{1.2}, \[ |F(x,t)| \le C\, (|t|^r + 1), \] so by the Sobolev imbedding, \[ \Phi(u) \ge \frac{1}{p}\, \|u\|^p - C\, (\|u\|^r + 1) \quad \forall u \in W^{1,p}_0(\Omega). \] Since $p > r$, it follows that $\Phi$ is bounded from below and coercive. Then every (PS) sequence of $\Phi$ is bounded and hence $\Phi$ satisfies the (PS) condition by Proposition \ref{prop2.2}. Thus, $\Phi$ has two nontrivial critical points by Proposition \ref{prop1.1}. \begin{remark} \rm Note that it suffices to assume $\lambda \notin (\lambda^-_1,\lambda^+_1)$ is not an eigenvalue from the particular sequences $(\lambda^\pm_k)$. \end{remark} \begin{thebibliography}{00} \bibitem{MR89e:35124} Aomar Anane. \newblock Simplicit\'e et isolation de la premi\`ere valeur propre du {$p$}-laplacien avec poids. \newblock {\em C. R. Acad. Sci. Paris S\'er. I Math.}, 305(16):725--728, 1987. \bibitem{MR622618} Kung~Ching Chang. \newblock Solutions of asymptotically linear operator equations via {M}orse theory. \newblock {\em Comm. Pure Appl. Math.}, 34(5):693--712, 1981. \bibitem{MR94e:58023} Kung-ching Chang. \newblock {\em Infinite-dimensional {M}orse theory and multiple solution problems}, volume~6 of {\em Progress in Nonlinear Differential Equations and their Applications}. \newblock Birkh\"auser Boston Inc., Boston, MA, 1993. \bibitem{MR94e:47084} P.~Dr{\'a}bek. \newblock {\em Solvability and bifurcations of nonlinear equations}, volume 264 of {\em Pitman Research Notes in Mathematics Series}. \newblock Longman Scientific \& Technical, Harlow, 1992. \bibitem{MR57:17677} Edward~R. Fadell and Paul~H. Rabinowitz. \newblock Generalized cohomological index theories for {L}ie group actions with an application to bifurcation questions for {H}amiltonian systems. \newblock {\em Invent. Math.}, 45(2):139--174, 1978. \bibitem{MR96a:58045} Shu~Jie Li and Michel Willem. \newblock Applications of local linking to critical point theory. \newblock {\em J. Math. Anal. Appl.}, 189(1):6--32, 1995. \bibitem{MR90h:35088} Peter Lindqvist. \newblock On the equation {${\rm div}\,(\vert \nabla u\vert \sp {p-2}\nabla u)+\lambda\vert u\vert \sp {p-2}u=0$}. \newblock {\em Proc. Amer. Math. Soc.}, 109(1):157--164, 1990. \bibitem{MR1139483} Peter Lindqvist. \newblock Addendum: ``{O}n the equation {${\rm div}(\vert \nabla u\vert \sp {p-2}\nabla u)+\lambda\vert u\vert \sp {p-2}u=0$}'' [{P}roc.\ {A}mer.\ {M}ath.\ {S}oc.\ 109 (1990), no.\ 1, 157--164; {MR} 90h:35088]. \newblock {\em Proc. Amer. Math. Soc.}, 116(2):583--584, 1992. \bibitem{MR802575} Jia~Quan Liu and Shu~Jie Li. \newblock An existence theorem for multiple critical points and its application. \newblock {\em Kexue Tongbao (Chinese)}, 29(17):1025--1027, 1984. \bibitem{MR90e:58016} Jean Mawhin and Michel Willem. \newblock {\em Critical point theory and {H}amiltonian systems}, volume~74 of {\em Applied Mathematical Sciences}. \newblock Springer-Verlag, New York, 1989. \bibitem{MR1998432} Kanishka Perera. \newblock Nontrivial critical groups in {$p$}-{L}aplacian problems via the {Y}ang index. \newblock {\em Topol. Methods Nonlinear Anal.}, 21(2):301--309, 2003. \bibitem{PeAgO'R} Kanishka Perera, Ravi~P. Agarwal, and Donal O'Regan. \newblock {\em Morse Theoretic Aspects of {$p$}-{L}aplacian Type Operators}, volume 161 of {\em Mathematical Surveys and Monographs}. \newblock American Mathematical Society, Providence, RI, 2010. \end{thebibliography} \end{document}