\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 42, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/42\hfil Stochastic stability] {Stochastic stability of Cohen-Grossberg neural networks with unbounded distributed delays} \author[P. Chen, C. Huang, X. Liang\hfil EJDE-2010/42\hfilneg] {Ping Chen, Chuangxia Huang, Xiaolin Liang} % in alphabetical order \address{Ping Chen \newline College of Mathematics and Computing Science, Changsha University of Science and Technology\\ Changsha, Hunan 410114, China} \email{chenping04@gmail.com} \address{Chuangxia Huang \newline College of Mathematics and Computing Science, Changsha University of Science and Technology\\ Changsha, Hunan 410114, China} \email{huangchuangxia@sina.com.cn} \address{Xiaolin Liang \newline College of Mathematics and Computing Science, Changsha University of Science and Technology\\ Changsha, Hunan 410114, China} \email{liang@csust.edu.cn} \thanks{Submitted December 21, 2009. Published March 26, 2010.} \thanks{Supported by grants 2008 form the Foundation of Chinese Society for Electrical Engineering, \hfill\break\indent and 10971240 from the National Natural Science Foundation of China} \subjclass[2000]{34F05, 93E15} \keywords{Cohen-Grossberg neural networks; stochastic; distributed delays; \hfill\break\indent almost sure exponential stability; Lyapunov functional} \begin{abstract} In this article, we consider a model that describes the dynamics of Cohen-Grossberg neural networks with unbounded distributed delays, whose state variable are governed by stochastic non-linear integro-differential equations. Without assuming the smoothness, monotonicity and boundedness of the activation functions, by constructing suitable Lyapunov functional, employing the semi-martingale convergence theorem and some inequality, we obtain some sufficient criteria to check the almost exponential stability of networks. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Cohen-Grossberg neural networks (CGNN) were first introduced by Cohen and Grossberg \cite{c9} in 1983 and soon the class of networks have been the subject of extensive investigation because of their many important applications, such as patter recognition, associative memory and combinatorial optimization, etc. Especially, CGNN with delays have attracted many scientific and technical works due to their applications for solving a number of problems in various scientific disciplines, such application heavily depend on the dynamic behave of networks \cite{z2}, thus, the analysis of the dynamical behaviors such as stability is a necessary step for practical design of neural networks. To date, many important results on the stability have been reported in the literature, see e.g \cite{c1,c2,c3,c5,g1,h2,l3,l4,w2,w3,x1,y1} and reference therein. We refer to Cao and Liang \cite{c2} for the mathematical model of CGNN that consists of n $(n>1)$ interconnected neighboring cells whose dynamical behavior are described by \begin{equation} \frac{dx_i(t)}{dt}=-h_i(x_i(t))[c_i(x_i(t)) -\sum_{j=1}^{n}a_{ij}f_j(x_j(t)) -\sum_{j=1}^{n}b_{ij}f_j(x_j(t-\tau_{ij}))], \label{e1.1} \end{equation} where $i=1,2\dots,n$; $x_i(t)$ denotes the state variable associated with the $i$th neuron at time $t$; $h_i({\cdot})$ represents an amplification function; $c_i({\cdot})$ is an appropriately behaved function; $A=(a_{ij})_{n\times n}$ and $B=(b_{ij})_{n\times n}$ weight the strength of the jth unit on the ith unit at time t; $f_j({\cdot})$ denotes a non-linear output function, $\tau _{ij}$ corresponds to the time delay required in processing and transmitting a signal from the $j$th cell to the $i$th cell. In formulating the network model \eqref{e1.1}, the delays are assumed to be discrete, however, just as is pointed out in \cite{c4}, constant fixed delays in the models of delayed feedback systems serve as a good approximation in simple circuits consisting of a small number of cells, but neural networks usually have a spatial extent due to the presence of the presence of an amount of parallel pathways with variety of axon sizes and lengths. Therefore, there will be a distribution of conduction velocities along these pathways and it is of significant importance to consider continuously distributed delays to the neural networks (see \cite{c6,c8,w1,z3}). Then model \eqref{e1.1} can be modified as a system of integro-differential equations of the from \begin{equation} \frac{dx_i(t)}{dt}=-h_i(x_i(t))[c_i(x_i(t)) -\sum_{j=1}^{n}a_{ij}f_j(x_j(t)) -\sum_{j=1}^{n}b_{ij}f_j(\int_{-\infty}^tK_{ij}(t-s)x_j(s)ds)] \label{e1.2} \end{equation} Which for convenience can be put in the form \begin{equation} \frac{dx_i(t)}{dt}=-h_i(x_i(t))[c_i(x_i(t)) -\sum_{j=1}^{n}a_{ij}f_j(x_j(t)) -\sum_{j=1}^{n}b_{ij}f_j(\int_0^{+\infty}K_{ij}(s)x_j(t-s)ds)] \label{e1.3} \end{equation} With initial values given by $x_i(s)=\phi_i(s)$ for $s\in({-\infty},0]$, where each $\phi_i({\cdot})$ is bounded and continuous on $({-\infty},0]$. Just as is pointed out by Haykin \cite{h1}, in real nervous systems and in the implementation of artificial neural networks, noise is unavoidable and should be taken into consideration in modelling. Under the effect of the noise, the trajectory of system becomes a stochastic process. Moreover, it was realized that CGNN could be stabilized or destabilized by certain stochastic input \cite{b1,m1}. Therefore it is of significant importance to consider stochastic effects to the stability of delayed neural networks, and the existing literature on theoretical studies of stochastic CGNN is predominantly concerned with constant fixed delay, time-varying delays and bounded distributed delays \cite{c8,d1,h3,l1,l2,s1,w4,z1}. To the best our knowledge, few authors discuss almost sure exponential stability of stochastic Cohen-Grossberg neural networks with unbounded distributed delays. Motivated by the above discussions, in this paper, we investigate almost sure exponential stability of stochastic Cohen-Grossberg neural networks with unbounded distributed delays. By the following stochastic nonlinear integro-differential equations \begin{equation} \begin{aligned} dx_i(t)&= -h_i(x_i(t))[c_i(x_i(t)) -\sum_{j=1}^{n}a_{ij}f_j(x_j(t))\\ &\quad -\sum_{j=1}^{n}b_{ij}f_j(\int_0^{+\infty}K_{ij}(s)x_j(t-s)ds)]dt +\sum_{j=1}^{n}\sigma_{ij}(x_j(t))d\omega_j(t), \end{aligned} \label{e1.4} \end{equation} where $t\geq0$, $\sigma(\cdot)=(\sigma_{ij}(\cdot))_{n\times n}$ is the diffusion coefficient matrix ,and $\omega(t)=(\omega_1(t),\dots, \omega_n(t))^T$ is an n-dimensional Brownian motion defined on a complete probability space $(\Omega,\mathcal{F}, \mathcal{P})$ with a natural filtration $\{\mathcal{F}_t\}_{t\geq 0}$. \section{Preliminaries} Let $\mathcal{C}=C(({-\infty},0],\mathbb{R}^n)$ be the Banach space of continuous functions which map into $\mathbb{R}^n$ with the topology of uniform convergence. For $x(t)=(x_1(t),\dots,x_n(t))^T$ in $\mathbb{R}^n$, we define $\|x(t)\|=(\sum_{i=1}^{n}{|x_i(t)|}^2)^{1/2}$. For $\varphi \in \mathcal{C}$, define $\| \varphi \|=(\sum_{i=1}^{n}{| \varphi_i|}^2)^{1/2}$, where $\| \varphi \|=\sup_{-\infty\leq s\leq 0}\{\|\varphi(s)\| \}$. System \eqref{e1.4} can be rewritten in the vector form \begin{equation} \begin{aligned} dx(t)&=-H(x(t))[C(x(t))-AF(x(t))\\ &\quad -BF(\int_0^{+\infty}K(s)x(t-s)ds)]dt +\sigma(x(t))d\omega(t) \end{aligned}\label{e2.1} \end{equation} where $x(t)=(x_1(t),\dots,x_n(t))^T$, $H(x(t))=\mathop{\rm diag}(h_1(x_1(t)),\dots,h_n(x_n(t)))$, \begin{gather*} A=(a_{ij})_{n\times n}, \quad B=(b_{ij})_{n\times n},\quad C(x(t))=(c _1(x_1(t)),\dots,c_n(x_n(t)))^T, \\ F(x(t)) =(f _1(x_1(t)), \dots, f_n(x_n(t)))^T,\quad K(s)=(k_{ij}(s))_{n\times n},\\ \sigma(x(t))=(\sigma_{ij}(x_j(t)))_{n\times n}. \end{gather*} The initial conditions for \eqref{e2.1} are $x(s)=\varphi(s), -\infty \leq s\leq 0, \varphi \in L_{\mathcal{F}_0}^2((-\infty,0],\mathbb{R}^n)$, here $L_{\mathcal{F}_0}^2((-\infty,0],\mathbb{R}^n)$ is $\mathbb{R}^n$-valued stochastic process $\varphi (s),-\infty\leq s\leq 0$, $\varphi(s)$ is $\mathcal{F}_0$-measurable, $\int_{-\infty}^0E{|\varphi(s)|}^2ds<\infty$. Let $C^{2,1}(\mathbb{R}^n\times R;R_+)$ denote the family of all nonnegative functions $V(x,t)$ on $\mathbb{R}^n\times R$ which are twice differentiable in $x$ and once differentiable in $t$. If $V\in C^{2,1}(\mathbb{R}^n\times R;R_+)$, define an operator $LV$ associated with \eqref{e2.1} as \begin{align*} LV(x,t)&= V_t(x,t)+V_x(x,t)\{-H(x(t))[C(x(t))-AF(x(t))\\ &\quad -BF(\int_0^{+\infty}K(s)x(t-s)ds)]\}dt +\frac{1}{2}\mathop{\rm trace}[\sigma^TV_{xx}(x,t)\sigma] \end{align*} where $V_t(x,t)=\frac{\partial V(x,t)}{\partial t}$, \[ V_x(x,t) =\left(\frac{\partial V(x,t)}{\partial x_1},\dots,\frac{\partial V(x,t)}{\partial x_n}\right),\quad V_{xx}(x,t)=\left(\frac{{\partial}^2 V(x,t)}{\partial x_i\partial x_j}\right)_{n\times n}. \] To establish the main results of the model given in \eqref{e2.1}, some of the following assumptions will apply: \begin{itemize} \item[(H1)] Each function $h_i(x)$ is bounded, positive and locally Lipschitz continuous; thus, there exist two positive constants $\underline{h}_i$ and $\overline{h}_i$, such that $0<\underline{h}_i\leq h_i(x)\leq\overline{h}_i<{+\infty}$ for all $x\in R$ and $i=1,2,\dots,n$. \item[(H2)] each $i=1,2,\dots,n$, there exist constant $\alpha_i>0$, such that $x_i(t)c_i(x_i(t))\geq\alpha_i x_i^2(t)$; \item[(H3)] Both $f_j(\cdot)$ and $\sigma_{ij}(\cdot)$ are globally Lipschitz, and there exist positive constants $\beta_j,L_{ij},i,j=1,2,\dots,n$, such that $$ | f_j(u)-f_j(v)|\leq \beta_j| u-v|: |\sigma_{ij}(u)-\sigma_{ij}(v)|\leq L_{ij}| u-v|, $$ for any $u, v\in \mathbb{R}$. we also assure that $f_j(0)=\sigma_{ij}(0)=0$. \item[(H4)] The delay kernels $K_{ij},i,j,=1,2,\dots,n$ are real-valued nonnegative piecewise continuous defined on $[0,+\infty)$ and satisfy $$ \int_0^{+\infty}K_{ij}(s)ds=1 \quad and \quad \int_0^{+\infty}K_{ij}(s)e^{\mu s}ds<+\infty $$ for some positive constant $\mu$. \end{itemize} We notice that the activation functions $f_j(\cdot)$ do not have to be differentiable and monotonically increasing, which including some kinds of typical functions widely used for CGNN designs.This implies that \eqref{e2.1} has a unique global solution on $t\geq 0$ for the initial conditions \cite{b1}. Clearly, \eqref{e2.1} admits an equilibrium solution $x(t)=0$. \begin{definition}[\cite{m1}] \label{def2.1} \rm The trivial solution of \eqref{e2.1} is said to be almost surely exponentially stable if for almost all sample paths of the solution $x(t)$, we have $$ \limsup_{t\to \infty}\frac{1}{t}\log \| x(t)\|<0. $$ \end{definition} \begin{lemma}[Semi-martingale convergence theorem \cite{m1}] \label{lem2.1} Let $A(t)$ and $U(t)$ be \\ two continuous adapted increasing process on $t\geq 0$ with $M(0)=0$ a.s. Let $\xi$ be a nonnegative $\mathcal{F}_0$-measurable random variable. Define $$ X(t)=\xi +A(t)-U(t)+M(t),\quad\text{for } t\geq 0, $$ If $X(t)$ is nonnegative, then $$ \{\lim_{t\to\infty}A(t)<\infty\}\subset \{\lim_{t\to\infty}X(t)<\infty\}\cap\{\lim_{t\to\infty}U(t)<\infty\}\quad \text{a.s.}, $$ where $B\subset D$ a.s. means $P(S\cap D^c)=0$. In particular, If $$ \lim_{t\to\infty}U(t)<\infty\quad \text{a.s.}, $$ then for almost all $\omega\in\Omega$ $$ \lim_{t\to\infty}X(t)<\infty\quad\text{and}\quad \lim_{t\to\infty}U(t)<\infty, $$ that is both $X(t)$ and $U(t)$ converge to finite random variables. \end{lemma} \section{Main Results} \begin{theorem} \label{thm3.1} Under assumptions {\rm (H1)--(H4)}, if there exist a set of positive constants $q_i,q_{ij},p_{ij},r_{ij},q_{ij}^*,p_{ij}^*,r_{ij}^*$ such that for $i=1,2,\dots,n$, \begin{equation} \begin{aligned} & 2\underline{h}_i\alpha_iq_i-\sum _{j=1} ^n[q_i\overline{h}_i^{2p_{ij}}| a_{ij}|^{2q_{ij}}\beta_j^{2r_{ij}}+q_j\overline{h}_j^{2-2p_{ji}}| a_{ji}|^{2-2q_{ji}}\beta_i^{2-2r_{ji}}\\ & +q_i\overline{h}_i^{2p_{ij}^*}|b_{ij}|^{2q_{ij}^*}\beta_j^{2r_{ij}^*} +q_j\overline{h}_j^{2-2p_{ji}^*}| b_{ji}|^{2-2q_{ji}^*}\beta_i^{2-2r_{ji}^*}+q_jL_{ji}^2 ]>0, \end{aligned} \label{e3.1} \end{equation} then the trivial solution of system \eqref{e2.1} is almost surely exponentially stable. \end{theorem} \begin{proof} From assumption (H4), we can choose a constant $0<\lambda <\mu$, such that \begin{equation} \int_0^{+\infty} K_{ji}(s)e^{\lambda s}ds\leq \int_0^{+\infty} K_{ji}(s)e^{\mu s}ds \label{e3.2} \end{equation} and for \quad $i=1,2,\dots,n$, \begin{equation} \begin{aligned} &2\underline{h}_i\alpha_iq_i-\lambda q_i-\sum _{j=1} ^n[q_i\overline{h}_i^{2p_{ij}}| a_{ij}|^{2q_{ij}}\beta_j^{2r_{ij}}+q_j\overline{h}_j^{2-2p_{ji}}| a_{ji}|^{2-2q_{ji}}\beta_i^{2-2r_{ji}}\\ &+q_i\overline{h}_i^{2p_{ij}^*}| b_{ij}|^{2q_{ij}^*} \beta_j^{2r_{ij}^*} +q_j\overline{h}_j^{2-2p_{ji}^*}| b_{ji}|^{2-2q_{ji}^*}\beta_i^{2-2r_{ji}^*}\int_0^{+\infty} K_{ji}(s)e^{\lambda s}ds+q_jL_{ji}^2 ]>0, \end{aligned}\label{e3.3} \end{equation} Consider the Lyapunov functional \begin{equation} \begin{aligned} V(x(t),t)&= e^{\lambda t}\sum _{i=1}^nq_ix_i^2(t) +\sum _{i=1}^n\sum _{j=1}^nq_i\overline{h}_i^{2-2p_{ij}^*}| b_{ij}|^{2-2q_{ij}^*}\beta_j^{2-2r_{ij}^*}\\ &\quad \times \int_0^{+\infty} \big[K_{ij}(s)e^{\lambda s} \int_{t-s}^te^{\lambda \zeta}x_j^2(\zeta)d\zeta\big]ds. \end{aligned} \label{e3.4} \end{equation} Then the operator $LV(x,t)$ associated with system \eqref{e2.1} has the form \begin{align} &LV(x(t),t)\nonumber \\ &= \lambda e^{\lambda t}\sum_{i=1}^nq_ix_i^2(t)\nonumber \\ &\quad +\sum _{i=1}^n\sum_{j=1}^nq_i\overline{h}_i^{2-2p_{ij}^*}| b_{ij}|^{2-2q_{ij}^*}\beta_j^{2-2r_{ij}^*}\int_0^{+\infty} [K_{ij}(s)e^{\lambda s}(e^{\lambda t}x_j^2(t)\nonumber \\ &\quad -e^{\lambda(t-s)}x_j^2(t-s))]ds+2e^{\lambda t}\sum_{i=1}^nq_ix_i(t)\{-h_i(x_i(t))[c_i(x_i(t))\nonumber \\ &\quad -\sum_{j=1}^{n}a_{ij}f_j(x_j(t)) -\sum_{j=1}^{n}b_{ij}f_j(\int_0^{+\infty}K_{ij}x_j(t-s)ds)]\}\nonumber \\ &\quad +e^{\lambda t}\sum_{i=1}^{n}\sum_{j=1}^{n}q_i\sigma_{ij}^2(x_j(t))\nonumber \\ &\le \lambda e^{\lambda t}\sum_{i=1}^nq_ix_i^2(t)\nonumber \\ &\quad +e^{\lambda t}\sum _{i=1}^n\sum _{j=1}^nq_j\overline{h}_j^{2-2p_{ji}^*}| b_{ji}|^{2-2q_{ji}^*}\beta_i^{2-2r_{ji}^*}x_i^2(t)\int_0^{+\infty} K_{ji}(s)e^{\lambda s}ds\nonumber \\ &\quad -e^{\lambda t}\sum _{i=1}^n\sum _{j=1}^nq_i\overline{h}_i^{2-2p_{ij}^*}| b_{ij}|^{2-2q_{ij}^*}\beta_j^{2-2r_{ij}^*}\int_0^{+\infty} K_{ij}(s)x_j^2(t-s)ds\nonumber \\ &\quad -2e^{\lambda t}\sum_{i=1}^nq_i\underline{h}_i| x_i(t)|^2\alpha_i +2e^{\lambda t}\sum_{i=1}^nq_i[\sum _{j=1}^n\overline{h}_i| a_{ij}|\beta_j| x_j(t)|| x_i(t)|\nonumber \\ &\quad +\sum _{j=1}^n\overline{h}_i| b_{ij}|\beta_j(\int_0^{+\infty} K_{ij}(s)x_j(t-s)x_i(t)ds)]\nonumber \\ &\quad +e^{\lambda t}\sum_{i=1}^{n}\sum_{j=1}^{n}q_j\sigma_{ji}^2(x_i(t))\nonumber \\ &\le \lambda e^{\lambda t}\sum_{i=1}^nq_ix_i^2(t)\nonumber \\ &\quad +e^{\lambda t}\sum _{i=1}^n\sum _{j=1}^nq_j\overline{h}_j^{2-2p_{ji}^*}| b_{ji}|^{2-2q_{ji}^*}\beta_i^{2-2r_{ji}^*}x_i^2(t)\int_0^{+\infty} K_{ji}(s)e^{\lambda s}ds\nonumber \\ &\quad -e^{\lambda t}\sum _{i=1}^n\sum _{j=1}^nq_i\overline{h}_i^{2-2p_{ij}^*}| b_{ij}|^{2-2q_{ij}^*}\beta_j^{2-2r_{ij}^*}\int_0^{+\infty} K_{ij}(s)x_j^2(t-s)ds\nonumber \\ &\quad -2e^{\lambda t}\sum_{i=1}^nq_i\underline{h}_i| x_i(t)|^2\alpha_i\nonumber \\ &\quad +2e^{\lambda t}\sum_{i=1}^n\sum _{j=1}^nq_i\overline{h}_i^{p_{ij}}| a_{ij}|^{q_{ij}}\beta_j^{r_{ij}}| x_i(t)|\overline{h}_i^{1-p_{ij}}| a_{ij}|^{1-q_{ij}}\beta_j^{1-r_{ij}}| x_j(t)|\nonumber \\ &\quad +2e^{\lambda t}\sum_{i=1}^n\sum _{j=1}^nq_i\overline{h}_i^{p_{ij}^*}| b_{ij}|^{q_{ij}^*}\beta_j^{r_{ij}^*}\overline{h}_i^{1-p_{ij}^*}| b_{ij}|^{1-q_{ij}^*}\beta_j^{1-r_{ij}^*}\int_0^{+\infty} K_{ij}(s)x_j(t-s)x_i(t)ds\nonumber \\ &\quad +e^{\lambda t}\sum_{i=1}^{n}\sum_{j=1}^{n}q_jL_{ji}^2(x_i(t))^2 \nonumber \\ &\le \lambda e^{\lambda t}\sum_{i=1}^nq_ix_i^2(t)\nonumber \\ &\quad +e^{\lambda t}\sum _{i=1}^n\sum _{j=1}^nq_j\overline{h}_j^{2-2p_{ji}^*}| b_{ji}|^{2-2q_{ji}^*}\beta_i^{2-2r_{ji}^*}x_i^2(t)\int_0^{+\infty} K_{ji}(s)e^{\lambda s}ds\nonumber \\ &\quad -e^{\lambda t}\sum _{i=1}^n\sum _{j=1}^nq_i\overline{h}_i^{2-2p_{ij}^*}| b_{ij}|^{2-2q_{ij}^*}\beta_j^{2-2r_{ij}^*}\int_0^{+\infty} K_{ij}(s)x_j^2(t-s)ds\nonumber \\ &\quad -2e^{\lambda t}\sum_{i=1}^nq_i\underline{h}_i| x_i(t)|^2\alpha_i +e^{\lambda t}\sum_{i=1}^n\sum _{j=1}^nq_i\overline{h}_i^{2p_{ij}}| a_{ij}|^{2q_{ij}}\beta_j^{2r_{ij}}| x_i(t)|^2\nonumber \\ &\quad +e^{\lambda t} \sum_{i=1}^n\sum _{j=1}^nq_j\overline{h}_j^{2-2p_{ji}}| a_{ji}|^{2-2q_{ji}}\beta_i^{2-2r_{ji}}| x_j(t)|^2\nonumber \\ &\quad +e^{\lambda t}\sum_{i=1}^n\sum _{j=1}^nq_i\overline{h}_i^{2p_{ij}^*}| b_{ij}|^{2q_{ij}^*}\beta_j^{2r_{ij}^*}| x_i(t)|^2\nonumber \\ &\quad +e^{\lambda t}\sum_{i=1}^n\sum _{j=1}^nq_i\overline{h}_i^{2-2p_{ij}^*}| b_{ij}|^{2-2q_{ij}^*}\beta_j^{2-2r_{ij}^*}\int_0^{+\infty} K_{ij}(s)x_j^2(t-s)ds\nonumber \\ &\quad +e^{\lambda t}\sum_{i=1}^{n}\sum_{j=1}^{n}q_jL_{ji}^2(x_i(t))^2\nonumber \\ &= -e^{\lambda t}\sum_{i=1}^n| x_i(t)|^2(-\lambda q_i+2\underline{h}_i\alpha_iq_i-\sum _{j=1}^nq_i\overline{h}_i^{2p_{ij}}| a_{ij}|^{2q_{ij}}\beta_j^{2r_{ij}}\nonumber \\ &\quad -\sum _{j=1}^nq_j\overline{h}_j^{2-2p_{ji}}| a_{ji}|^{2-2q_{ji}}\beta_i^{2-2r_{ji}} -\sum _{j=1}^nq_i\overline{h}_i^{2p_{ij}^*}| b_{ij}|^{2q_{ij}^*}\beta_j^{2r_{ij}^*}\nonumber \\ &\quad -\sum _{j=1}^nq_j\overline{h}_j^{2-2p_{ji}^*}| b_{ji}|^{2-2q_{ji}^*}\beta_i^{2-2r_{ji}^*}\int_0^{+\infty} K_{ji}(s)e^{\lambda s}ds-\sum _{j=1}^nq_jL_{ji}^2). \label{e3.5} \end{align} Using the It\^o formula, for $T>0$, from inequality \eqref{e3.2}, \eqref{e3.3}, \eqref{e3.4} and \eqref{e3.5}, we have \begin{equation} \begin{aligned} &V(x(t),t)\\ &\le \sum _{i=1}^nq_ix_i^2(0)+\sum _{i=1}^n\sum _{j=1}^nq_i\overline{h}_i^{2-2p_{ij}^*}| b_{ij}|^{2-2q_{ij}^*}\beta_j^{2-2r_{ij}^*} \\ &\quad\times \int_0^{+\infty} [K_{ij}(s)e^{\lambda s}\int_{-s}^0e^{\lambda\zeta}x_j^2(\zeta)d\zeta]ds\\ &\quad -\int_0^Te^{\lambda t}\sum_{i=1}^n| x_i(t)|^2(-\lambda q_i+2\underline{h}_i\alpha_iq_i-\sum _{j=1}^nq_i\overline{h}_i^{2p_{ij}}| a_{ij}|^{2q_{ij}}\beta_j^{2r_{ij}}\\ &\quad -\sum _{j=1}^nq_j\overline{h}_j^{2-2p_{ji}}| a_{ji}|^{2-2q_{ji}}\beta_i^{2-2r_{ji}} -\sum _{j=1}^nq_i\overline{h}_i^{2p_{ij}^*}| b_{ij}|^{2q_{ij}^*}\beta_j^{2r_{ij}^*}\\ &\quad -\sum _{j=1}^nq_j\overline{h}_j^{2-2p_{ji}^*}| b_{ji}|^{2-2q_{ji}^*}\beta_i^{2-2r_{ji}^*}\int_0^{+\infty} K_{ji}(s)e^{\lambda s}ds-\sum _{j=1}^nq_jL_{ji}^2)\\ &\quad +2\int_0^Te^{\lambda t}\sum_{i=1}^n\sum_{j=1}^nq_i| x_i(t)\sigma_{ij}(x_i(t))| d\omega_j(t)\\ &\le \sum _{i=1}^nq_i[1+\sum _{j=1}^n\frac{q_j}{q_i}\overline{h}_j^{2-2p_{ji}^*}| b_{ji}|^{2-2q_{ji}^*}\beta_i^{2-2r_{ji}^*}\int_0^{+\infty} K_{ji}(s)e^{\lambda s}ds]\sup_{-\infty\leq s\leq 0}\{x_i^2(s)\}\\ &\quad +2\int_0^Te^{\lambda t}\sum_{i=1}^n\sum_{j=1}^nq_i| x_i(t)||\sigma_{ij}(x_j(t))| d\omega_j(t). \end{aligned}\label{e3.6} \end{equation} Then right-hand side of \eqref{e3.6} is a nonnegative martingale and Lemma \ref{lem2.1} shows $$ \lim_{T\to0}X(T)<\infty\quad \text{a.s.} $$ where \begin{equation} \begin{aligned} X(T)&= \sum _{i=1}^nq_i[1+\sum _{j=1}^n\frac{q_j}{q_i}\overline{h}_j^{2-2p_{ji}^*}| b_{ji}|^{2-2q_{ji}^*}\beta_i^{2-2r_{ji}^*}\int_0^{+\infty} K_{ji}(s)e^{\lambda s}ds\}\\ &\quad\times \sup_{-\infty\leq s\leq 0}\{x_i^2(s)\} +2\int_0^T e^{\lambda t}\sum_{i=1}^n\sum_{j=1}^nq_i| x_i(t)||\sigma_{ij}(x_j(t))| d\omega_j(t). \end{aligned}\label{e3.7} \end{equation} It follows by Lemma \ref{lem2.1} that \begin{equation} \lim_{T\to\infty}e^{\lambda t}\sum_{i=1}^nq_ix_i^2(t)<\infty\quad \text{a.s.} \label{e3.8} \end{equation} which implies \begin{equation} \lim_{T\to\infty}e^{\lambda t}\sum_{i=1}^nx_i^2(t)<\infty\quad \text{a.s.}; \label{e3.9} \end{equation} that is, \begin{equation} \limsup_{T\to \infty}\frac{1}{T}\log\| x(T)\|\leq-\lambda.\label{e3.10} \end{equation} This completes the proof. \end{proof} \begin{corollary} \label{coro3.1} Under assumptions {\rm (H1)--(H4)}, if there exist a set of positive constants $q_i$ such that \begin{equation} 2\underline{h}_i\alpha_iq_i-\sum_{j=1}^n[2q_i+q_j\overline{h}_j^2| a_{ji}|^2\beta_i^2+q_j\overline {h}_j^2| b_{ji}|^2\beta_i^2+q_jL_{ji}^2]>0,\quad i=1,2,\dots,n \label{e3.11} \end{equation} then the trivial solution of \eqref{e2.1} is almost sure exponentially stable. \end{corollary} \begin{corollary} \label{coro3.2} Under assumptions {\rm (H1)--(H4)}, if the following inequality holds \begin{equation} 2\underline{h}_i\alpha_i-\sum_{j=1}^n[(| a_{ij}|+| b_{ij}|)\overline{h}_i\beta_j+(| a_{ji}|+| b_{ji}|)\overline{h}_j\beta_i+L_{ji}^2]>0,\quad i=1,2,\dots,n \label{e3.12} \end{equation} then the trivial solution of \eqref{e2.1} is almost sure exponentially stable. \end{corollary} \begin{proof} Choose $q_i=1$, $q_{ij}=p_{ij}=r_{ij}=q_{ij}^*=p_{ij}^*=r_{ij}^*=\frac{1}{2}$ for $i,j=1,2,\dots,n$ in inequality \eqref{e3.1}. By Theorem \ref{thm3.1}, the proof is complete. \end{proof} To the best of our knowledge, few authors have considered the almost sure exponential stability for stochastic CGNN with unbounded distributed delays. We can find the recent papers \cite{c1,c2,c6,h2,z3} in this direction, however, all delays in are discrete and the delay functions appearing in them are bounded, obviously, those requirements are relaxed in this paper and as model \eqref{e2.1} can be viewed as a general case of interval-delayed recurrent neural networks and delayed Hopfiled networks. \begin{remark} \label{rmk3.2} \rm For system \eqref{e2.1}, when $h_i(x_i(t))=1$, then it turns out to be following stochastic cellular neural networks with unbounded distributed delays $$ dx(t)=[-C(x(t))+AF(x(t))+BF(\int_0^{+\infty}K(s)x(t-s)ds)]dt +\sigma(x(t))d\omega(t), $$ using Theorem \ref{thm3.1}, one can easy to get a set of similar corollary for checking the almost sure exponential stability for the trivial solution of this system. \end{remark} From the results in this paper, it is easy to see that our development results are more general than those reported in \cite{b1,z2}. Moreover, we conclude the stability of system \eqref{e2.1} is dependent of the magnitude of noise, and therefore, noisy fluctuations should be regarded adequately. \section{Example} In this section, we present an example to demonstrate the correctness and effectiveness of the main results. Consider the stochastic Cohen-Grossberg neural networks with unbounded distributed delays \begin{align*} dx_1(t)&=-(1+\sin x_1(t))[10x_1-\sum_{j=1}^2a_{1j}f_j(x_j(t))\\ &\quad -\sum_{j=1}^2b_{1j}f_j(\int_0^{+\infty} K_{1j}(s)x_j(t-s)ds)]dt +\sum_{j=1}^2\sigma_{1j}(x_j(t))d\omega_j(t), \end{align*} \begin{equation} \begin{aligned} dx_2(t)&=-(1+\cos x_2(t))[4x_2-\sum_{j=1}^2a_{2j}f_j(x_j(t))\\ &\quad -\sum_{j=1}^2b_{2j}f_j(\int_0^{+\infty} K_{2j}(s)x_j(t-s)ds)]dt +\sum_{j=1}^2\sigma_{2j}(x_j(t))d\omega_j(t). \end{aligned}\label{e4.1} \end{equation} This system satisfies all assumptions in this paper with $f_1(x)=\tanh x,f_2(x)=\frac{1}{2}(| x-1|-| x+1|)$, by taking $a_{11}=a_{12}=a_{21}=a_{22}=1$, $b_{11}=b_{12}=b_{21}=b_{22}=1$, and $q_1=1$, $a_1=18$, $a_2=10$, $\underline{h}_1=1$, $\overline{h}_1=2$, $\underline{h}_2=3$, $\overline{h}_2=8$, $\beta_1=\beta_2=1$, $L_{ij}=1$, $i,j=1,2$, $$ K(s)=\begin{pmatrix} 2e^{-2s}& 4e^{-4s}\\ 3e^{-3s}& 5e^{-5s} \end{pmatrix}. $$ By simple a computation, one can easily show that \begin{equation} 2\underline{h}_1\alpha_1-\sum_{j=1}^2[(| a_{1j}|+| b_{1j}|)\overline{h}_1\beta_j+(| a_{j1}|+| b_{j1}|)\overline{h}_j\beta_1+L_{j1}^2]=6>0, \label{e4.2} \end{equation} and \begin{equation} 2\underline{h}_2\alpha_2-\sum_{j=1}^2[(| a_{2j}|+| b_{2j}|)\overline{h}_2\beta_j+(| a_{j2}|+| b_{j2}|)\overline{h}_j\beta_2+L_{j2}^2]=6>0. \label{e4.3} \end{equation} from Corollary \ref{coro3.2} we know that \eqref{e4.1} is almost surely exponentially stable. \subsection*{Conclusions} In this paper, we have investigated a stochastic Cohen-Grossberg neural networks with unbounded distributed delays, whose state variable are governed by stochastic non-linear integro-differential equations, which is more general than the previous published papers. By constructing suitable Lyapunov functional, employing the semi-martingale convergence theorem and some inequality, we obtain some sufficient criteria ensuring the almost exponential stability of the networks, and the stability of this system is dependent of the magnitude of noise. Furthermore, the derived conditions for stability of stochastic cellular neural networks with unbounded distributed can be viewed as byproducts of our results. \subsection*{Acknowledgments} The authors are grateful to Prof. Julio G. Dix and to the anonymous reviewer for their constructive and helpful comments, which have contributed to improve the presentation of this article. \begin{thebibliography}{00} \bibitem{b1} S. Blythe, X. Mao and X. Liao, Stability of stochastic delay neural networks, J. Franklin Inst., 338(4), 2001: 481-495. \bibitem{c1} J. Cao and X. Li, Stability in delayed Cohen-Grossberg neural network, LMI optimization approach, Physica D, 177, 2006: 63-78. \bibitem{c2} J. Cao and J. Liang, Boundedness and stability for Cohen-Grossberg neural networks with time-varying delays, J. Math. Anal. Appl., 296(2), 2004: 665-685. \bibitem{c3} J. Cao, G. Feng and Y. Wang, Multistability and multiperiodicity of delayed Cohen-Grossberg neural networks with a general class of activation functions, Physica D: Nonlinear Phennomena, 237(13), 2008: 1734-1749. \bibitem{c4} J. Cao, K. Yuan,and H. Li, Global asymptotical stability of generalized recurrent neural networks with multiple discrete delays and distributed delsys, IEEE Trans. Neural networks, 17(6), 2006: 1646-1651. \bibitem{c5} C. Chen and L. Rong, Delay-independent stability of Cohen-Grossberg neural network, Phys. Lett. A, 317(5-6), 2003: 336-449. \bibitem{c6} A. Chen and J. Cao, Existence and attractivity of almost periodic solutions for cellular neural networks with distributed delays and variable coefficients, Appl. Math. Comput. 134, 2003: 125-140. \bibitem{c7} Y. Chen, Global stability of neural networks with distributed delays, Neural Networks, 15(7), 2002: 867-871. \bibitem{c8} S. Chen, W. Zhao and Y. Xiao, New criteria for globally exponential stability of Cohen-Grossberg neural network. Mathematics and Computers in Simulation, 79, 2009: 1527-1543. \bibitem{c9} M. Cohen and S. Grossberg, Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Syst. Man Cybernet. SMC, 13, 1983: 15-26. \bibitem{d1} M. Dong, H. Zhang and Y. Wang, Dynamics analysis of impulsive stochastic Cohen-Grossberg neural networks with Markovian jumping and mixed time delays, Neurocomputing, 72, 2009: 1999-2004. \bibitem{g1} S. Guo and L. Huang, Stability of Cohen-Grossberg neural networks, IEEE Trans. Neural Networks, 17(1),2006: 106-117. \bibitem{h1} S. Haykin, Neural networks. Prentice-Hall, NJ, 1994. \bibitem{h2} C. Huang and L. Huang, Dynamics of a class of Cohen-Grossberg neural networks with time-varying delays, Nonlinear Anal. RWA, 8(1), 2007: 40-52. \bibitem{h3} C. Huang and L. Huang, Dynamics of a class of Cohen-Grossberg neural networks with time-varying delays, Nonlinear Anal RWA, 8, 2007: 40-52. \bibitem{l1} T. Li, A. Song and S. Fei, Robust stability of stochastic Cohen-Grossberg neural networks with mixed time-varying delays, Neurocomputing, 731(3), 2009: 542-551. \bibitem{l2} X. Li and J. Cao, Exponential stability of stochastic Cohen-Grossberg neural networks with timevarying delays, LNCS., 2005, 3496: 162-167. \bibitem{l3} X. Liao, C. Li and K. Wong, Criteria for exponential stability of Cohen-Grossberg neural networks, Neural Network, 17(10),2004: 1401-1414. \bibitem{l4} W. Lu and T. Chen, $R_+^n$-globle stability of a Cohen-Grossberg neural network system with nonnegative equilibria, Neural Network, 20(6), 2007: 714-722. \bibitem{m1} X. Mao, Stochastic Differential Equation and Application Horwood Publishing, Chichester, 1997. \bibitem{s1} Q. Song and Z. Wang, Stability analysis of impulsive stochastic Cohen-Grossberg neural networks with mixed time delays, Physica A: Statistical Mechanics and its Applications, 387(13), 2008: 3314-3326. \bibitem{w1} L. Wan and J. Sun, Global exponential stability and periodic solutions Cohen-Grossberg neural networks with continuously distributed delays, Physica D, 208, 2005: 1-20. \bibitem{w2} L. Wang and X. Zou, Harmless delays in Cohen-Grossberg neural networks, Physics D, 170(2), 2002: 162-173. \bibitem{w3} Wang, L. and Zou, X., Exponential stability of Cohen-Grossberg neural networks, Neural Network, 15(3), 2002: 415-422. \bibitem{w4} X. Wang, Q. Guo and D. Xu, Exponential p-stability of impulsive stochastic Cohen¨CGrossberg neural networks with mixed delays, Mathematics and Computers in Simulation, 79(5), 2009: 1698-1710. \bibitem{x1} W. Xiong and J. Cao, Global exponential stability of discrete-time Cohen-Grossberg neural networks, Neurocomputing, 64, 2005: 433-446. \bibitem{y1} Z. Yang and D. Xu, Impulsive effects on stability of Cohen-Grossberg neural networks with variable delays, Appl. Math. Comput., 177, 2006: 63-78. \bibitem{z1} O. Zeynep and A. Sabri, New results for global stability of Cohen-Grossberg neural networks with multiple time delays, Neurocomputing, 71, 2008: 3053-3063. \bibitem{z2} H. Zhao and N. Ding, Dynamic analysis of stochastic Cohen-Grossberg neural networks with time delays, Appl. Math. Comput., 183, 2006: 464-470. \bibitem{z3} Q. Zhang, X. Wei, and J. Xu, Global exponential stability of Hopfield neural networks with continuously distributed delays, Phys. lett. A, 315, 2003: 431-436. \end{thebibliography} \end{document}