\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 46, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/46\hfil Steady-state thermal flow] {Steady-state thermal Herschel-Bulkley flow with Tresca's friction law} \author[F. Messelmi, B. Merouani, F. Bouzeghaya\hfil EJDE-2010/46\hfilneg] {Farid Messelmi, Boubakeur Merouani, Fouzia Bouzeghaya} \address{Farid Messelmi \newline Department de Mathematiques, Univerisite Zian Achour de Djelfa, Djelfa 17000, Algeria} \email{foudimath@yahoo.fr} \address{Boubakeur Merouani \newline Department de Mathematiques, Universite Ferhat-Abbes de Setif, Setif 19000, Algeria} \email{mermathsb@hotmail.fr} \address{Fouzia Bouzeghaya \newline Department de Mathematiques, Universite Ferhat-Abbes de Setif, Setif 19000, Algeria} \email{bouzeghaya@yahoo.fr} \thanks{Submitted January 16, 2010. Published April 6, 2010.} \subjclass[2000]{35J85, 76D03, 80A20} \keywords{Herschel-Bulkley fluid; thermal friction law; variational inequality; \hfill\break\indent weak solution} \begin{abstract} We consider a mathematical model which describes the steady-state flow of a Herschel-Bulkley fluid whose the consistency and the yield limit depend on the temperature and with mixed boundary conditions, including a frictional boundary condition. We derive a weak formulation of the coupled system of motion and energy equations which consists of a variational inequality for the velocity field. We prove the existence of weak solutions. In the asymptotic limit case of a high thermal conductivity, the temperature becomes a constant solving an implicit total energy equation involving the consistency function and the yield limit. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} The model of Herschel-Bulkley fluid has been used in various publications to describe the flow of metals, plastic solids and some polymers. The literature concerning this topic is extensive; see e.g. \cite{d3,p1} and references therein. The new feature in the model is due to a Fourier type boundary condition, and consists in the appearance of a nonlocal term on the boundary part where Tresca's thermal friction is taken into account. An intrinsic inclusion leads in a natural way to variational equations which justify the study of problems involving the incompressible, plastic Herschel-Bulkley fluid using arguments of the variational analysis. The paper is organized as follows. In Section 2 we present the mechanical problem of the steady-state Herschel-Bulkley flow where the consistency and the yield limit depend on the temperature and with Tresca's thermal friction law. Moreover, we introduce some notations and preliminaries. In Section 3 we derive the variational formulation of the problem. We prove in Section 4 the existence of weak solutions as well as an existence result to the steady-state Herschel-Bulkley flow with temperature dependent nonlocal consistency, yield limit and tresca's friction, which can be obtained as an asymptotic limit case of a very large thermal conductivity. \section{Statement of the Problem} We consider a mathematical problem modelling the steady-state flow of a thermal Herschel-Bulkley fluid in a bounded domain $\Omega \subset\mathbb{R}^n$ $(n=2,3)$, with the boundary $\Gamma $ of class $C^1$, partitioned into two disjoint measurable parts $\Gamma_0$ and $\Gamma_1$ such that $\mathop{\rm meas}(\Gamma_0)>0$. The fluid is supposed to be incompressible, the consistency and the yield limit depend on the temperature. The fluid is acted upon by given volume forces of density $f$. In addition, we admit a possible external heat source proportional to the temperature. On $\Gamma_0$ we suppose that the velocity is known. The temperature is given by a homogeneous Neumann boundary condition on $\Gamma_0$. We impose on $\Gamma_1$ a frictional contact described by a Tresca thermal friction law, as well as a Fourier boundary condition. We denote by $\mathbb{S}_n$ the space of symmetric tensors on $\mathbb{R}^n$. We define the inner product and the Euclidean norm on $\mathbb{R}^n$ and $\mathbb{S}_n$, respectively, by \begin{gather*} \mathbf{u}\cdot \mathbf{v}=u_{i}v_{i}\quad \forall \mathbf{u}, \mathbf{v}\in \mathbb{R}^n\quad\text{and}\quad \boldsymbol{\sigma}\cdot \boldsymbol{\tau} =\sigma_{ij}\tau _{ij}\quad \forall \boldsymbol{\sigma},\boldsymbol{\tau} \in\mathbb{S}_n. \\ |\mathbf{u}|=(\mathbf{u}\cdot \mathbf{u})^{1/2}\quad \forall \mathbf{u}\in \mathbb{R}^n\quad \text{and}\quad |\boldsymbol{\sigma}|=(\boldsymbol{\sigma}\cdot \boldsymbol{\sigma})^{1/2}\quad \forall \boldsymbol{\sigma}\in \mathbb{S}_n. \end{gather*} Here and below, the indices $i$ and $j$ run from $1$ to $n$ and the summation convention over repeated indices is used. We denote by $\tilde{\boldsymbol{\sigma}}$ the deviator of $\boldsymbol{\sigma}=(\sigma_{ij})$ given by \[ \tilde{\boldsymbol{\sigma}}=(\tilde{\sigma}_{ij}),\quad \tilde{ \sigma}_{ij}=\sigma_{ij}-\frac{\sigma_{kk}}{n}\delta _{ij}, \] where $\boldsymbol{\delta}=(\delta_{ij})$ denotes the identity tensor. Let $10$ is the thermal conductivity and the term $-\alpha \theta$ represents the external heat source with $\alpha >0$. \eqref{e2.5} gives the velocity on $\Gamma_0$. Condition \eqref{e2.6} represents a Tresca thermal friction law on $\Gamma_1$ where $\upsilon (\theta)$ is the friction yield coefficient for liquid-solid interface. \eqref{e2.7} is a homogeneous Neumann boundary condition on $\Gamma_0$. Finally, \eqref{e2.8} represents a Fourier boundary condition on $\Gamma_1$, where $\beta \geq 0$ represents the Robin coefficient. \begin{remark} \label{rmk2.1} \rm In the constitutive law \eqref{e2.2} of the Herschel-Bulkley fluid, the viscosity is given by the formula \begin{equation} \mathbf{\eta (\theta)}=\mu ( \theta )|\varepsilon ( \mathbf{u})|^{p-2}. \label{e2.9} \end{equation} \end{remark} We define \[ W=\left\{ \mathbf{v}\in W^{1,p}( \Omega)^n:\mathop{\rm div}(\mathbf{v}) =0\ \text{in } \Omega ,\ \mathbf{v}=0 \text{ on } \Gamma_0 \text{ and } \mathbf{v}_{\nu }=0\text{ on }\Gamma_1\right\} , \] which is a Banach space equipped with the norm \[ \| \mathbf{v}\|_{W}=\| \mathbf{v} \|_{W^{1,p}(\Omega)^n}. \] For the rest of this article, we will denote by $c$ possibly different positive constants depending only on the data of the problem. Denote by $p'$ the conjugate of $p$ and by $q'$ the conjugate of $q$, $q\in [0,+\infty [ $. We introduce the following functionals \begin{gather*} B :W\times W\times W\to\mathbb{R},\quad B (\mathbf{u}, \mathbf{v}, \mathbf{w} ) =\int_{\Omega }\mathbf{u}\cdot \nabla\mathbf{ v}\cdot \mathbf{w}\,dx \\ E :W^{1, q}(\Omega )\times W^{1, q'}(\Omega )\times W\to \mathbb{R},\quad E (\theta, \tau, \mathbf{v})=\int_{\Omega }\mathbf{\theta \nabla \tau }\cdot \mathbf{v}\, dx. \end{gather*} We assume \begin{gather} \begin{gathered} \forall x\in \Omega ,\quad \mu (. ,x)\in C^{0}(\mathbb{R})\quad\text{and}\\ \exists \mu_1, \mu_{2}>0: \mu_1\ \leq \mu (y, x)\leq \mu_{2}\quad \forall y\in \mathbb{R},\; \forall x\in \Omega. \end{gathered} \label{e2.10} \\ \begin{gathered} \forall x\in \Omega ,\quad g (. ,x)\in C^{0}( \mathbb{R})\quad\text{and}\\ \exists g_0>0: 0\leq g (y , x)\leq g_0\quad \forall y\in \mathbb{R},\; \forall x\in \Omega . \end{gathered} \label{e2.11} \\ \begin{gathered} \forall x\in \Gamma_1, \upsilon(. ,x)\in C^{0}( \mathbb{R})\quad \text{and}\\ \exists \upsilon_0>0: 0 \leq \upsilon (y , x)\leq \upsilon_0\quad \forall y\in \mathbb{R},\; \forall x\in \Gamma_1. \end{gathered} \label{e2.12} \end{gather} \begin{lemma} \label{lem2.2} Suppose that \begin{equation} \frac{3n}{n+2}\leq p<2\quad\text{and}\quad 1n$, that is, $q<\frac{n}{n-1}$, using H\"{o}lder's inequality . \end{proof} For the rest of this article, we take $\frac{3n}{n+2}\leq p<2$ and $1n$, that is, $q0$. It means that $DJ$ is strict monotone. On the other hand, for every $\boldsymbol{\sigma}\in L^{p}(\Omega )_{s}^{n\times n}$ \[ \int_{\Omega }|\mu |\boldsymbol{\sigma} |^{p-2}\boldsymbol{\sigma}|^{p'}\,dx \leq \mu_{2}^{p'}\int_{\Omega }|\boldsymbol{\sigma} |^{p}\,dx , \] which proves that $DJ$ is bounded on $W$. Now, we consider the differential operator \begin{equation} \begin{gathered} F _{\mathbf{w}}:W\to W',\quad \mathbf{u}\mapsto F _{w}\mathbf{u} \quad \forall \mathbf{v}\in W \\ \langle F _{\mathbf{w}}\mathbf{u}, \mathbf{v} \rangle_{W'\times W}=B (\mathbf{w}, \mathbf{u}, \mathbf{v}) +\langle DJ(\varepsilon (\mathbf{u} )), \varepsilon (\mathbf{v})\rangle_{L^{p'}(\Omega )_{s}^{n\times n}\times L^{p}(\Omega )_{s}^{n\times n}}. \end{gathered} \label{e4.5} \end{equation} By Lemma \eqref{e2.2} and the properties of $DJ$, we deduce that $ F _{\mathbf{w}}$ is hemi-continuous, strict monotone and bounded on $W$ for every $\mathbf{w}\in W$. Therefore, for every $\mathbf{u}\in W$ we have \[ \frac{\langle F_{\mathbf{w}}u, \mathbf{u} \rangle_{W'\times W}}{\| \mathbf{u} \|_{W}}\geq \mu_1\frac{\int_{\Omega }|\varepsilon(\mathbf{u})|^{p} \,dx }{\| \mathbf{u}\|_{W}}. \] Applying the generalized Korn inequality, we obtain \[ \frac{\langle F _{\mathbf{w}}\mathbf{u}, \mathbf{u}\rangle _{W'\times W}}{\|\mathbf{u}\|_{W}}\geq \mu_1c\| \mathbf{u} \|_{W}^{p-1}. \] It follows that the operator $F _{\mathbf{w}}$ is coercive on $W$ for every $\mathbf{w}\in W$. Furthermore, the functional $\mathbf{v}\mapsto \phi (\lambda, \mathbf{v})$ is continuous and convex on $W$, it is then lower semi-continuous on $W$. Consequently, the existence and uniqueness of the solution result from the classical theorems (see \cite{b1}) on variational inequalities with monotone operators and convex functionals. To prove the estimate \eqref{e4.4} we proceed as follows, by choosing $\mathbf{v}=0$ as test function in \eqref{e4.3}, we get \[ \int_{\Omega }\mu (\lambda) |\varepsilon (\mathbf{u})|^{p} \,dx \leq \| \mathbf{f}\|_{W'}\| \mathbf{u}\|_{W}. \] Hence, Korn's inequality permits to conclude the proof. \end{proof} The second auxiliary existence result is as follows. \begin{proposition} \label{prop4.5} Let $\mathbf{u}=\mathbf{u}(\mathbf{w}, \mathbf{\lambda })$ be the solution of problem \eqref{e4.3} given by Proposition \ref{prop4.4}. Then there exists $\theta=\theta(\mathbf{u}, \lambda )\in W^{1, q}(\Omega )$, a solution to the problem \begin{equation} \begin{aligned} &-E (\theta, \tau, \mathbf{u} ) +k\int_{\Omega }\nabla\theta\cdot\mathbf{ \nabla \tau}\, dx +\alpha \int_{\Omega }\theta \tau \,dx +\beta \int_{\Gamma_1}\theta \tau \, ds \\ &=\int_{\Omega }(\mathbf{\mu (\lambda) } |\varepsilon (\mathbf{u}) |^{p}+ g (\mathbf{\lambda }) |\varepsilon (\mathbf{u}) |)\tau \, dx +\int_{\Gamma_1}\upsilon (\mathbf{\lambda })| \mathbf{u}_{\tau }|\tau \, ds\quad \forall \tau\in W^{1, q'}(\Omega), \end{aligned} \label{e4.6} \end{equation} and satisfies the estimate \begin{equation} \alpha \| \theta\| _{L^{q}(\Omega)}+\beta \| \theta\|_{L ^{q}(\Gamma )}+\sqrt{k}\| \nabla\theta\| _{L^{q}(\Omega )^n} \leq \Re (\upsilon_0, \mu_1, \|\mathbf{f} \|_{W'}), \label{e4.7} \end{equation} where $\Re $ is a positive function. \end{proposition} \begin{proof} There is a technical difficulty in the resolution of such problem. To this aim we introduce the following approximate problem \begin{equation} \begin{aligned} &-E (\theta_{m}, \tau, \mathbf{u})+k\int_{\Omega }\nabla\theta_{m}\cdot \nabla\tau \, dx +\alpha \int_{\Omega }\theta_{m} \tau \, dx +\beta \int_{\Gamma_1}\theta_{m} \tau \,ds \\ &=\int_{\Omega }F_{m}\tau \, dx+\int_{\mathbf{ \Gamma }_1}\upsilon (\mathbf{\lambda }) |\mathbf{u}_{\tau }|\tau \,ds\quad \forall \tau \in H^1(\Omega ), \end{aligned} \label{e4.8} \end{equation} where \begin{equation} F_{m}=\frac{m\big[ \mu (\lambda) |\varepsilon (\mathbf{u})|^{p} + g ( \mathbf{\lambda })|\varepsilon (\mathbf{u})|\big]} {m+\mu (\lambda )|\varepsilon (\mathbf{u})|^{p} +g (\mathbf{\lambda })|\varepsilon ( \mathbf{u})|} \in L ^{\infty }(\Omega ). \label{e4.9} \end{equation} Let us consider for every $\mathbf{u}\in W$ the form $G :H^1(\Omega )\times H^1(\Omega )\to \mathbb{R}$, \begin{equation} G (\theta, \tau) =-E (\theta, \tau, \mathbf{u})+k\int_{\Omega }\nabla\theta\cdot \nabla\tau dx +\alpha \int_{\Omega }\theta \tau dx +\beta \int_{ \Gamma_1}\theta \tau ds. \label{e4.10} \end{equation} Lemma \ref{lem2.2} and the Poincar\'{e} type inequality affirm that $G $ is bilinear, continuous and coercive on $H^1(\Omega )\times H^1( \Omega )$ for every $\mathbf{u}\in W$. Furthermore, by H\"{o}lder's inequality and Sobolev's trace inequality using the estimate \eqref{e4.4}, we get \[ |\int_{\Gamma_1}\upsilon ( \lambda )|\mathbf{u}_{\tau }|\tau \,ds | \leq c\| \tau \|_{H ^1(\Omega )}. \] Consequently, from the Lax-Milgram theorem, there exists a unique solution $\theta_{m}\in H^1(\Omega)$ to the problem \eqref{e4.8}. Now, we test the apprixamte equation \eqref{e4.8} by the function \begin{equation} \tau=\mathop{\rm sign}(\theta_{m}) [ 1-\frac{ 1}{(1+|\theta_{m}|)^{\xi }}] \in H^1(\Omega )\cap L ^{\infty }(\Omega ),\quad \xi >0. \label{e4.11} \end{equation} We find by using some integration by parts (see for instance \cite{d1}) \begin{equation} \xi k\int_{\Omega }\frac{|\nabla\theta _{m}|^{2}}{(1+|\theta_{m}|)^{\xi +1}}\,dx +\beta C(\xi )\int_{\mathbf{ \Gamma }_1}|\theta_{m}|\,ds\leq M, \label{e4.12} \end{equation} where $M=M(\upsilon_0, \mu_1, c, \| f\|_{W'})$ is a positive function. Particularly \begin{equation} \int_{\Omega }\frac{|\nabla\theta _{m}|^{2}}{(1+|\theta_{m}|)^{\xi +1}}\,dx \leq \frac{M}{\xi k}. \label{e4.13} \end{equation} Denoting by $\gamma$ the function \[ \gamma(r)=\int_0^{r}\frac{dt}{( 1+|t|)^{\tfrac{\xi +1}{2}}}. \] Then \[ \nabla\gamma(\theta_{m}) =\frac{\nabla \theta _{m}} {(1+| \theta_{m}|)^{(\xi +1)/2}}. \] We deduce from \eqref{e4.12} that $\nabla\gamma(\theta_{m})$ is bounded in $L^{2}(\Omega )$, hence $\gamma(\theta_{m})$ is bounded in $H^1(\Omega )$. Sobolev's imbedding asserts that $H^1(\Omega)\subset L^{\rho }(\Omega )$, where $\rho =\frac{2n}{n-2}$ if $n\neq 2$ and $2<\rho <+\infty $ if $n=2$. Keeping in mind that $\gamma(r)\sim r^{\tfrac{1-\xi }{ 2} }$ as $r\to +\infty $. Then $|\theta_{m}|^{\tfrac{1-\xi}{2}}$ is bounded in $L^{\rho }(\Omega )$. Consequently \begin{equation} |\theta_{m}|^{\rho(1-\xi )/2} \quad \text{is bounded in }L^1(\Omega ). \label{e4.14} \end{equation} Moreover, by H\"{o}lder's inequality, \[ \int_{\Omega }|\nabla\theta_{m}|^{q}\,dx \leq \Big(\int_{\Omega }\frac{| \nabla \theta _{m}|^{2}}{(1+|\theta_{m}|)^{\xi +1}}\,dx \Big)^{q/2} \Big(\int_{\Omega }(1+|\theta_{m}|) ^{(\xi +1)q/(2-q)}\,dx \Big)^{(2-q)/2}. \] Hence, from \eqref{e4.13}, we obtain \begin{equation} \int_{\Omega }|\nabla\theta_{m}|^{q}\,dx \leq (\frac{M}{k\xi })^{q/2} \Big(\int_{\Omega }(1+|\theta_{m}|)^{(\xi +1)q/(2-q)}\,dx \Big)^{(2-q)/2}. \label{e4.15} \end{equation} Let us choose the couple $(\xi , q)$ such that $\frac{ \rho (1-\xi )}{2}=\frac{(\xi+1)q}{2-q}$. It means that $q=\frac{2\rho (1-\xi)}{\rho (1-\xi )+2(1+\xi )}$. Then if $10$ and let $k\to +\infty $. From the estimates \eqref{e4.4}, \eqref{e4.7} and using Rellich-Kondrachof's theorem, we can extract a subsequence of $(\mathbf{u}_{k}, \theta_{k})$, still denoted by $(\mathbf{u}_{k}, \theta_{k})$, satisfying \begin{gather*} \mathbf{u}_{k}\to \mathbf{u}\quad \text{in $W$ weakly},\\ \mathbf{u}_{k}\to \mathbf{u}\quad \text{in $L^{s}(\Omega )^n$ strongly}, \\ \nabla\theta_{k}\to 0\quad \text{in $L^1(\Omega )^n$ strongly}, \\ \theta_{k}\to \Theta =\text{a constant}\quad \text{in $L ^1(\Omega )$ strongly}, \end{gather*} where $n\leq s<2n/(n-2)$. We can proceed as in the proof of Theorem \ref{thm4.1} to get the convergence \begin{equation} \begin{aligned} &\lim \big[ \int_{\Omega }\mu (\theta _{k})|\varepsilon (\mathbf{u}_{k})|^{p}\tau \, dx +\int_{\Omega }g (\theta_{k}) |\varepsilon (\mathbf{u}_{k}) |\tau \, dx+\int_{\Gamma_1}\upsilon (\theta_{k})|( \mathbf{u}_{k})_{\tau }|\tau \,ds\Big] \\ &=\mu (\Theta )\int_{\Omega }| \varepsilon (\mathbf{u})| ^{p}\mathbf{\tau dx }+g (\Theta )\int_{\Omega }|\varepsilon (\mathbf{u}) |\tau \, dx+\upsilon (\Theta )\int_{\Gamma_1}|\mathbf{u}_{\tau }|\tau \,ds. \end{aligned} \label{e4.47} \end{equation} Then, we can pass to the limit $k\to +\infty $ in \eqref{e3.5} and taking $\tau=1$ to obtain the implicit scalar equation \eqref{e3.7}. Now, taking the limit $k\to +\infty $ in \eqref{e3.4}, it follows that $\mathbf{u}$ solves the nonlocal inequality \eqref{e3.6}. Moreover, the scalar equation \eqref{e3.7} asserts that $\Theta \geq 0$. \end{proof} \begin{thebibliography}{00} \bibitem{b1} H. Brezis; \emph{Equations et In\'{e}quations Non Lin\'{e}aires dans les Espaces en Dualit\'{e}}, Annale de l'Institut Fourier, Tome 18, No.1, (1968), p. 115-175. \bibitem{b2} M. Bul\'{\i}\v{c}ek, P. Gwiazda, J. M\'{a}lek and A. \'{S}wierczewska; \emph{On steady Flows of an Incompressible Fluids with Implicit Power-Law-Like Rheology}, Advances of Calculus of Variation, (2009) \bibitem{c1} L. Consiglieri and J. F. Rodrigues; \emph{A Nonlocal Friction Problem for a Class of Non-Newtonian Flows}, Portugaliae Mathematica 60:2 (2003), 237-252. \bibitem{d1} J. Droniou et C. Imbert; \emph{Solutions de Viscosit\'{e} et Solutions Variationnelle pour EDP Non-Lin\'{e}aires}, Cours de DEA, D\'{e}partement de Math\'{e}matiques, Montpellier II, (2002). \bibitem{d2} G. Duvaut et J. L. Lions; \emph{Transfert de la Chaleur dans un Fluide de Bingham dont la Viscosit\'{e} D\'{e}pend de la Temp\'{e} rature.} Journal of Functional Analysis 11 (1972), 85-104. \bibitem{d3} G. Duvaut et J. L. Lions; \emph{Les In \'{e}quations en M\'{e}canique et en Physique}, Dunod (1976). \bibitem{f1} Fan, Ky; \emph{Fixed Point and Min-max Theorems in Locally Convex Topological Linear Spaces}, Proc Natl. Acad. Sci. U S A. (1952), 38(2): 121--126. \bibitem{f2} H. Fellouah, C. Castelain, A. Ould El Moctar et H. Peerhossaini; \emph{Instabilit\'{e} dans un \'{e}coulement de fluides complexes en canal courbe}, 16\`{e}me Congr\`{e}s Fran\c{c}ais de M\'{e} canique, Nice, 1-5 septembre 2003. \bibitem{g1} P. N. Godbole and O. C. Zienkiewicz; \emph{ Flow of Plastic and Viscoplastic Solids with Special Reference to Extension and Forming Processes}, Int, J, Num. Eng, 8, (1976), p. 3-16. \bibitem{k1} S. Kobayashi and N. Robelo; \emph{A Coupled Analysis of Viscoplastic Deformation and Heat Transfert: I Theoretical Consideration, II Applications,} Int, J. of Mech. Sci, 22, 699-705, 707-718, (1980). \bibitem{l1} J. L. Lions; \emph{Quelques M\'{e}thodes de R\'{e}solution des Probl\`{e}mes Aux Limites Non Lin\'{e}aires}, Dunod (1969). \bibitem{l2} J. L. Lions et E. Magenes; \emph{Probl\`{e}mes aux Limites Non Homog\`{e}nes et Applications}, Volume I, Dunod (1968). \bibitem{m1} J. M\'{a}lek, M. R\r{u}\v{z}i\v{c}ka, and V. V. Shelukhin; \emph{Herschel-Bulkley fluids,Existence and Regularity of SteadyFlows}, Math. Models Methods Appl. Sci. 15, 12 (2005), 1845--1861. \bibitem{m2} F. Messelmi, B. Merouani and M. Meflah F; \emph{Nonlinear Thermoelasticity Problem}, Analele of University Oradea, Fasc. Mathematica, Tome XV (2008), 207-217. \bibitem{m3} 14] B. Merouani, F. Messelmi and S. Drabla; \emph{Dynamical Flow of a Bingham Fluid with Subdifferential Boundary Condition}, Analele of University Oradea, Fasc. Mathematica, Tome XVI (2009), 5-30. \bibitem{p1} Papanastasiou; \emph{Flow of Materials with Yield}, J. of Rheology. 31(5), 385-404 (1987). \bibitem{s1} M. Selmani, B. Merouani and L. Selmani; \emph{Analysis of a Class of Frictional Contact Problems for the Bingham Fluid}, Mediterr. J. Math 1-12, (2004). \end{thebibliography} \end{document}