\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 46, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/46\hfil Steady-state thermal flow] {Steady-state thermal Herschel-Bulkley flow with Tresca's friction law} \author[F. Messelmi, B. Merouani, F. Bouzeghaya\hfil EJDE-2010/46\hfilneg] {Farid Messelmi, Boubakeur Merouani, Fouzia Bouzeghaya} \address{Farid Messelmi \newline Department de Mathematiques, Univerisite Zian Achour de Djelfa, Djelfa 17000, Algeria} \email{foudimath@yahoo.fr} \address{Boubakeur Merouani \newline Department de Mathematiques, Universite Ferhat-Abbes de Setif, Setif 19000, Algeria} \email{mermathsb@hotmail.fr} \address{Fouzia Bouzeghaya \newline Department de Mathematiques, Universite Ferhat-Abbes de Setif, Setif 19000, Algeria} \email{bouzeghaya@yahoo.fr} \thanks{Submitted January 16, 2010. Published April 6, 2010.} \subjclass[2000]{35J85, 76D03, 80A20} \keywords{Herschel-Bulkley fluid; thermal friction law; variational inequality; \hfill\break\indent weak solution} \begin{abstract} We consider a mathematical model which describes the steady-state flow of a Herschel-Bulkley fluid whose the consistency and the yield limit depend on the temperature and with mixed boundary conditions, including a frictional boundary condition. We derive a weak formulation of the coupled system of motion and energy equations which consists of a variational inequality for the velocity field. We prove the existence of weak solutions. In the asymptotic limit case of a high thermal conductivity, the temperature becomes a constant solving an implicit total energy equation involving the consistency function and the yield limit. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} The model of Herschel-Bulkley fluid has been used in various publications to describe the flow of metals, plastic solids and some polymers. The literature concerning this topic is extensive; see e.g. \cite{d3,p1} and references therein. The new feature in the model is due to a Fourier type boundary condition, and consists in the appearance of a nonlocal term on the boundary part where Tresca's thermal friction is taken into account. An intrinsic inclusion leads in a natural way to variational equations which justify the study of problems involving the incompressible, plastic Herschel-Bulkley fluid using arguments of the variational analysis. The paper is organized as follows. In Section 2 we present the mechanical problem of the steady-state Herschel-Bulkley flow where the consistency and the yield limit depend on the temperature and with Tresca's thermal friction law. Moreover, we introduce some notations and preliminaries. In Section 3 we derive the variational formulation of the problem. We prove in Section 4 the existence of weak solutions as well as an existence result to the steady-state Herschel-Bulkley flow with temperature dependent nonlocal consistency, yield limit and tresca's friction, which can be obtained as an asymptotic limit case of a very large thermal conductivity. \section{Statement of the Problem} We consider a mathematical problem modelling the steady-state flow of a thermal Herschel-Bulkley fluid in a bounded domain $\Omega \subset\mathbb{R}^n$ $(n=2,3)$, with the boundary $\Gamma $ of class $C^1$, partitioned into two disjoint measurable parts $\Gamma_0$ and $\Gamma_1$ such that $\mathop{\rm meas}(\Gamma_0)>0$. The fluid is supposed to be incompressible, the consistency and the yield limit depend on the temperature. The fluid is acted upon by given volume forces of density $f$. In addition, we admit a possible external heat source proportional to the temperature. On $\Gamma_0$ we suppose that the velocity is known. The temperature is given by a homogeneous Neumann boundary condition on $\Gamma_0$. We impose on $\Gamma_1$ a frictional contact described by a Tresca thermal friction law, as well as a Fourier boundary condition. We denote by $\mathbb{S}_n$ the space of symmetric tensors on $\mathbb{R}^n$. We define the inner product and the Euclidean norm on $\mathbb{R}^n$ and $\mathbb{S}_n$, respectively, by \begin{gather*} \mathbf{u}\cdot \mathbf{v}=u_{i}v_{i}\quad \forall \mathbf{u}, \mathbf{v}\in \mathbb{R}^n\quad\text{and}\quad \boldsymbol{\sigma}\cdot \boldsymbol{\tau} =\sigma_{ij}\tau _{ij}\quad \forall \boldsymbol{\sigma},\boldsymbol{\tau} \in\mathbb{S}_n. \\ |\mathbf{u}|=(\mathbf{u}\cdot \mathbf{u})^{1/2}\quad \forall \mathbf{u}\in \mathbb{R}^n\quad \text{and}\quad |\boldsymbol{\sigma}|=(\boldsymbol{\sigma}\cdot \boldsymbol{\sigma})^{1/2}\quad \forall \boldsymbol{\sigma}\in \mathbb{S}_n. \end{gather*} Here and below, the indices $i$ and $j$ run from $1$ to $n$ and the summation convention over repeated indices is used. We denote by $\tilde{\boldsymbol{\sigma}}$ the deviator of $\boldsymbol{\sigma}=(\sigma_{ij})$ given by \[ \tilde{\boldsymbol{\sigma}}=(\tilde{\sigma}_{ij}),\quad \tilde{ \sigma}_{ij}=\sigma_{ij}-\frac{\sigma_{kk}}{n}\delta _{ij}, \] where $\boldsymbol{\delta}=(\delta_{ij})$ denotes the identity tensor. Let $1
0$ is the thermal
conductivity and
the term $-\alpha \theta$ represents the external heat
source with $\alpha >0$. \eqref{e2.5} gives the velocity on $\Gamma_0$.
Condition \eqref{e2.6} represents a Tresca thermal friction law on
$\Gamma_1$ where $\upsilon (\theta)$ is the friction
yield coefficient for liquid-solid interface.
\eqref{e2.7} is a homogeneous Neumann
boundary condition on $\Gamma_0$. Finally, \eqref{e2.8} represents a
Fourier boundary condition on $\Gamma_1$, where $\beta \geq 0$
represents the Robin coefficient.
\begin{remark} \label{rmk2.1} \rm
In the constitutive law \eqref{e2.2} of the Herschel-Bulkley fluid,
the viscosity is given by the formula
\begin{equation}
\mathbf{\eta (\theta)}=\mu (
\theta )|\varepsilon (
\mathbf{u})|^{p-2}. \label{e2.9}
\end{equation}
\end{remark}
We define
\[
W=\left\{ \mathbf{v}\in W^{1,p}(
\Omega)^n:\mathop{\rm div}(\mathbf{v})
=0\ \text{in } \Omega ,\ \mathbf{v}=0 \text{ on } \Gamma_0
\text{ and } \mathbf{v}_{\nu }=0\text{ on }\Gamma_1\right\} ,
\]
which is a Banach space equipped with the norm
\[
\| \mathbf{v}\|_{W}=\|
\mathbf{v} \|_{W^{1,p}(\Omega)^n}.
\]
For the rest of this article, we will denote by $c$ possibly different
positive constants depending only on the data of the problem.
Denote by $p'$ the conjugate of $p$ and by $q'$ the conjugate of
$q$, $q\in [0,+\infty [ $.
We introduce the following functionals
\begin{gather*}
B :W\times W\times W\to\mathbb{R},\quad
B (\mathbf{u}, \mathbf{v}, \mathbf{w} )
=\int_{\Omega }\mathbf{u}\cdot \nabla\mathbf{
v}\cdot \mathbf{w}\,dx
\\
E :W^{1, q}(\Omega )\times W^{1, q'}(\Omega )\times W\to \mathbb{R},\quad
E (\theta, \tau, \mathbf{v})=\int_{\Omega }\mathbf{\theta \nabla
\tau }\cdot \mathbf{v}\, dx.
\end{gather*}
We assume
\begin{gather}
\begin{gathered}
\forall x\in \Omega ,\quad
\mu (. ,x)\in C^{0}(\mathbb{R})\quad\text{and}\\
\exists \mu_1, \mu_{2}>0: \mu_1\ \leq \mu (y, x)\leq
\mu_{2}\quad \forall y\in \mathbb{R},\;
\forall x\in \Omega.
\end{gathered} \label{e2.10}
\\
\begin{gathered}
\forall x\in \Omega ,\quad g (. ,x)\in C^{0}(
\mathbb{R})\quad\text{and}\\
\exists g_0>0: 0\leq g (y , x)\leq g_0\quad \forall y\in
\mathbb{R},\; \forall x\in \Omega .
\end{gathered} \label{e2.11}
\\
\begin{gathered}
\forall x\in \Gamma_1, \upsilon(. ,x)\in C^{0}(
\mathbb{R})\quad \text{and}\\
\exists \upsilon_0>0: 0 \leq \upsilon (y , x)\leq
\upsilon_0\quad \forall y\in \mathbb{R},\;
\forall x\in \Gamma_1.
\end{gathered} \label{e2.12}
\end{gather}
\begin{lemma} \label{lem2.2}
Suppose that
\begin{equation}
\frac{3n}{n+2}\leq p<2\quad\text{and}\quad
1n$, that is,
$q<\frac{n}{n-1}$, using H\"{o}lder's inequality .
\end{proof}
For the rest of this article, we take $\frac{3n}{n+2}\leq p<2$
and $1
n$, that is, $q
0$ and let $k\to +\infty $. From the estimates
\eqref{e4.4}, \eqref{e4.7} and using Rellich-Kondrachof's theorem, we can
extract a subsequence of $(\mathbf{u}_{k}, \theta_{k})$, still
denoted by $(\mathbf{u}_{k}, \theta_{k})$, satisfying
\begin{gather*}
\mathbf{u}_{k}\to \mathbf{u}\quad \text{in $W$ weakly},\\
\mathbf{u}_{k}\to \mathbf{u}\quad \text{in $L^{s}(\Omega )^n$ strongly}, \\
\nabla\theta_{k}\to 0\quad \text{in $L^1(\Omega )^n$ strongly}, \\
\theta_{k}\to \Theta =\text{a constant}\quad
\text{in $L ^1(\Omega )$ strongly},
\end{gather*}
where $n\leq s<2n/(n-2)$. We can proceed as in the proof of
Theorem \ref{thm4.1} to get the convergence
\begin{equation}
\begin{aligned}
&\lim \big[ \int_{\Omega }\mu (\theta
_{k})|\varepsilon (\mathbf{u}_{k})|^{p}\tau \, dx
+\int_{\Omega }g (\theta_{k})
|\varepsilon (\mathbf{u}_{k})
|\tau \, dx+\int_{\Gamma_1}\upsilon (\theta_{k})|(
\mathbf{u}_{k})_{\tau }|\tau \,ds\Big] \\
&=\mu (\Theta )\int_{\Omega }|
\varepsilon (\mathbf{u})|
^{p}\mathbf{\tau dx }+g (\Theta )\int_{\Omega
}|\varepsilon (\mathbf{u})
|\tau \, dx+\upsilon (\Theta
)\int_{\Gamma_1}|\mathbf{u}_{\tau
}|\tau \,ds.
\end{aligned} \label{e4.47}
\end{equation}
Then, we can pass to the limit $k\to +\infty $ in
\eqref{e3.5} and taking $\tau=1$ to obtain the implicit scalar
equation \eqref{e3.7}. Now, taking the limit $k\to +\infty $
in \eqref{e3.4}, it follows that $\mathbf{u}$ solves the nonlocal
inequality \eqref{e3.6}.
Moreover, the scalar equation \eqref{e3.7} asserts that
$\Theta \geq 0$.
\end{proof}
\begin{thebibliography}{00}
\bibitem{b1} H. Brezis;
\emph{Equations et In\'{e}quations
Non Lin\'{e}aires dans les Espaces en Dualit\'{e}}, Annale de l'Institut
Fourier, Tome 18, No.1, (1968), p. 115-175.
\bibitem{b2} M. Bul\'{\i}\v{c}ek, P. Gwiazda, J. M\'{a}lek
and A. \'{S}wierczewska;
\emph{On steady Flows of an Incompressible Fluids
with Implicit Power-Law-Like Rheology}, Advances of Calculus of Variation,
(2009)
\bibitem{c1} L. Consiglieri and J. F. Rodrigues;
\emph{A Nonlocal Friction Problem for a Class of Non-Newtonian Flows},
Portugaliae Mathematica 60:2 (2003), 237-252.
\bibitem{d1} J. Droniou et C. Imbert;
\emph{Solutions de Viscosit\'{e} et Solutions Variationnelle pour
EDP Non-Lin\'{e}aires}, Cours de DEA, D\'{e}partement de
Math\'{e}matiques, Montpellier II, (2002).
\bibitem{d2} G. Duvaut et J. L. Lions;
\emph{Transfert de la Chaleur dans un Fluide de Bingham dont
la Viscosit\'{e} D\'{e}pend de la Temp\'{e} rature.}
Journal of Functional Analysis 11 (1972), 85-104.
\bibitem{d3} G. Duvaut et J. L. Lions;
\emph{Les In \'{e}quations en M\'{e}canique et en Physique},
Dunod (1976).
\bibitem{f1} Fan, Ky;
\emph{Fixed Point and Min-max Theorems in Locally Convex Topological
Linear Spaces}, Proc Natl. Acad. Sci. U S A. (1952), 38(2): 121--126.
\bibitem{f2} H. Fellouah, C. Castelain, A. Ould
El Moctar et H. Peerhossaini; \emph{Instabilit\'{e} dans un
\'{e}coulement de fluides complexes en canal courbe}, 16\`{e}me
Congr\`{e}s Fran\c{c}ais de M\'{e} canique, Nice, 1-5 septembre
2003.
\bibitem{g1} P. N. Godbole and O. C. Zienkiewicz;
\emph{ Flow of Plastic and Viscoplastic Solids with
Special Reference to Extension and Forming Processes}, Int, J,
Num. Eng, 8, (1976), p. 3-16.
\bibitem{k1} S. Kobayashi and N. Robelo;
\emph{A Coupled Analysis of Viscoplastic Deformation and Heat
Transfert: I Theoretical Consideration, II Applications,}
Int, J. of Mech. Sci, 22, 699-705, 707-718, (1980).
\bibitem{l1} J. L. Lions; \emph{Quelques M\'{e}thodes de
R\'{e}solution des Probl\`{e}mes Aux Limites Non Lin\'{e}aires},
Dunod (1969).
\bibitem{l2} J. L. Lions et E. Magenes;
\emph{Probl\`{e}mes aux Limites Non Homog\`{e}nes et
Applications}, Volume I, Dunod (1968).
\bibitem{m1} J. M\'{a}lek, M. R\r{u}\v{z}i\v{c}ka, and V. V.
Shelukhin; \emph{Herschel-Bulkley fluids,Existence and Regularity of
SteadyFlows}, Math. Models Methods Appl. Sci. 15, 12 (2005), 1845--1861.
\bibitem{m2} F. Messelmi, B. Merouani and M. Meflah F;
\emph{Nonlinear Thermoelasticity Problem}, Analele of University
Oradea, Fasc. Mathematica, Tome XV (2008), 207-217.
\bibitem{m3} 14] B. Merouani, F. Messelmi and S. Drabla;
\emph{Dynamical Flow of a Bingham Fluid with Subdifferential Boundary Condition},
Analele of University Oradea, Fasc. Mathematica, Tome XVI (2009), 5-30.
\bibitem{p1} Papanastasiou;
\emph{Flow of Materials with Yield}, J. of Rheology. 31(5), 385-404 (1987).
\bibitem{s1} M. Selmani, B. Merouani and L. Selmani;
\emph{Analysis of a Class of Frictional Contact Problems for the
Bingham Fluid}, Mediterr. J. Math 1-12, (2004).
\end{thebibliography}
\end{document}