\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 54, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/54\hfil Existence of radial positive solutions] {Existence of radial positive solutions vanishing at infinity for asymptotically homogeneous systems} \author[A. Djellit, M. Moussaoui, S. Tas\hfil EJDE-2010/54\hfilneg] {Ali Djellit, Mohand Moussaoui, Saadia Tas} % in alphabetical order \address{Ali Djellit \newline University of Annaba, Faculty of Sciences, Department of Mathematics, BP 12, 23000 Annaba, Algeria} \email{a\_djellit@hotmail.com} \address{Mohand Moussaoui \newline Ecole Centrale de Lyon, Department of Mathematics, 36 Rue de Collongue, 69130 Ecully, France} \email{mohand.moussaoui@ec-lyon.fr} \address{Saadia Tas \newline University of Bejaia, Faculty of Sciences and Engineering Sciences, Department of Mathematics, 06000 Bejaia, Algeria} \email{tas\_saadia@yahoo.fr} \thanks{Submitted November 10, 2009. Published April 19, 2010.} \subjclass[2000]{35P65, 35P30} \keywords{$p$-Laplacian operator; nonvariational system; blow up method; \hfill\break\indent Leray-Schauder topological degree} \begin{abstract} In this article we study elliptic systems called asymptotically homogeneous because their nonlinearities may not have polynomial growth. Using the Gidas-Spruck Blow-up method, we obtain a priori estimates, and then using Leray-Schauder topological degree theory, we obtain radial positive solutions vanishing at infinity. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction} We study asymptotically homogeneous systems involving nonlinearities which may not have polynomial growth. More precisely, we establish the existence of radial positive solutions vanishing at infinity, the so-called fundamental states, for systems of the form \begin{equation} \label{SNV} \begin{gathered} -\Delta _{p}u=a_{11}(|x|) f_{11}(u) +a_{12}(|x|) f_{12}(v) \quad\text{in }\mathbb{R}^{N} \\ -\Delta _{q}v=a_{21}(|x|) f_{21}(u) +a_{22}(|x|) f_{22}(v) \quad\text{in }\mathbb{R}^{N} \end{gathered} \end{equation} Here $1
0$ if
for all $\sigma >0$, we have
$\lim_{s\to +\infty} \frac{
\varphi (\sigma s) }{\varphi (s) }=\sigma ^{\rho }$
(respect. $\lim_{s\to 0} \frac{\varphi (\sigma
s) }{\varphi (s) }=\sigma ^{\rho }$).
As an example, we have the function $\varphi (s) =|s| ^{\alpha
-2}s(\ln (1+|s|)) ^{\beta }$ with
$\alpha >1$ and $\beta >1-\alpha $.
It is asymptotically homogeneous at
infinity of order $\alpha -1$ and at the origin of order
$\alpha +\beta -1$.
\begin{proposition}[\cite{GGM}] \label{prop1}
Let $\varphi :\mathbb{R}\to \mathbb{R}$ be a continuous, odd,
asymptotically homogeneous at infinity (respect. at the origin) of order
$\rho $ such that $t\varphi (t) >0$ for all $t\neq 0$ and
$\varphi (t)\to infty$ as $t\to \infty$, then
\begin{itemize}
\item[(i)] For all $\varepsilon $ $\in ] 0,\rho [$, there
exists $t_{0}>0$ such that $\forall t\geq t_{0}$
(respect. $0\leq t\leq t_{0}$),
$c_1t^{\rho -\varepsilon }\leq \varphi (t) \leq
c_{2}t^{\rho +\varepsilon }$;
$c_1,c_{2}$ are positive constants.
Moreover $\forall s\in [ t_{0},t] : (\rho
+1-\varepsilon) \varphi (s) \leq (\rho
+1+\varepsilon) \varphi (t) $.
\item[(ii)] If $(w_n) ,(t_n) $ are real
sequences such that $w_n\to w$ and $t_n\to +\infty $
(respect. $t_n\to 0$) then $\lim_{n\to +\infty }
\frac{\varphi (t_nw_n) }{\varphi (t_n) }
=w^{\rho }$.
\end{itemize}
\end{proposition}
We assume that both the coefficients $a_{ij}$ and the
functions $f_{ij}$ verify smooth conditions; explicitly:
\begin{itemize}
\item[(H1)]
For all $i,j=1,2$, the coefficient
$a_{ij}:[ 0,+\infty [ \to ] 0,+\infty [ $ is
continuous and satisfies $\exists
\theta _{11},\theta _{12}>p$;
$\exists \theta _{21},\theta _{22}>q$; there exists $R>0$ such that
$a_{ij}(\xi) =O(\xi ^{-\theta _{ij}})$ for all $\xi >R$ and
$\tilde{a}_{i}=\min_{r\in [ 0,R] } a_{ij}(r) >0$;
$i,j=1,2;i\neq j$.
\item[(H2)] For all $i,j=1,2$, the function $f_{ij}:
\mathbb{R}\to \mathbb{R}$ is continuous, odd such that
$sf_{ij}(s) >0$ for all $s\neq 0$ and
$\lim_{s\to +\infty} f_{ij}(s) =+\infty $.
\item[(H3)] For all $i,j=1,2$, $f_{ij}$ is
asymptotically homogeneous at the infinity of order $\delta _{ij}$
satisfying $\frac{\delta _{12}\delta _{21}}{(p-1) (q-1) }>1$,
$\alpha _1\delta _{11}-\alpha _1(p-1)-p<0$,
$\alpha_2\delta _{22}-\alpha_2(q-1) -q<0$ and
$\max (\beta _1,\beta_2) \geq 0$ where
$\alpha _1=\frac{p(q-1) +\delta _{12}q}{\delta _{12}\delta _{21}-(
p-1) (q-1) },\alpha_2=\frac{q(p-1)
+\delta _{21}p}{\delta _{12}\delta _{21}-(p-1) (q-1)}$,
$\beta _1=\,\alpha _1-\frac{N-p}{p-1}$,
$\beta_2=\alpha_{2}-\frac{N-q}{q-1}$.
\item[(H4)] For all $i,j=1,2$, $f_{ij}$ is
asymptotically homogeneous at the origin of order
$\bar{\delta }_{ij} $ with $\bar{\delta }_{11}$,
$\bar{\delta }_{12}>p-1$, $\bar{\delta }_{21}$,
$\bar{\delta }_{22}>q-1$.
\end{itemize}
To show the existence result, it is necessary to state some lemmas.
\begin{lemma} \label{lem1}
Let $u\in C^{1}([ 0,+\infty [)
\cap C^{2}(] 0,+\infty [) $ be a positive
solution of the problem
$$
-(r^{N-1}|u'(r) |^{p-2}u'(r)) '\geq 0
$$
in $[ 0,+\infty [ $ such that $u(0) >0$
and $u'(0) \leq 0$, then
\begin{itemize}
\item[(i)] $u(r) >0$ and $u'(r) \leq 0$
for all $r\geq 0$.
Moreover, if $u'(s) =0$
for all $s>0$ then $u'(r) =0$ for all
$r\in [0,s]$.
\item[(ii)] The function $M_{p}$ defined by
$M_{p}(r) =ru'(r)+\frac{N-p}{p-1}u(r)$, $r\geq 0$,
is nonnegative and nonincreasing. In particular, the function
$r\mapsto r^{\frac{N-p}{p-1}}u(r)$ is nondecreasing in
$[0,+\infty [$.
\end{itemize}
\end{lemma}
\begin{proof}
To show (i), let us consider a nontrivial positive
solution $u$ of problem
$$
-(r^{N-1}|u'(r) |^{p-2}u'(r)) '\geq 0\quad\text{in }[ 0,+\infty [ .
$$
Integrating from $s$ to $r$,
we obtain
$r^{N-1}|u'(r) | ^{p-2}u'(r) \leq s^{N-1}|u'(s) |^{p-2}u'(s) $,
for $0r_{0}$ and
$u'(r) =0$, $u(r) =u(0)$
for $0\leq r\leq r_{0}$. So $u$ is non increasing and
$u(0)>0$.
Let us show (ii). Since $u$ is a positive solution of the
problem
$$
-(r^{N-1}|u'(r) | ^{p-2}u'(r)) '\geq 0\quad\text{in }[ 0,+\infty [ ,
$$
we have
$-r^{N-1}(p-1) |u'(r)| ^{p-2}u''(r) -(N-1)
r^{N-2}|u'(r) | ^{p-2}u'(r) \geq 0$.
In other words
$ru''(r) +\frac{N-1}{p-1}u'(r)\leq 0$,
or
$(ru'(r)) '+\frac{N-p}{p-1} u'(r)\leq 0$.
This yields that $M_{p}$ is non increasing.
To show that $M_{p}(r) \geq 0$ for all $r\geq 0$, we use a contradiction
argument. Indeed, assume that there exists $r_1>0$
such that $M_{p}(r_1) <0$. Since $M_{p}$ is non increasing,
for all $r>r_1$, $M_{p}(r) \leq M_{p}(r_1)$
or $u'(r)+\frac{N-p}{p-1}\frac{u(r)}{r}\leq \frac{
M_{p}(r_1) }{r}$.
On the other hand
$u(r) >0$, $\frac{N-p}{p-1}>0$, hence
$u'(r)\leq \frac{M_{p}(r_1) }{r}$. Consequently
$u(r) -u(r_1) \leq M_{p}(r_1) \ln \frac{r}{r_1}$,
$r>r_1$. It follows immediately that
$\lim_{r\to +\infty }u(r)=-\infty $. This contradicts $u$
begin positive.
In particular
$$
\frac{M_{p}(r) }{ru(r) }\geq 0\quad \forall r>0.
$$
Finally, we obtain
$\frac{u'(r)}{u(r)}+\frac{N-p}{p-1}\frac{1}{r}\geq 0$.
In other words,
$$
(\ln r^{\frac{N-p}{p-1}}u(r)) '\geq 0.
$$
This implies that the function $r\mapsto r^{\frac{N-p}{p-1}}u(r)$
is non decreasing.
\end{proof}
The study of the function $M_{p}$ is essential and help us to
estimate $u(r)$.
\begin{lemma} \label{lem2}
If {\rm (H1)} is satisfied, then the operators
$T_{h}$ and $S_{\lambda }$ are compact.
\end{lemma}
The proof of the above lemma follows
the same argument as in \cite[Lemma 6]{DT}, and is omitted.
We remark that the ground states of \eqref{SNV} are precisely
the fixed points of the operator $T_{0}$.
Now, we show a nonexistence result related to a ``limit'' system.
\begin{theorem} \label{thm1}
Under hypotheses {\rm (H1)-(H3)}, the system
\begin{equation} \label{SL}
\begin{gathered}
-\Delta _{p}u=a_{12}(|x|) |v| ^{\delta_{12}-1}v\quad
\text{in }\mathbb{R}^{N}
\\
-\Delta _{q}v=a_{21}(|x| ) |u| ^{\delta
_{21}-1}u\quad \text{in }\mathbb{R}^{N}
\end{gathered}
\end{equation}
has no non-trivial radial positive solutions; in particular
\eqref{SL} has no ground state.
\end{theorem}
\begin{proof}
Let us argue by contradiction. Let $(u,v) $ be a
radial positive solution of System \eqref{SL}.
Then $(u,v)$ satisfies the differential system
\begin{equation} \label{Sinfty}
\begin{gathered}
-(r^{N-1}|u'(r) |^{p-2}u'(r)) '=r^{N-1}a_{12}(r) (v(r)) ^{\delta
_{12}}\quad\text{in }[ 0,+\infty [ \,,\\
-(r^{N-1}|v'(r) |^{q-2}v'(r)) '=r^{N-1}a_{21}(r) (u(r)) ^{\delta
_{21}}\text{ in }[ 0,+\infty [\,,
\\
u'(0) =v'(0) =0
\end{gathered}
\end{equation}
Hence,
\begin{gather}
-(r^{N-1}|u'(r) |
^{p-2}u'(r)) '\geq r^{N-1}\overset
{\mathbb{s}}{a}_1v^{\delta _{12}} \,, \label{e1}\\
-(r^{N-1}|v'(r) |
^{q-2}v'(r)) '\geq r^{N-1}\overset
{\mathbb{s}}{a}_{2}u^{\delta _{21}}\,. \label{e2}
\end{gather}
First, consider the case $\beta _1>0$ or $\beta_2>0$.
Integrating both \eqref{e1} and \eqref{e1} from $0$ to $r$ and
taking into account that $u'(r) <0$, $v'(r) <0$ for all $r>0$,
we obtain
\begin{gather*}
-u'(r) \geq (\frac{\tilde{a}_1}{N}) ^{\frac{1}{p-1}}
r^{\frac{1}{p-1}}v^{\frac{^{\delta _{12}}}{p-1}},\\
-v'(r) \geq (\frac{\tilde{a}_{2}}{N}) ^{\frac{1}{q-1}}
r^{\frac{1}{q-1}}u^{\frac{^{\delta _{21}}}{q-1}}.
\end{gather*}
By Lemma \ref{lem1}, we have $M_{p}\geq 0$, $M_{q}\geq 0$, thus
\begin{gather*}
0\geq -ru'(r)-\frac{N-p}{p-1}u(r)\geq
(\frac{\tilde{a}_1}{N}) ^{\frac{1}{p-1}}r^{\frac{p}{p-1}}v^{\frac{
^{\delta _{12}}}{p-1}}-\frac{N-p}{p-1}u(r),\\
0\geq -rv'(r)-\frac{N-q}{q-1}v(r)\geq
(\frac{\tilde{a}_{2}}{N}) ^{\frac{1}{q-1}}r^{\frac{q}{q-1}}u^{\frac{
^{\delta _{21}}}{q-1}}-\frac{N-q}{q-1}v(r).
\end{gather*}
This yields
\begin{gather}
u(r)\geq Cr^{\frac{p}{p-1}}v^{\frac{^{\delta _{12}}}{p-1}}, \label{e3}\\
v(r)\geq Cr^{\frac{q}{q-1}}u^{\frac{^{\delta _{21}}}{q-1}}. \label{e4}
\end{gather}
Combining these two inequalities, we have
\begin{gather}
u(r)\leq Cr^{-\alpha _1}, \label{e5} \\
v(r)\leq Cr^{-\alpha_2}. \label{e6}
\end{gather}
Since $r^{\frac{N-p}{p-1}}u(r)$ and $r^{\frac{N-q}{q-1}}v(r)$ are
nondecreasing, for all $r>r_{0}>0$,
\begin{gather}
u(r)\geq Cr^{-\frac{N-p}{p-1}}, \label{e7}\\
v(r)\geq Cr^{-\frac{N-q}{q-1}}. \label{e8}
\end{gather}
Inequalities \eqref{e5}-\eqref{e8} imply either $r^{\beta _1}\leq C$
or $r^{\beta_2}\leq C$. This yields a contradiction.
Suppose now that
$\beta _1=0$ (we may prove in a similar manner for $\beta_2=0)$.
Integrating with respect to $r$ the first equation of System
\eqref{Sinfty} from $r_{0}>0$ to $r$, we obtain
$$
r^{N-1}|u'(r)| ^{p-1}-r_{0}^{N-1}|u'(r_{0})| ^{p-1}
\geq \tilde{a}_1\underset{r_{0}}{
\overset{r}{\int }}s^{N-1}v^{\delta _{12}}(s) ds.
$$
Then \eqref{e4} yields
$$
v^{\delta _{12}}(s)\geq Cs^{\frac{\delta _{12}q}{q-1}}u^{\frac{^{\delta
_{12}\delta _{21}}}{q-1}}(s).
$$
Consequently,
$$
r^{N-1}|u'(r)| ^{p-1}\geq C\int_{r_0}^r s^{N-1
+\frac{\delta _{12}q}{q-1}}u^{\frac{^{\delta _{12}\delta
_{21}}}{q-1}}(s) ds.
$$
Taking into account inequality \eqref{e7} and the fact that
$\beta_1=0$, we have
\[
r^{N-1}|u'(r)| ^{p-1}\geq C\underset{r_{0}}{\overset{
r}{\int }}s^{N-1+\frac{\delta _{12}q}{q-1}-\frac{N-p}{p-1}\frac{^{\delta
_{12}\delta _{21}}}{q-1}}\,ds=C\int_{r_0}^r
s^{-1}\,ds=C\ln \frac{r}{r_{0}}.
\]
On the other hand, $M_{p}(r) \geq 0$ for $r>0$ implies
$(\frac{N-p}{p-1}) ^{p-1}u^{p-1}(r)\geq r^{p-1}|
u'(r)| ^{p-1}$.
Hence
$$
u^{p-1}(r)\geq Cr^{p-1}|u'(r)| ^{p-1}\geq
Cr^{p-N}\ln \frac{r}{r_{0}}.
$$
Then we write
$$
r^{\frac{N-p}{p-1}}u(r)\geq C\big(\ln \frac{r}{r_{0}}\big) ^{\frac{1}{p-1
}}.
$$
This together with \eqref{e5} yields a contradiction.
\end{proof}
We now show that the eventual radial positive solutions of System
\eqref{SAH} are bounded.
\begin{theorem} \label{thm2}
Assume {\rm (H1)-(H4)}. If
$(u,v)$ is a ground state of \eqref{SAH}.
then there exists a constant $C>0$
(independent of $u$ and $v$) such that
$\|(u,v) \|_{X}\leq C$.
\end{theorem}
\begin{proof}
Let $(u,v) $ be a ground state of
\eqref{SAH} for $h=0$,
then $(u,v) $ satisfies the system
\begin{equation} \label{Sr}
\begin{gathered}
-(r^{N-1}|u'(r) |^{p-2}u'(r)) '
=r^{N-1}a_{11}(r) f_{11}(u(r))
+ r^{N-1}a_{12}(r) f_{12}(v(r)) \\\text{in }[ 0,+\infty [,
\\
-(r^{N-1}|v'(r) |^{q-2}v'(r)) '
=r^{N-1}a_{21}(r) f_{21}(u(r))
+r^{N-1}a_{22}(r) f_{22}(v(r)) \\text{in }[ 0,+\infty [\,,
\\
u'(0) =v'(0) =0,\quad
\lim_{r\to +\infty } u(r)=\lim_{r\to +\infty } v(r)=0
\end{gathered}
\end{equation}
Assume now that there exists a sequence $(u_n,v_n)$
of positive solutions of \eqref{Sr} such that
$\|u_n\|_{\infty }\to \infty$ as $n\to +\infty$
or $\|v_n\|_{\infty }\to \infty$ as $n\to +\infty$.
Taking $\gamma _n=\|u_n\|_{\infty }^{\frac{1}{\alpha _1}}
+\|v_n\|_{\infty }^{\frac{1}{\alpha_2}}$, and
using (H3), we have $\alpha _1>0$ and
$\alpha_2>0$. So $\gamma _n\to +\infty $ as
$n\to +\infty $.
Now we introduce the transformations
\[
y=\gamma _nr,\quad
w_n(y)=\frac{u_n(r) }{\gamma_n^{\alpha _1}},\quad
z_n(y)=\frac{v_n(r) }{\gamma_n^{\alpha_2}}.
\]
Observe that for all $y\in [ 0,+\infty [$,
$0\leq w_n(y)\leq 1$, $0\leq z_n(y)\leq 1$.
Furthermore it is easy to see that for any $n$ the pair
$(w_n,z_n)$ is a solution of the system
\begin{equation} \label{Sy}
\begin{gathered}
\begin{aligned}
&-(y^{N-1}|w_n'(y) | ^{p-2}w_n'(y)) '\\
&=y^{N-1}a_{11}(\frac{y}{\gamma _n}) \frac{f_{11}(
\gamma _n^{\alpha _1}w_n(y)) }{\gamma _n^{\alpha
_1(p-1) +p}}
+y^{N-1}a_{12}(\frac{y}{\gamma _n}) \frac{f_{12}(\gamma
_n^{\alpha_2}z_n(y)) }{\gamma _n^{\alpha
_1(p-1) +p}}\quad
\text{in }[ 0,+\infty [\,,
\\
&-(y^{N-1}|z_n'(y) |^{q-2}z_n'(y)) '\\
&=y^{N-1}a_{21}(\frac{y}{\gamma _n}) \frac{f_{21}(
\gamma _n^{\alpha _1}w_n(y)) }{\gamma _n^{\alpha
_2(q-1) +q}}
+y^{N-1}a_{22}(\frac{y}{\gamma _n}) \frac{f_{22}(\gamma
_n^{\alpha_2}z_n(y)) }{\gamma _n^{\alpha
_2(q-1) +q}}\quad
\text{in }[ 0,+\infty [\,,
\end{aligned}\\
w_n'(0) =z_n'(0) =0, \quad
\lim_{r\to +\infty } w_n(r)=\lim_{r\to +\infty } z_n(r)=0\,.
\end{gathered}
\end{equation}
Let $R>0$ be fixed. We claim that $(w_n')$ and
$(z_n') $ are bounded in $C([ 0,R]) $.
Indeed passing to a subsequence of $(w_n') $
(denoted again $(w_n')$) assume that
$\|w_n'\|_{C([ 0,R]) }\to +\infty $ as $n\to +\infty $.
Hence there exists a sequence $(y_n) $ in $[0,R] $ such
that for all $A>0$, there exists $n_{0}\in \mathbb{N}$ such that
for all $n\geq n_{0}$, $|w_n'(y_n)| >A$.
Integrating with respect to $y$ the first equation of System
\eqref{Sy}, we obtain
\begin{align*}
&|w_n'(y_n) | ^{p-1}\\
&=\frac{1}{y_n^{N-1}}\int_0^{y_n}
\Big(y^{N-1}a_{11}(\frac{y}{\gamma _n}) \frac{f_{11}(\gamma
_n^{\alpha _1}w_n(y)) }{\gamma _n^{\alpha
_1(p-1) +p}}+y^{N-1}a_{12}(\frac{y}{\gamma _n})
\frac{f_{12}(\gamma _n^{\alpha_2}z_n(y)) }{
\gamma _n^{\alpha _1(p-1) +p}}\Big) dy.
\end{align*}
From the fact that $f_{1j}$, $j=1,2$, are
asymptotically homogeneous at the infinity together with
part (i) of Proposition \ref{prop1}, we arrive to the statement:
for all $\varepsilon \in [ 0,\delta _{1j}[$,
there exists $c_{1j}^{1},c_{1j}^{2}>0$, $s_{0}>0$
such that for all $s\geq s_{0}$
$$
c_{1j}^{1}s^{\delta _{1j}-\varepsilon }\leq f_{1j}(s) \leq
c_{1j}^{2}s^{\delta _{1j}+\varepsilon }.
$$
Since $(w_n) $ and $(z_n) $ are
bounded, we conclude that
\begin{gather*}
c_{11}^{1}\gamma _n^{\alpha _1(\delta
_{11}-\varepsilon) -\alpha _1(p-1) -p}\leq \frac{
f_{11}(\gamma _n^{\alpha _1}w_n(y)) }{\gamma
_n^{\alpha _1(p-1) +p}}\leq \,c_{11}^{2}\gamma _n^{\alpha
_1(\delta _{11}+\varepsilon) -\alpha _1(p-1)
-p} ,\\
c_{12}^{1}\gamma _n^{\alpha_2(\delta
_{12}-\varepsilon) -\alpha _1(p-1) -p}\leq \frac{
f_{12}(\gamma _n^{\alpha_2}z_n(y)) }{\gamma
_n^{\alpha _1(p-1) +p}}\leq \,c_{12}^{2}\gamma _n^{\alpha
_2(\delta _{12}+\varepsilon) -\alpha _1(p-1)
-p}.
\end{gather*}
By choosing $\varepsilon $ sufficiently small, the assumption
(H3) yields
$$
\frac{f_{11}(\gamma _n^{\alpha _1}w_n(y)
) }{\gamma _n^{\alpha _1(p-1) +p}} \to 0\quad\text{and}\quad
\frac{f_{12}(\gamma_n^{\alpha_2}z_n(y)) }{\gamma _n^{\alpha
_1(p-1) +p}} \to c_1\quad
\text{as } n\to +\infty
$$
where $c_1$ is positive constant.
So there exists $n_1\in \mathbb{N}$ such that for any $n\geq
n_1$, we have
$$
|w_n'(y_n) | ^{p-1}\leq
\frac{a_{12}(0) }{y_n^{N-1}}c_1
\int_0^{y_n} y^{N-1}dy=\frac{c_1}{N}a_{12}(0) y_n
\leq \frac{Rc_1}{N}a_{12}(0) \equiv c.
$$
Setting $n\geq \max (n_{0},n_1)$, we have
$A<|w_n'(y_n) | \leq c$. This
contradicts the fact that $A$ may be infinitely large.
Similarly we prove that $(z_n') $ is bounded in
$C([ 0,R])$. Consequently $(w_n) $ and $(z_n) $ are equicontinuous
in $C([ 0,R])$.
By Arz\'{e}la-Ascoli theorem, there exists a subsequence of
$(w_n) $ denoted again $(w_n) $ (respect. $(z_n) $)
such that $w_n\to w$ (respect. $z_n\to z$) in $C([ 0,R])$.
On the other hand,
$$
\|w_n\|_{\infty }^{\frac{1}{\alpha _1}}
+\|z_n\|_{\infty }^{\frac{1}{\alpha_2}}=1,
$$
this implies that the real-valued sequences
$(\|w_n\|_{\infty }) $\ and $(\|z_n\|_{\infty }) $ are bounded.
Hence there exist subsequences denoted
again $(\|w_n\|_{\infty })$ and $(\|z_n\|_{\infty }) $
such that $\|w_n\|_{\infty }\to w_{0}$,
$\|z_n\|_{\infty }\to z_{0}$ and
$w_{0}^{\frac{1}{\alpha _1}}+z_{0}^{\frac{1}{\alpha_2}}=1$.
In view of the uniqueness of the limit in $C([ 0,R])$,
we get $\|w\|_{\infty }^{\frac{1}{\alpha _1}}+\|
z\|_{\infty }^{\frac{1}{\alpha_2}}=1$.
This implies that $(w,z) $ is not identically null.
Integrating from $0$ to $y\in [0,R] $, the first and the second
equation of System \eqref{Sy}, we obtain
\begin{gather}
w_n(0) -w_n(y) =\int_0^y (g_n(s)) ^{\frac{1}{p-1}}ds, \label{e9}\\
z_n(0) -z_n(y) =\int_0^y (h_n(s)) ^{\frac{1}{q-1}}ds\,. \label{e10}
\end{gather}
Clearly $g_n(y) $ and $h_n(y) $ are defined by
\begin{gather*}
g_n(y) =\frac{1}{y^{N-1}}\int_0^y
\Big(s^{N-1}a_{11}(\frac{s}{\gamma _n}) \frac{f_{11}(
\gamma _n^{\alpha _1}w_n(s)) }{\gamma _n^{\alpha
_1(p-1) +p}}
+s^{N-1}a_{12}(\frac{s}{\gamma _n})
\frac{f_{12}(\gamma _n^{\alpha_2}z_n(s)) }{
\gamma _n^{\alpha _1(p-1) +p}}\Big) ds
\\
h_n(y) =\frac{1}{y^{N-1}}\int_0^y
\Big(s^{N-1}a_{21}(\frac{s}{\gamma _n}) \frac{f_{21}(
\gamma _n^{\alpha _1}w_n(s)) }{\gamma _n^{\alpha
_2(q-1) +q}}
+s^{N-1}a_{22}(\frac{s}{\gamma _n})
\frac{f_{22}(\gamma _n^{\alpha_2}z_n(s)) }{
\gamma _n^{\alpha_2(q-1) +q}}\Big) ds.
\end{gather*}
Compiling Proposition \ref{prop1} and (H3), we obtain
\begin{gather*}
\frac{f_{11}(\gamma _n^{\alpha _1}w_n(s)) }{
\gamma _n^{\alpha _1(p-1) +p}} \to 0, \quad
\frac{f_{22}(\gamma _n^{\alpha_2}z_n(s)) }{\gamma _n^{\alpha_2(q-1) +q}}
\to 0,\\
\frac{f_{12}(\gamma _n^{\alpha_2}z_n(s)) }{
\gamma _n^{\alpha _1(p-1) +p}}=\frac{f_{12}(\gamma
_n^{\alpha_2}) }{\gamma _n^{\alpha _1(p-1) +p}}
\frac{f_{12}(\gamma _n^{\alpha_2}z_n(s)) }{
f_{12}(\gamma _n^{\alpha_2}) } \to cz^{\delta _{12}}(s),
\\
\frac{f_{21}(\gamma _n^{\alpha _1}w_n(s)) }{
\gamma _n^{\alpha_2(q-1) +q}}=\frac{f_{21}(\gamma
_n^{\alpha _1}) }{\gamma _n^{\alpha_2(q-1) +q}}
\frac{f_{21}(\gamma _n^{\alpha _1}w_n(s)) }{
f_{21}(\gamma _n^{\alpha _1}) } \to cw^{\delta _{21}}(s),
\end{gather*}
as $n\to\infty$.
By the Lebesgue theorem on dominated convergence, it follows that
\begin{gather*}
g_n(y) \to \frac{c}{y^{N-1}}\int_0^y s^{N-1}a_{12}(
0) z^{\delta _{12}}(s) ds,
\\
h_n(y) \to \frac{c}{y^{N-1}}\int_0^y s^{N-1}a_{21}(
0) w^{\delta _{21}}(s) ds,
\end{gather*}
as $n\to\infty$.
Passing to the limit in \eqref{e9} and \eqref{e10}, we arrive to
\begin{gather*}
w(0) -w(y) =c\int_0^y \frac{1}{\tau ^{N-1}}
\Big(\int_0^\tau s^{N-1}a_{12}(0) z^{\delta _{12}}(s) ds\Big) ^{
\frac{1}{p-1}}d\tau,
\\
z(0) -z(y) =c\int_0^y \frac{1}{\tau ^{N-1}}
\Big(\int_0^\tau s^{N-1}a_{21}(0) w^{\delta _{21}}(s) ds\Big) ^{
\frac{1}{q-1}}d\tau .
\end{gather*}
In this way $w\geq 0$, $z\geq 0$,
$w, z\in C^{1}([ 0,R]) \cap C^{2}(] 0,R])$ and satisfy the
system
\begin{equation} \label{SR}
\begin{gathered}
-(y^{N-1}|w'(y) |^{p-2}w'(y)) '=ca_{12}(
0) y^{N-1}(z(y)) ^{\delta _{12}}\quad \text{in }[ 0,R]
\\
-(y^{N-1}|z'(y) |^{q-2}z'(y)) '=ca_{21}(
0) y^{N-1}(w(y)) ^{\delta _{21}}\quad \text{in }[ 0,R]
\\
w'(0) =z'(0) =0
\end{gathered}
\end{equation}
If we use the same arguments on $[0,R^{\ast }]$ where
$R^{\ast }>R$, we obtain a solution $(w^{\ast },z^{\ast }) $
of System \eqref{SR} with $R^{\ast }$ in stead of $R$,
which coincide with $(w,z) $ in $[0,R]$. To this end,
we indefinitely extend $(w,z) $ to $[ 0,+\infty [ $.
By Lemma \ref{lem1} we have $w(y)>0$, $z(y) >0$, for all $y\geq 0$.
The pair $(w,z)$ also satisfies System \eqref{SR}. In other words
$(w,z) $ is a radial positive solution of \eqref{Sinfty}.
This contradicts Theorem \ref{thm1}.
\end{proof}
\begin{lemma} \label{lem3}
Under assumptions {\rm (H1)-(H4)}, there exists
$h_{0}>0$ such that the problem
$(u,v) =T_{h}(u,v) $ has no solution for $h\geq h_{0}$.
\end{lemma}
\begin{proof}
Suppose by contradiction that there is a solution
$(u,v) \in X$ of the above problem. Then $(u,v) $
satisfies system
\begin{equation} \label{SAH1}
\begin{gathered}
-(r^{N-1}|u'(r) |
^{p-2}u'(r)) '=r^{N-1}a_{11}(r) f_{11}(|u(r) |)
+ r^{N-1}a_{12}(r) [ f_{12}(|v(r)
|) +h ] \\
\text{in }[ 0,+\infty [ \,,
\\
-(r^{N-1}|v'(r) |
^{q-2}v'(r)) '=r^{N-1}a_{21}(r) f_{21}(|u(r) |)
+ r^{N-1}a_{22}(r) f_{22}(|v(r) |
)\\
\text{in }[ 0,+\infty [\,,
\\
u'(0) =v'(0) =0,\quad
\lim_{r\to +\infty } u(r) =\lim_{r\to +\infty } v(r)=0
\end{gathered}
\end{equation}
Assume that there exists a sequence $(h_n)$
$h_n\to +\infty$ as $n\to +\infty$, such that
\eqref{SAH1} admits a pair of solutions $(u_n,v_n) $.
In accordance with Lemma \ref{lem1}, we have
$u_n(r)>0$, $v_n(r)>0,\,u_n'(r)\leq 0$ and
$v_n'(r)\leq 0$, for all $n\in \mathbb{N}$. Integrating the
first equation of System \eqref{SAH1}, from $R$ to $2R$, $R>0$,
we obtain
$$
u_n(R)\geq \int_R^{2R} \Big(\eta ^{1-N}
\overset{\eta }{\underset{0}{\int }}\xi ^{N-1}a_{12}(\xi)
h_nd\xi\Big) ^{\frac{1}{p-1}}d\eta \geq cRh_n^{\frac{1}{p-1}}
$$
Here
$$
c=\Big(\frac{1}{(2R) ^{N-1}}\overset{R}{
\underset{0}{\int }}\xi ^{N-1}a_{12}(\xi) d\xi\Big) ^{\frac{1
}{p-1}}.
$$
Consequently $u_n(R)\geq c Rh_n^{\frac{1}{p-1}}$. Passing to
the limit we get $u_n(R)\to +\infty $. On the other hand,
integrating the second equation of \eqref{SAH1}, from $R$
to $2R$, we obtain
$$
v_n(R)\geq \int_R^{2R} (\eta ^{1-N}
\overset{\eta }{\underset{0}{\int }}\xi ^{N-1}a_{21}(\xi)
f_{21}(u_n(\xi )) d\xi) ^{\frac{1}{q-1}}d\eta \geq
cR(f_{21}(u_n(R))) ^{\frac{1}{q-1}}
$$
By hypothesis (H3) and Proposition \ref{prop1}, we
have $v_n(R)\geq c(u_n(R)) ^{\frac{\delta _{21}-\varepsilon}{q-1}}$
Operating similarly, we obtain
$u_n(R)\geq c(v_n(R)) ^{\frac{\delta _{12}-\varepsilon }{p-1}}$.
It follows from the last two inequalities, that
\[
(u_n(R)) ^{\frac{(\delta _{12}-\varepsilon)
(\delta _{21}-\varepsilon) -(p-1) (q-1)
}{(p-1) (q-1) }}\leq \frac{1}{c}.
\]
This is the desired contradiction since $u_n(R)$ increases to
infinitely.
\end{proof}
\begin{lemma} \label{lem4}
There exists $\bar{\rho }>0$ such that
for all $\rho \in ] 0,\bar{\rho }[$ and
all $(u,v) \in X$ satisfying $\|(u,v) \|=\rho $,
the equation $(u,v)=S_{\lambda }(u,v)$ has no solution.
\end{lemma}
\begin{proof}
Assume that there exist
$(\rho _n) \in \mathbb{R} _{+}$, $\rho _n\to 0$;
$(\lambda _n) \subset [0,1] $
and $(u_n,v_n) \in X$ such that
$(u_n,v_n) =S_{\lambda _n}(u_n,v_n) $ with
$\|(u_n,v_n) \|=\rho_n$. Taking (H4) into account,
\begin{gather*}
\|u_n\|_{\infty }\leq c\lambda _n^{\frac{1}{p-1}}\Big(
\|u_n\|_{\infty }^{\frac{\bar{\delta }
_{11}-\varepsilon }{p-1}}+\|v_n\|_{\infty }^{\frac{\bar
{\delta }_{12}-\varepsilon }{p-1}}\Big)
\\
\|v_n\|_{\infty }\leq c\lambda _n^{\frac{1}{q-1}}\Big(
\|u_n\|_{\infty }^{\frac{\bar{\delta }
_{21}-\varepsilon }{q-1}}+\|v_n\|_{\infty }^{\frac{\bar
{\delta }_{22}-\varepsilon }{q-1}}\Big)
\end{gather*}
Adding term by term, we obtain
\begin{align*}
\|(u_n,v_n) \|
&\leq C\Big(\|(u_n,v_n) \|^{\frac{\bar{\delta }
_{11}-\varepsilon }{p-1}}
+\|(u_n,v_n) \|^{\frac{\bar{\delta }_{12}-\varepsilon }{p-1}}\,, \\
&\quad +\|(u_n,v_n) \|^{\frac{\bar{\delta }_{21}
-\varepsilon }{q-1}}
+\|(u_n,v_n) \|^{\frac{\bar{\delta }_{22}-\varepsilon }{q-1}}\Big)\,.
\end{align*}
This implies
\begin{align*}
1&\leq C\Big(\|(u_n,v_n) \|^{\frac{\bar{\delta }_{11}
-\varepsilon }{p-1}-1}
+\|(u_n,v_n) \|^{\frac{\bar{\delta }_{12}-\varepsilon }{p-1}-1}\\
&\quad +\|(u_n,v_n) \|^{\frac{\bar{\delta }_{21}-\varepsilon }{q-1}-1}
+\|(u_n,v_n)\|^{\frac{\bar{\delta }_{22}-\varepsilon }{q-1}-1}\Big).
\end{align*}
The above inequality contradicts the fact that
$\|(u_n,v_n) \|=\rho _n\to$ as $n\to +\infty $.
\end{proof}
\begin{theorem} \label{thm3}
Under hypotheses (H1)-(H4), System \eqref{SNV}
has positive radial solution.
\end{theorem}
\begin{proof}
To show the existence of ground states for \eqref{SNV}
(or \eqref{SAH} with $h=0$), it is
sufficient to prove that the compact operator $T_{0}$
admits a fixed point.
In view of Theorem \ref{thm2}, the eventual fixed point $(u,v) $ of
$T_{0}$ are bounded; explicitly there exists $C>0$ such that
$\|(u,v) \|_{X}\leq C$. Let us chose $R_1>C$ and let us designate
by $B_{R_1}$ the ball of $X$, centered at the origin with radius
$R_1$.
To this end, the Leray-Schauder degree $\deg _{LS}(I-T_{h},B_{R_1},0)$
is well defined. It being understood that $I$
denote the identical operator in $X$. Moreover, by Lemma \ref{lem3},
we have $\deg_{LS}(I-T_{h},B_{R_1},0) =0$ for all $h\geq h_{0}$.
It follows from the homotopy invariance of the Leray-Schauder
degree that
\begin{equation*}
\deg _{LS}(I-T_{0},B_{R_1},0) =\deg _{LS}(
I-T_{h},B_{R_1},0) =0.
\end{equation*}
On the other hand, by Lemma \ref{lem4}, there exists
$0<\rho <\bar{\rho }