\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{graphicx} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 57, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2010/57\hfil Eigenvalue intervals] {Solvability of a nonlinear third-order three-point general eigenvalue problem \\ on time scales} \author[K. R. Prasad, N. V. V. S. S. Narayana\hfil EJDE-2010/57\hfilneg] {Kapula R. Prasad, Nadakuduti V. V. S. S. Narayana} % in alphabetical order \address{Kapula R. Prasad \newline Department of Applied Mathematics\\ Andhra University\\ Visakhapatnam, 530 003, India} \email{rajendra92@rediffmail.com} \address{Nadakuduti V. V. S. Suryanarayana \newline Department of Mathematics\\ VITAM College of Engineering\\ Visakhapatnam, 531 173, India} \email{suryanarayana\_nvvs@yahoo.com} \thanks{Submitted November 30, 2009. Published April 23, 2010.} \subjclass[2000]{34B99, 39A99} \keywords{Time scales; boundary value problem; eigenvalue interval; \hfill\break\indent positive solution; cone} \begin{abstract} We study the existence of eigenvalue intervals for the third-order nonlinear three-point boundary value problem on time scales satisfying general boundary conditions. Values of a parameter are determined for which the boundary value problem has a positive solution by utilizing a fixed point theorem on a cone in a Banach space. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \section{Introduction} The study of obtaining optimal eigenvalue intervals for the existence of positive solutions to boundary value problems(BVPs) on time scales has gained prominence and is a rapidly growing field, since it arises in many applications. By a time scale we mean a nonempty closed subset of $\mathbb{R}$. For an excellent introduction to the overall area of dynamic equations on time scales, we refer to the text book by Bohner and Peterson \cite{mbacp}. In this paper, we focus on determining the eigenvalue intervals for which there exists a positive solution to the third order boundary value problem on time scales \begin{equation}\label{e11} y^{\Delta^{3}}(t)+\lambda f(t, y(t),y^{\Delta}(t), y^{\Delta^{2}}(t))=0,\quad t\in[t_1, \sigma^{3}(t_3)] \end{equation} satisfying the general three point boundary conditions \begin{equation}\label{e12} \begin{gathered} \alpha_{11}y(t_1)+\alpha_{12}y^{\Delta}(t_1) +\alpha_{13}y^{\Delta^{2}}(t_1)=0\\ \alpha_{21}y(t_2)+\alpha_{22}y^{\Delta}(t_2) +\alpha_{23}y^{\Delta^{2}}(t_2)=0\\ \alpha_{31}y(\sigma^{3}(t_3)) +\alpha_{32}y^{\Delta}(\sigma^{2}(t_3)) +\alpha_{33}y^{\Delta^{2}}(\sigma(t_3))=0 \end{gathered} \end{equation} where $t_10$, $\alpha_{21}>0$, $\alpha_{31}>0$ and $\frac{\alpha_{12}}{\alpha_{11}} >\frac{\alpha_{22}}{\alpha_{21}}>\frac{\alpha_{32}}{\alpha_{31}}$; \item[(A3)] $m_1\leq t_1\alpha_{12}^2$, $2\alpha_{23}\alpha_{21}>\alpha_{22}^2$, $2\alpha_{33}\alpha_{31}>\alpha_{32}^2$; \item[(A4)] $m_{23}^{2}>M_{23}$, $m_{12}^{2}< M_{12}$, $m_{13}^{2}>M_{13}$, $d>0$ and \item[(A5)] The point $t\in[t_1, \sigma^{3}(t_3)]$ is not left dense and right scattered at the same time. \end{itemize} Define the nonnegative extended real numbers $f_{0}, f^{0}, f_{\infty}, f^{\infty}$ by \begin{gather*} f_{0}=\lim_{y\to0^{+},y^{\Delta}\to0^{+},y^{\Delta^{2}}\to 0^{+}} \min_{t\in[t_1, \sigma^{3}(t_3)]}\frac{f(t,y,y^{\Delta}, y^{\Delta^{2}})}{y},\\ f^{0}=\lim_{y\to0^{+},y^{\Delta}\to0^{+},y^{\Delta^{2}}\to0^{+}} \max_{t\in[t_1, \sigma^{3}(t_3)]}\frac{f(t,y,y^{\Delta}, y^{\Delta^{2}})}{y},\\ f_{\infty}=\lim_{y\to\infty,y^{\Delta}\to\infty,y^{\Delta^{2}}\to \infty}\min_{t\in[t_1, \sigma^{3}(t_3)]}\frac{f(t,y, y^{\Delta},y^{\Delta^{2}})}{y},\\ f^{\infty}=\lim_{y\to\infty,y^{\Delta}\to\infty,y^{\Delta^{2}}\to \infty}\max_{t\in[t_1, \sigma^{3}(t_3)]}\frac{f(t,y,y^{\Delta},y^{\Delta^{2}})}{y} \end{gather*} and assume that they will exist. By an interval we mean the intersection of the real interval with a given time scale. This paper is organized as follows. In Section 2, we construct Green's function for the corresponding homogeneous problem of \eqref{e11}-\eqref{e12} and estimate bounds of the Green's function. In Section 3, we present a lemma which is needed in further discussion and determine eigenvalue intervals for which \eqref{e11}-\eqref{e12} has at least one positive solution, by using Krasnosel'skii fixed point theorem. Finally as an application, we give an example to demonstrate our result. \section{Green's function and Bounds} In this section, we construct the Green's function for the corresponding homogeneous problem of \eqref{e11}-\eqref{e12} in six different intervals and we estimate the bounds for the Green's function. Let $G(t, s)$ be the Green's function for the problem $-y^{\Delta^{3}}(t)=0$ satisfying \eqref{e12}. After computation, the Green's function $G(t, s)$ can be obtained as \begin{equation}\label{e21} G(t,s)= \begin{cases} G_{11}(t,s), & { t_1\leq t0\quad \text{on }[t_1,\sigma^{3}(t_3)]\times[t_1,t_3]. \end{equation} \textbf{Case (i).} For $t_1<\sigma(s)0$ be chosen such that $$ \frac{1}{[\gamma^{2}\int_{t_1}^{\sigma(t_3)}G(\sigma(s),s)\Delta s](f_{\infty}-\epsilon)} \leq \lambda \leq\frac{1}{[\int_{t_1}^{\sigma(t_3)}G(\sigma(s),s)\Delta s](f^{0}+\epsilon)}. $$ Let $T$ be the cone preserving, completely continuous operator defined in \eqref{e33}. By the definition of $f^{0}$, there exists $H_{1i}>0$, $i=0, 1, 2$ such that $$ \max_{t\in[t_1,\sigma^{3}(t_3)]}\frac{f(t,y,y^{\Delta}, y^{\Delta^{2}})}{y} \leq(f^{0}+\epsilon) $$ for $00$, $i=0, 1, 2$ such that $$ \min_{t\in[t_1,\sigma^{3}(t_3)]}\frac{f(t,y,y^{\Delta}, y^{\Delta^{2}})}{y}\geq(f_{\infty}-\epsilon), $$ for $y\geq\overline{H}_{20}$, $y^{\Delta}\geq\overline{H}_{21}$, $y^{\Delta^{2}}\geq\overline{H}_{22}$. Let $\overline{H}_2=\min\{\overline{H}_{2i}:i=0, 1, 2\}$. It follows that, $$ f(t,y,y^{\Delta},y^{\Delta^{2}})\geq(f_{\infty}-\epsilon)y,\quad \text{for } y,y^{\Delta},y^{\Delta^{2}} \geq\overline{H}_2. $$ Let $$ H_2=\max\big\{2H_1,\frac{1}{\gamma}\overline{H}_2\big\},\quad \Omega_2=\{y\in X: \| y\|0$ such that $$ \frac{1}{ [\gamma^{2}\int_{t_1}^{\sigma(t_3)}G(\sigma(s),s)\Delta s ](f_{0}-\epsilon)} \leq \lambda \leq \frac{1}{[\int_{t_1}^{\sigma(t_3)}G(\sigma(s),s)\Delta s](f^{\infty}+\epsilon)}. $$ Let $T$ be the cone preserving, completely continuous operator that was defined by \eqref{e33}. By the definition of $f_{0}$, there exists $J_{1i}>0$, $i=0, 1, 2$ such that $$ \min_{t\in[t_1,\sigma^{3}(t_3)]}\frac{f(t,y,y^{\Delta}, y^{\Delta^{2}})}{y} \geq (f_{0}-\epsilon), $$ for $00$, $i=0, 1, 2$ such that $$ \max_{t\in[t_1,\sigma^{3}(t_3)]}\frac{f(t,y,y^{\Delta}, y^{\Delta^{2}})}{y}\leq(f^{\infty}+\epsilon), $$ for $y\geq\overline{J}_{20}$, $y^{\Delta}\geq\overline{J}_{21}$, $y^{\Delta^{2}}\geq\overline{J}_{22}$, it follows that $$ f(t,y,y^{\Delta},y^{\Delta^{2}})\leq(f^{\infty}+\epsilon)y,\quad \text{for }y,y^{\Delta},y^{\Delta^{2}}\geq\overline{J}_2. $$ There are two possible cases. \textbf{Case(i)}. $f$ is bounded. Suppose $L>0$ and $\max_{t\in[t_1, \sigma^{3}(t_3)]}f(t,y,y^{\Delta},y^{\Delta^{2}})\leq L$, for all $0\max\{2J_{1i},\overline{J}_{2i}\}$, $i=0, 1, 2$ be such that $f(t,y,y^{\Delta},y^{\Delta^{2}})\leq f(t,J_{20},J_{21},J_{22})$, for $0