\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 80, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/80\hfil Impulsive fractional differential inclusions] {Existence of solutions to differential inclusions with fractional order and impulses} \author[M. Benchohra, S. Hamani, J. J. Nieto, B. A. Slimani\hfil EJDE-2010/80\hfilneg] {Mouffak Benchohra, Samira Hamani,\\ Juan Jose Nieto, Boualem Attou Slimani} % in alphabetical order \address{Mouffak Benchohra \newline Laboratoire de Math\'ematiques, Universit\'e de Sidi Bel-Abb\`es,\\ B.P. 89, 22000, Sidi Bel-Abb\`es, Alg\'erie} \email{benchohra@univ-sba.dz} \address{Samira Hamani \newline Laboratoire de Math\'ematiques, Universit\'e de Sidi Bel-Abb\`es,\\ B.P. 89, 22000, Sidi Bel-Abb\`es, Alg\'erie} \email{hamani\_samira@yahoo.fr} \address{Juan Jose Nieto \newline Departamento de Analisis Matematico, Facultad de Matematicas\\ Universidad de Santiago de Compostela, Santiago de Compostela, Spain} \email{juanjose.nieto.roig@usc.es} \address{Boualem Attou Slimani \newline Facult\'e des Sciences de l'Ing\'enieur, Universit\'e de Tlemcen, B.P. 119, 13000, Tlemcen, Alg\'erie} \email{ba\_slimani@yahoo.fr} \thanks{Submitted March 11, 2010. Published June 15, 2010.} \subjclass[2000]{26A33, 34A37} \keywords{Initial value problem; impulses; differential inclusion; \hfill\break\indent Caputo fractional derivative; fractional integral; existence; uniqueness; fixed point} \begin{abstract} We establish sufficient conditions for the existence of solutions for a class of initial value problem for impulsive fractional differential inclusions involving the Caputo fractional derivative. We consider the cases when the multivalued nonlinear term takes convex values as well as nonconvex values. The topological structure of the set of solutions is also considered. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} This article studies the existence and uniqueness of solutions for the initial value problems (IVP for short), for fractional order differential inclusions, \begin{gather}\label{e1} ^{c}D^{\alpha}y(t)\in F(t,y(t)), \quad t\in J=[0,T], \; t\neq t_k, \; k=1,\dots ,m, \; 1<\alpha\leq 2, \\ \label{e2} \Delta y|_{t=t_k}= I_k(y(t_k^{-})), \quad k=1,\dots,m, \\ \label{e3} \Delta y'|_{t=t_k}= \overline I_k(y(t_k^{-})), \quad k=1,\dots,m, \\ \label{e4} y(0)= y_0, \quad y'(0)=y_1, \end{gather} where $^{c}D^{\alpha}$ is the Caputo fractional derivative, $F: J\times\mathbb{R} \to\mathcal{P}(\mathbb{R})$ is a multivalued map, $(\mathcal{P}(\mathbb{R})$ is the family of all nonempty subsets of $\mathbb{R})$, $I_k$ and $\overline I_k :\mathbb{R}\to\mathbb{R}$, $k=1,\dots,m$, and $ y_0, y_1\in\mathbb{R}$, $0=t_00$ such that $$ H_d(N(x),N(y))\leq \gamma d(x,y),\quad \text{for each } x, y\in X, $$ \item[(b)] a contraction if and only if it is $\gamma$-Lipschitz with $\gamma<1$. \end{itemize} \end{definition} \begin{lemma}[\cite{CoNa}] \label{CN} Let $(X,d)$ be a complete metric space. If $N: X\to P_{cl}(X)$ is a contraction, then $\mathop{\rm Fix}N \neq \emptyset$. \end{lemma} \begin{definition}[\cite{KST,Pod}] \rm The fractional (arbitrary) order integral of the function $h\in L^1([a,b],\mathbb{R}_+)$ of order $\alpha\in\mathbb{R}_+$ is defined by $$ I^{\alpha}_ah(t)=\int_a^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)ds, $$ where $\Gamma$ is the gamma function. When $a=0$, we write $I^{\alpha}h(t)=h(t)*\varphi_{\alpha}(t)$, where $\varphi_{\alpha}(t)=\frac{t^{\alpha-1}}{\Gamma(\alpha)}$ for $t>0$, and $\varphi_{\alpha}(t)=0$ for $t\leq 0$, and $\varphi_{\alpha}\to \delta(t)$\ as $\alpha\to 0$, where $\delta$ is the delta function. \end{definition} \begin{definition}[\cite{KST, Pod}] \rm For a function $h$ given on the interval $[a,b]$, the Caputo fractional-order derivative of $h$, is defined by $$ (^{c}D_{a+}^{\alpha}h)(t)=\frac{1}{\Gamma(n-\alpha)}\int_ a^t(t-s)^{n-\alpha-1}h^{(n)}(s)ds, $$ where $n=[\alpha]+1$. \end{definition} Sufficient conditions for the fractional differential and fractional integrals to exist are given in \cite{KST}. \section{The Convex Case} In this section, we are concerned with the existence of solutions for the problem \eqref{e1}-\eqref{e4} when the right hand side has convex values. Initially, we assume that $F$ is a compact and convex valued multivalued map. Consider the Banach space \begin{align*} PC(J,\mathbb{R}) =\big\{&y: J\to \mathbb{R}: y\in C((t_k,t_{k+1}],\mathbb{R}),\; k=0,\dots,m+1 \text{ and there exist}\\ &y(t^{-}_k), y(t^{+}_k), \; k=1,\dots,m \text{ with } y(t^{-}_k)=y(t_k)\}. \end{align*} with the norm $$ \|y\|_{PC}=\sup_{t\in J}|y(t)|. $$ Set $J':=[0,T]\backslash\{t_1,\dots,t_{m}\}$. \begin{definition} \rm A function $y\in PC(J,\mathbb{R})\bigcap\cup_{k=0}^{m} AC^{1}((t_k,t_{k+1}),\mathbb{R})$ with its $\alpha$-derivative exists on $J'$ is said to be a solution of \eqref{e1}--\eqref{e4} if there exists a function $v\in L^{1}([0,T], \mathbb{R})$ such that $v(t)\in F(t,y(t))$ a.e. $ t\in J$ satisfies the differential equation $^{c}D^{\alpha}y(t)=v(t)$ on $J'$, and conditions \begin{gather*} \Delta y|_{t=t_k}= I_k(y(t_k^{-})),\quad k=1,\dots,m,\\ \Delta y'|_{t=t_k}= \overline I_k(y(t_k^{-})), \quad k=1,\dots,m,\\ y(0)= y_0, \quad y'0)=y_1 \end{gather*} are satisfied. \end{definition} Let $h:[a,b]\to\mathbb{R}$ be a continuous function. For the existence of solutions for the problem \eqref{e1}--\eqref{e4}, we need the following auxiliary lemmas. \begin{lemma}[\cite{Zha}] \label{l1} Let $\alpha > 0 $, then the differential equation $$ ^{c}D^{\alpha}h(t)=0 $$ has solutions $h(t)=c_0+c_1(t-a)+c_{2}(t-a)^{2}+\dots+c_{n-1}(t-a)^{n-1}$, $c_{i}\in \mathbb{R}$, $i=0,1,2,\dots,n-1$, $n=[\alpha]+1$. \end{lemma} \begin{lemma}[\cite{Zha}] \label{l2} Let $\alpha > 0 $, then $$ {I^{\alpha}}^{c}D^{\alpha}h(t)=h(t)+ c_0+c_1(t-a)+c_{2}(t-a)^{2}+\dots+c_{n-1}(t-a)^{n-1} $$ for some $c_{i}\in \mathbb{R}$, $i=0,1,2,\dots,n-1$, $n=[\alpha]+1$. \end{lemma} As a consequence of Lemma \ref{l1} and Lemma \ref{l2} we have the following result which is useful in what follows. \begin{lemma}\label{l3} Let $1< \alpha\leq 2$ and let $ \rho\in PC(J,\mathbb{R})$. A function $y$ is a solution of the fractional integral equation \begin{equation}\label{e5} y(t)=\begin{cases} y_0+y_1t+\frac{1}{\Gamma(\alpha)}\int_0^{t}(t-s)^{\alpha-1}\rho(s)ds &\text{if }t\in [0,t_1], \\[4pt] y_0+y_1t+\frac{1}{\Gamma(\alpha)} \sum_{i=1}^{k}\int_{t_{i-1}}^{t_{i}}(t_{i}-s)^{\alpha-1}\rho(s)ds\\ +\frac{1}{\Gamma(\alpha-1)}\sum_{i=1}^{k}(t-t_{i}) \int_{t_{i-1}}^{t_{i}}(t_{i}-s)^{\alpha-2}\rho(s)ds\\ + \frac{1}{\Gamma(\alpha)} \int_{t_k}^{t}(t-s)^{\alpha-1}\rho(s)ds\\ +\sum_{i=1}^{k}I_{i}(y(t_{i}^{-}))+\sum_{i=1}^{k}(t-t_{i})\overline I_{i}(y(t_{i}^{-})), & \text{if } t\in (t_k,t_{k+1}]\\ & k=1,\dots,m \end{cases} \end{equation} if and only if $y$ is a solution of the fractional initial-value problem \begin{gather}\label{e6} ^{c}D^{\alpha}y(t)= \rho(t), \quad\text{for each } t\in J', \\ \label{e7} \Delta y|_{t=t_k}= I_k(y(t_k^{-})), \quad k=1,\dots,m,\\ \label{e8} \Delta y'|_{t=t_k}= \overline I_k(y(t_k^{-})), \quad k=1,\dots,m, \\ \label{e9} y(0)= y_0, \quad y'(0)=y_1. \end{gather} \end{lemma} \begin{proof} Assume $y$ satisfies \eqref{e6}-\eqref{e9}. If $t\in [0,t_1]$ then $^{c}D^{\alpha}y(t)= \rho(t)$. Lemma \ref{l2} implies $$ y(t)=c_0+c_1t+\frac{1}{\Gamma(\alpha)} \int_0^{t}(t-s)^{\alpha-1}\rho(s)ds. $$ Hence $c_0=y_0$ and $c_1=y_1$. Thus $$ y(t)=y_0+y_1t+\frac{1}{\Gamma(\alpha)} \int_0^{t}(t-s)^{\alpha-1}\rho(s)ds. $$ If $t\in (t_1,t_{2}]$ then Lemma \ref{l2} implies \begin{equation}\label{eqq1} y(t)=c_0+c_1(t-t_1)+\frac{1}{\Gamma(\alpha)} \int_{t_1}^{t}(t-s)^{\alpha-1}\rho(s)ds. \end{equation} \begin{align*} \Delta y|_{t=t_1} &= y(t_1^+)-y(t_1^-)\\ &= c_0-\Big(y_0+y_1t_1+\frac{1}{\Gamma(\alpha)} \int_0^{t_1}(t_1-s)^{\alpha-1}\rho(s)ds\Big)\\ &= I_1(y(t_1^{-})). \end{align*} Hence \begin{equation}\label{eqq2} c_0=y_0+y_1t_1+\frac{1}{\Gamma(\alpha)} \int_0^{t_1}(t_1-s)^{\alpha-1}\rho(s)ds+I_1(y(t_1^{-})). \end{equation} \begin{align*} \Delta y'|_{t=t_1} &= y'(t_1^+)-y'(t_1^-)\\ &= c_1-\Big(y_1+\frac{1}{\Gamma(\alpha-1)} \int_0^{t_1}(t_1-s)^{\alpha-2}\rho(s)ds\Big)\\ &= \overline I_1(y(t_1^{-})), \end{align*} and \begin{equation}\label{eqq3} c_1=y_1+\frac{1}{\Gamma(\alpha-1)} \int_0^{t_1}(t_1-s)^{\alpha-2}\rho(s)ds+\overline I_1(y(t_1^{-})). \end{equation} Then by \eqref{eqq1}-\eqref{eqq3}, we have \begin{align*} y(t)&= y_0+y_1t+\frac{1}{\Gamma(\alpha)} \int_0^{t_1}(t_1-s)^{\alpha-1}\rho(s)ds\\ &\quad +\frac{(t-t_1)}{\Gamma(\alpha-1)} \int_0^{t_1}(t_1-s)^{\alpha-2}\rho(s)ds\\ &\quad +I_1(y(t_1^{-}))+(t-t_1)\overline I_1(y(t_1^{-})) +\frac{1}{\Gamma(\alpha)} \int_{t_1}^{t}(t-s)^{\alpha-1}\rho(s)ds. \end{align*} If $t\in (t_k,t_{k+1}]$ then again from Lemma \ref{l2} we obtain \eqref{e5}. Conversely, assume that $y$ satisfies the impulsive fractional integral equation \eqref{e5}. If $t\in [0,t_1]$ then $y(0)=y_0$, $y'(0)=y_1$ and using the fact that $^{c}D^{\alpha}$ is the left inverse of $I^{\alpha}$ we get $$ ^{c}D^{\alpha}y(t)= \rho(t), \quad \text{for each } t\in [0,t_1]. $$ If $t\in [t_k,t_{k+1})$, $k=1,\dots,m$ and using the fact that $^{c}D^{\alpha}C=0$, where $C$ is a constant, we get $$ ^{c}D^{\alpha}y(t)= \rho(t), \quad \text{for each } t\in [t_k,t_{k+1}). $$ Also, we can easily show that \begin{gather*} \Delta y|_{t=t_k}= I_k(y(t_k^{-})), \quad k=1,\dots,m,\\ \Delta y'|_{t=t_k}= \overline I_k(y(t_k^{-})), \quad k=1,\dots,m. \end{gather*} Our first result is based on the nonlinear alternative of Leray-Schauder type for multivalued maps \cite{GrDu}. We assume the following hypotheses: \begin{itemize} \item[(H1)] $F: J\times \mathbb{R}\to \mathcal{P}_{cp,c}(\mathbb{R})$ is a Carath\'eodory multi-valued map; \item[(H2)] there exist $p\in C(J,\mathbb{R}^+) $ and $\psi:[0,\infty)\to (0,\infty)$ continuous and nondecreasing such that $$ \|F(t,u)\|_\mathcal{P}=\sup\{|v|: v\in F(t,u)\} \leq p(t)\psi(|u|) $$ for $t\in J$ and $u\in \mathbb{R}$; \item[(H3)] There exist $\psi^*, \overline \psi^{*}:[0,\infty)\to (0,\infty)$ continuous and nondecreasing such that \begin{gather*} |I_k(u)|\leq \psi^*(|u|) \quad\text{for } u\in \mathbb{R},\\ |\overline I_k(u)|\leq \overline \psi^*(|u|) \quad \text{for } u\in \mathbb{R}; \end{gather*} \item[(H4)] There exists a number $\overline M>0$ such that \begin{equation}\label{eq2} \frac{M}{|y_0|+T|y_1|+a\psi(M) +m\psi^*( M)+mT\overline \psi^*( M)}>1, \end{equation} where $p^{0}=\sup\{p(t): t\in J\}$ and $$ a=\frac{mT^{\alpha}p^{0}}{\Gamma(\alpha+1)} +\frac{mT^{\alpha}p^{0}}{\Gamma(\alpha)} + \frac{T^{\alpha}p^{0}}{\Gamma(\alpha+1)}. $$ \item[(H5)] there exists $l\in L^{1}(J,\mathbb{R}^+)$ such that \begin{gather*} H_d(F(t,u),F(t,\overline u))\leq l(t)|u-\overline u|\quad \text{for a.e. } t\in J .\; u,\overline u\in \mathbb{R},\\ d(0,F(t,0))\leq l(t), \quad \text{a.e. } t\in J. \end{gather*} \end{itemize} \begin{theorem}\label{t1} Under Assumptions {\rm (H1)-(H5)}, the initial-value problem \eqref{e1}-\eqref{e4} has at least one solution on $J$. \end{theorem} {\bf Proof.} We transform \eqref{e1}--\eqref{e3} into a fixed point problem. Consider the multivalued operator \begin{align*} N(y)=\Big\{&h\in PC(J,\mathbb{R}): h(t)= y_0+y_1t+\frac{1}{\Gamma(\alpha)}\sum_{00$, there exist $n_0(\epsilon)\geq 0$ such that for every $n\geq n_0$, we have $$ v_n(t)\in F(t,y_n(t))\subset F(t,y_{*}(t))+\varepsilon B(0,1), \quad \text{a.e. } t\in J. $$ Since $F(\cdot,\cdot)$ has compact values, then there exists a subsequence $v_{n_m}(\cdot)$ such that \begin{gather*} v_{n_m}(\cdot)\to v_*(\cdot) \quad \text{as } m\to\infty,\\ v_*(t)\in F(t,y_*(t)),\quad \text{a.e. } t\in J. \end{gather*} Using the fact that the functions $I_k$ and $\overline I_k$, $k=1,\dots,m$ are continuous, it can be easily shown that $h_*$ and $v_*$ satisfy \eqref{iie}. {\bf Step 5:} A priori bounds on solutions. Let $y\in PC(J,\mathbb{R})$ be such that $y\in\lambda N(y)$ for $\lambda\in (0,1)$. Then there exists $v\in S_{F,y}$ such that, for each $t\in J$, \begin{align*} |y(t)|&\leq |y_0|+|y_1|T+\frac{1}{\Gamma(\alpha)}\sum_{00$ such that \begin{gather*} |I_k(u)-I_k(\overline u)|\leq l^*|u-\overline u|, \quad \text{for each } u, \overline u \in \mathbb{R}, \text{ and } k=1,\dots,m,\\ |\overline I_k(u)-\overline I_k(\overline u)|\leq \overline l^*|u-\overline u|, \quad \text{for each } u, \overline u \in \mathbb{R}, \text{ and } k=1,\dots,m. \end{gather*} \end{itemize} \begin{theorem}\label{t2} Assume {\rm (H5)--(H7)}. If \begin{equation}\label{eq1} \big[\frac{mlT^{\alpha}}{\Gamma(\alpha+1)}+\frac{mlT^{\alpha}}{\Gamma(\alpha)} +\frac{lT^{\alpha}}{\Gamma(\alpha+1)}+m(l^{*}+T\overline l^{*}) \big]<1, \end{equation} where $l=\sup\{l(t): \ t\in J\}$, then \eqref{e1}-\eqref{e4} has one solution on $J$. \end{theorem} \begin{proof} For each $y\in PC(J,\mathbb{R})$, the set $S_{F,y}$ is nonempty since by (H6), $F$ has a measurable selection (see \cite[Theorem III.6]{CaVa}). We shall show that $N$ satisfies the assumptions of Lemma \ref{CN}. The proof will be given in two steps. {\bf Step 1}: $N(y)\in P_{cl}(PC(J,\mathbb{R}))$ for each $y\in PC(J,\mathbb{R})$. Indeed, let $(y_{n})_{n\geq 0}\in N(y)$ such that $y_{n}\to \tilde y$ in $ PC(J,\mathbb{R})$. Then, $\tilde y\in PC(J,\mathbb{R})$ and there exists $v_n\in S_{F,y}$ such that, for each $t\in J$, \begin{align*} y_{n}(t)&= y_0+y_1t+\frac{1}{\Gamma(\alpha)}\sum_{00$, there exists a function $h_q\in L^1([0,T],\mathbb{R}^+)$ such that $\|F(t,y)\|_\mathcal{P}\leq h_q(t)$ for a.e. $t\in[0,T]$ and for $y\in \mathbb{R}$ with $|y|\leq q$. \end{itemize} The following lemma is crucial in the proof of our main theorem. \begin{lemma}\label{FG} \cite{FrGr}. Let $F: [0,T]\times \mathbb{R}\to \mathcal{P}(\mathbb{R})$ be a multivalued map with nonempty, compact values. Assume that {\rm (H8), (H9)} hold. Then $F$ is of l.s.c. \end{lemma} \begin{theorem}\label{t3} Suppose that hypotheses {\rm (H2)-(H4), (H8), (H9)} are satisfied. Then the problem \eqref{e1}--\eqref{e4} has at least one solution. \end{theorem} \begin{proof} (H8) and (H9) imply by Lemma \ref{FG} that $F$ is of lower semi-continuous type. Then from Theorem \ref{BC} there exists a continuous function $f: PC([0,T],\mathbb{R})\to L^1([0,T],\mathbb{R})$ such that $f(y)\in\mathcal{F}(y) $ for all $y\in PC([0,T],\mathbb{R})$. Consider the problem \begin{gather}\label{eqq10} ^{c}D^{\alpha}y(t)\in f(y)(t), \quad \text{for a.e. } t\in J=[0,T], \; t\neq t_k, \; k=1,\dots,m, \; 1<\alpha\leq 2, \\ \label{eqq11} \Delta y|_{t=t_k}= I_k(y(t_k^{-})), \quad k=1,\dots,m, \\ \label{eqq12} \Delta y'|_{t=t_k}= \overline I_k(y(t_k^{-})), \quad k=1,\dots,m,\\ \label{eqq13} y(0)= y_0, \quad y'(0)=y_1. \end{gather} Clearly, if $y$ is a solution of \eqref{eqq10}--\eqref{eqq13}, then $y$ is a solution of \eqref{e1}-\eqref{e4}. Problem \eqref{eqq10}-\eqref{eqq13} can be reformulated as a fixed point problem for the operator $N_1: PC([0,T,\mathbb{R})\to PC([0,T],\mathbb{R})$ defined by \begin{align*} N_1(y)(t)&= y_0+y_1t+\frac{1}{\Gamma(\alpha)}\sum_{00$ such that \begin{gather*} |I_k(u)|\leq d_1 \quad \text{for } u\in \mathbb{R},\\ |\overline{I}_k(u)|\leq d_{2} \quad \text{for } u\in \mathbb{R}. \end{gather*} \end{itemize} Then the solution set of \eqref{e1}-\eqref{e4} in not empty and is compact in $PC(J,\mathbb{R})$. \end{theorem} \begin{proof} Let $$ S=\{y\in PC(J, \mathbb{R}): y \text{ is solution of } \eqref{e1}-\eqref{e4}\}. $$ From Theorem \ref{t1}, $S\neq \emptyset$. Now, we prove that $S$ is compact. Let $(y_n)_{n\in\mathbb{N}}\in S$, then there exists $v_n\in S_{F,y_n}$ and $t\in J$ such that \begin{align*} y_{n}(t)&= y_0+y_1t+\frac{1}{\Gamma(\alpha)}\sum_{00$ such that $\|y_n\|_{\infty}\leq M_1$ for every $n\geq1$. As in Step 3 in Theorem \ref{t1}, we can easily show that the set $\{y_n:n\geq 1\}$ is equicontinuous in $PC(J,\mathbb{R})$, hence by Arz\'ela-Ascoli Theorem we can conclude that, there exists a subsequence (denoted again by $\{y_n\}$) of $\{y_n\}$ such that $y_n$ converges to $y$ in $PC(J, \mathbb{R})$. We shall show that there exist $v(.)\in F(.,y(.))$ and $t\in J$ such that \begin{align*} y(t)&= y_0+y_1t+\frac{1}{\Gamma(\alpha)}\sum_{00$, there exists $n_0(\epsilon)\geq 0$ such that for every $n\geq n_0$, we have $$ v_n(t)\in F(t,y_n(t))\subset F(t,y(t))+\varepsilon B(0,1), \quad \text{a.e. } t\in J. $$ Since $F(.,.)$ has compact values, there exists subsequence $v_{n_m}(.)$ such that \begin{gather*} v_{n_m}(.)\to v(.)\quad \text{as } m\to\infty,\\ v(t)\in F(t,y(t)),\quad \text{a.e. } t\in J. \end{gather*} It is clear that $$ |v_{n_m}(t)|\leq p_1(t),\quad \text{a.e. } t\in J. $$ By Lebesgue's dominated convergence theorem, we conclude that $v\in L^{1}(J, \mathbb{R})$ which implies that $v\in S_{F,y}$. Thus, for $t\in J$, we have \begin{align*} y(t)&= y_0+y_1t+\frac{1}{\Gamma(\alpha)}\sum_{0\mu\}$ is open for each $\mu\in \mathbb{R}$), and assume that for each $t\in J, f_2(t,\cdot)$ is upper semi-continuous (i.e the set $\{y\in \mathbb{R}: f_2(t,y)<\mu\}$ is open for each $\mu\in \mathbb{R}$). Assume that there are $p\in C(J,\mathbb{R}^{+})$ and $\psi:[0,\infty)\to (0,\infty)$ continuous and nondecreasing such that $$ \max(|f_1(t,y)|, |f_2(t,y)|)\leq p(t)\psi(|y|),\quad t\in J, \text{ and } y\in \mathbb{R}. $$ Assume there exists a constant $M>0$ such that $$ \frac{M}{\big(\frac{2p^{0}}{\Gamma(\alpha+1)} +\frac{p^{0}}{\Gamma(\alpha)}\big)\psi(M)+\frac{8}{15}}>1. $$ It is clear that $F$ is compact and convex valued, and it is upper semi-continuous (see \cite{Dei}). Since all the conditions of Theorem \ref{t1} are satisfied, the problem \eqref{ex1}-\eqref{ex4} has at least one solution $y$ on $J$. \subsection*{Acknowledgements} This paper has been completed while the first author was visiting the Abdus Salam International Centre for Theoretical Physics in Trieste as regular associate. He likes to express his gratitude for the provided financial support. The research of J. J. Nieto was partially supported by Ministerio de Educacion y Ciencia and FEDER, project MTM2007-61724, and by Xunta de Galicia and FEDER, project PGIDIT05PXIC20702PN. \begin{thebibliography}{00} \bibitem{ABH} R. P. Agarwal, M. Benchohra and S. Hamani; Boundary value problems for differential inclusions with fractional order, \emph{Adv. Stud. Contemp. Math.}, {\bf 12} (2) (2008), 181-196. \bibitem{AhNi} B. Ahmad, J. J. Nieto; Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions, \emph{Nonlinear Anal.} {\bf 69} (2008), 3291--3298. \bibitem{BaSi} B. Ahmad, S. Sivasundaram; Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. \emph{Nonlinear Anal. Hybrid Syst.} {\bf 3} (2009), 251--258. \bibitem{Ao} Y,. Aoki, M. Sen, S. Paolucci; Approximation of transient temperatures in complex geometries using fractional derivatives. \emph{Heat and Mass Transfer} {\bf 44}, no. 7 (2008), 771--777. \bibitem{AuCe} J. P. Aubin and A. Cellina; \emph{Differential Inclusions}, Springer-Verlag, Berlin-Heidelberg, New York, 1984. \bibitem{BBHN} A. Belarbi, M. Benchohra, S. Hamani and S.K. Ntouyas; Perturbed functional differential equations with fractional order, \emph{Commun. Appl. Anal.} {\bf 11} (3-4) (2007), 429-440. \bibitem{BBO} A. Belarbi, M. Benchohra and A. Ouahab; Uniqueness results for fractional functional differential equations with infinite delay in Fr\'echet spaces, \emph{Appl. Anal.} {\bf 85} (2006), 1459-1470. \bibitem{BeHa} M. Benchohra and S. Hamani; Nonlinear boundary value problems for differential Inclusions with Caputo fractional derivative, \emph{ Topol. Meth. Nonlinear Anal.} {\bf 32} (1) (2008), 115-130. \bibitem{BeHaNt} M. Benchohra, S. Hamani and S. K. Ntouyas; Boundary value problems for differential equations with fractional order, \emph{Surv. Math. Appl.} {\bf 3} (2008), 1-12. \bibitem{BeHeNt1} M. Benchohra, J. Henderson and S. K. Ntouyas; \emph{Impulsive Differential Equations and Inclusions}, Hindawi Publishing Corporation, Vol. 2, New York, 2006. \bibitem{BeHeNtOu1} M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab; Existence results for fractional order functional differential equations with infinite delay, \emph{J. Math. Anal. Appl.} {\bf 338} (2008), 1340-1350. \bibitem{BeHeNtOu2} M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab; Existence results for fractional functional differential inclusions with infinite delay and application to control theory, \emph{Frac. Calc. Appl. Anal.} {\bf 11} (1) (2008), 35--56. \bibitem{BeSl} M. Benchohra and B. A. Slimani; Impulsive fractional differential equations, \emph{Electron. J. Differential Equations} Vol. 2009 (2009), No. 10, 11 pp. \bibitem{BrCo} A. Bressan and G. Colombo; Extensions and selections of maps with decomposable values, \emph{Studia Math.} {\bf 90} (1988), 69-86. \bibitem{ChNi} Y.-K. Chang and J. J. Nieto; Some new existence results for fractional differential inclusions with boundary conditions, \emph{Math. Comput. Model.} {\bf 49} (2009), 605-609. \bibitem{CaVa} C. Castaing and M. Valadier; \emph{Convex Analysis and Measurable Multifunctions}, Lecture Notes in Mathematics {\bf 580}, Springer-Verlag, Berlin-Heidelberg-New York, 1977. \bibitem{CoNa} H. Covitz and S. B. Nadler Jr.; Multivalued contraction mappings in generalized metric spaces, \emph{Israel J. Math.} {\bf 8} (1970), 5-11. \bibitem{Dei} K. Deimling; \emph{Multivalued Differential Equations}, Walter De Gruyter, Berlin-New York, 1992. \bibitem{DiFr} K. Diethelm and A. D. Freed; On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in ``Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties" (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), pp 217-224, Springer-Verlag, Heidelberg, 1999. \bibitem{DiFo} K. Diethelm and N. J. Ford; Analysis of fractional differential equations, \emph{J. Math. Anal. Appl.} {\bf 265} (2002), 229-248. \bibitem{FrGr} M. Frigon and A. Granas; Th\'eor\`emes d'existence pour des inclusions diff\'erentielles sans convexit\'e, \emph{C. R. Acad. Sci. Paris, Ser. I } {\bf 310} (1990), 819-822. \bibitem{Fry} A. Fryszkowski; \emph{Fixed Point Theory for Decomposable Sets. Topological Fixed Point Theory and Its Applications}, {\bf 2}. Kluwer Academic Publishers, Dordrecht, 2004. \bibitem{FuTa} K. M. Furati and N.-E. Tatar; Behavior of solutions for a weighted Cauchy-type fractional differential problem. \emph{ J. Fract. Calc.} {\bf 28} (2005), 23--42. \bibitem{GrDu} A. Granas and J. Dugundji; \emph{Fixed Point Theory}, Springer-Verlag, New York, 2003. \bibitem{HeOu} J. Henderson, A. Ouahab; Impulsive differential inclusions with fractional order, \emph{Comput. Math. Appl.} {\bf 59} (2010), 1191-1226. \bibitem{Hil} R. Hilfer; \emph{Applications of Fractional Calculus in Physics}, World Scientific, Singapore, 2000. \bibitem{HuPa} Sh. Hu and N. Papageorgiou; \emph{Handbook of Multivalued Analysis, Theory {\bf I}}, Kluwer, Dordrecht, 1997. \bibitem{KiMa} A. A. Kilbas and S. A. Marzan; Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, \emph{Differential Equations} {\bf 41} (2005), 84-89. \bibitem{KST} A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo; \emph{Theory and Applications of Fractional Differential Equations}. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. \bibitem{Kis} M. Kisielewicz; \emph{Differential Inclusions and Optimal Control}, Kluwer, Dordrecht, The Netherlands, 1991. \bibitem{LBS} V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, \emph{Theory of Impulsive Differntial Equations}, Worlds Scientific, Singapore, 1989. \bibitem{Mai} F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in ``Fractals and Fractional Calculus in Continuum Mechanics" (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997. \bibitem{Oua} A. Ouahab; Some results for fractional boundary value problem of differential inclusions, \emph{Nonlinear Anal.} {\bf 69} (2008), 3877--3896. \bibitem{Pod} I. Podlubny; \emph{Fractional Differential Equation}, Academic Press, San Diego, 1999. \bibitem{SaAgTe} J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado, J. A. (Eds.); \emph{Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering}. Springer, 2007 \bibitem{SaKiMa} S. G. Samko, A. A. Kilbas and O. I. Marichev; \emph{Fractional Integrals and Derivatives. Theory and Applications}, Gordon and Breach, Yverdon, 1993. \bibitem{SaPe} A. M. Samoilenko, N. A. Perestyuk; \emph{Impulsive Differential Equations} World Scientific, Singapore, 1995. \bibitem{YaZhNi} J. Yan, A. Zhao, J. J. Nieto; Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems. \emph{Math. Comput. Model.} {\bf 40} (2004), 509--518. \bibitem{ZeWaNi} G. Z. Zeng, F. Y. Wang, J. J. Nieto; Complexity of delayed predator-prey model with impulsive harvest and Holling type-II functional response. \emph{Adv. Complex Systems} 11 (2008), 77--97. \bibitem{Zha} S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional diffrential equations, \emph{Electron. J. Differential Equations} Vol. 2006, No. 36, 12 pp. \end{thebibliography} \end{document}