\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 95, pp. 1--5.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/95\hfil Asymptotic properties of solutions] {Asymptotic properties of solutions to linear nonautonomous delay differential equations through generalized characteristic equations} \author[C. Cuevas, M. V. S. Frasson \hfil EJDE-2010/95\hfilneg] {Claudio Cuevas, Miguel V. S. Frasson} % in alphabetical order \address{Claudio Cuevas \newline Departamento de Matem\'atica, Universidade Federal de Pernambuco, Av.\ Prof.\ Luiz Freire, S/N, 50540-740 Recife PE, Brazil} \email{cch@dmat.ufpe.br} \address{Miguel V. S. Frasson \newline Departamento de Matem\'atica Aplicada e Estat\'istica, ICMC -- Universidade de S\~ao~Paulo, Avenida Trabalhador s\~ao-carlense 400, 13566-590 S\~ao Carlos SP, Brazil} \email{frasson@icmc.usp.br} \thanks{Submitted May 6, 2010. Published July 15, 2010.} \thanks{C. Cuevas was partially supported by grant 300365/2008-0 from CNPq/Brazil} \thanks{M. Frasson was partially supported by grant 479747/2008-3 from CNPq/Brazil} \subjclass[2000]{39B99} \keywords{Functional differential equations; generalized characteristic equation; \hfill\break\indent asymptotic behavior} \begin{abstract} We study some properties concerning the asymptotic behavior of solutions to nonautonomous retarded functional differential equations, depending on the knowledge of certain solutions of the associated generalized characteristic equation. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{example}[theorem]{Example} \section{Introduction} We are interested in the study of the asymptotic behavior of solutions to the linear nonautonomous retarded functional differential equation (RFDE) \begin{equation} \label{eq:fde} x'(t) = L(t) x_t, \quad t\geqslant t_0\in\mathbb{R}, \end{equation} where $L(t)$ is a family of bounded linear functionals on $\mathcal{C} = \mathcal{C}([-r,0],\mathbb{C})$, with $r>0$, depending on the knowledge of certain solutions of the associated generalized characteristic equation \eqref{eq:gen-chareq}, introduced below. For a comprehensive introduction for RFDE see \cite{HVL93}. By the Riesz representation theorem, for each $t\geqslant t_0$, there exists a complex valued function of bounded variation $\eta(t,\cdot)$ on $[0,r]$, normalized so that $\eta(t,0)=0$ and $\eta(t,\cdot)$ is continuous from the right in $(0,r)$ such that \begin{equation} \label{eq:L(t)=int dn(t)} L(t) \varphi = \int_0^r d_\theta\eta(t,\theta) \varphi(-\theta). \end{equation} Consider the \textit{generalized characteristic equation} \begin{equation} \label{eq:gen-chareq} \lambda(t) = \int_0^r d_\theta \eta(t,\theta) \exp\Big({-\int_{t-\theta}^t} \lambda(s)ds\Big), \end{equation} The solutions of the generalized characteristic equation \eqref{eq:gen-chareq} are continuous functions $\lambda(\cdot)$ defined in $[t_0-r,\infty)$ which satisfy \eqref{eq:gen-chareq}. One obtains the generalized characteristic equation (\ref{eq:gen-chareq}) by looking for solutions of~\eqref{eq:fde} the form \begin{equation} \label{eq:x=exp-int-lambda} x(t) = \exp\Big[\int_{0}^t \lambda(s)ds\Big]. \end{equation} For autonomous RFDE, the constant solutions of \eqref{eq:gen-chareq} are the roots of the so called characteristic equation. This work is motivated by Dix, Philos and Purnaras \cite{DixPP-nonaut-rfde-05}. These authors studied the asymptotic behavior of solutions of nonautonomous linear function differential equations with discrete delays \begin{equation} \label{eq:fde-philos} x'(t) = a(t)x(t) + \sum_{j=1}^k b_j(t) x(t-\tau_j),\quad t \geqslant 0 \end{equation} where the coefficients $a(\cdot)$ and $b_j(\cdot)$ are continuous real-valued functions on $[0,\infty)$, $\tau_j>0$ for $j = 1, 2, \dots, k$ by means of the knowledge of solutions $\lambda(t)$, defined for $t\geqslant -r$, of the generalized characteristic equation associated to \eqref{eq:fde-philos} \begin{equation} \label{eq:gen-charec-philos} \lambda(t) = a(t) + \sum_{j=1}^k b_j (t) \exp\Big[{-\int_{t-\tau_j}^t} \lambda(s)ds \Big], \quad t\geqslant0. \end{equation} We also find in \cite{DixPP-nonaut-rfde-05} a description of the development of results of the type of Theorem~\ref{thm: V<1 => asymptotic}. We would like to mention results of this type are found in \cite{estimates-07,large} too. Dix, Philos and Purnaras extended their results for neutral functional differential equations in \cite{DixPP06}. Theorem~\ref{thm: V<1 => asymptotic} provides a generalization of \cite[Thm.\ 2.3]{DixPP-nonaut-rfde-05}, as it can be applied for instance for RFDE with distributed delay or discrete variable delays, as far as the delays are unifomly bounded. In fact, RFDE~\eqref{eq:fde-philos} can be written in the form~\eqref{eq:fde} letting \[ L(t)\varphi = a(t)\varphi(0) + \sum_{j=1}^k b_j(t) \varphi(\tau_j), \quad \varphi\in \mathcal{C}. \] We acknowledge that Theorem~\ref{thm: V<1 => asymptotic} is obtained by an adaptation of the proof of \cite[Thm.\ 2.3]{DixPP-nonaut-rfde-05} for the more general case of RFDE~\eqref{eq:fde}, together with ideas from \cite{estimates-07}. We observe that \cite[Remarks 2.4, 2.5 and 2.6]{DixPP-nonaut-rfde-05} can be restated here for RFDE~\eqref{eq:fde} without modification. \section{Results} \enlargethispage{\baselineskip} \begin{theorem}\label{thm: V<1 => asymptotic} Assume that $\lambda(t)$ is a solution of \eqref{eq:gen-chareq} such that \begin{equation} \label{eq:V<1} \limsup_{t\to\infty} \int_0^r \theta |e^{-\int_{t-\theta}^t \lambda(s)ds}| d_\theta|\eta|(t,\theta) < 1. \end{equation} Then for each solution $x$ of \eqref{eq:fde}, we have that the limit \begin{equation} \label{eq:lim x exp -int lambda = L} \lim_{t\to\infty} x(t) e^{-\int_{t_0}^t \lambda(s)ds} \end{equation} exists, and \begin{equation} \label{eq:limxexp} \lim_{t\to\infty} \Big[ x(t) e^{-\int_{t_0}^t \lambda(s)ds}\Big]' = 0. \end{equation} Furthermore, \begin{equation} \label{eq:limx'exp} \lim_{t\to\infty} x'(t) e^{-\int_{t_0}^t \lambda(s)ds} = \lim_{t\to\infty} \lambda(t) x(t) e^{-\int_{t_0}^t \lambda(s)ds} \end{equation} if there exists the limit in the right hand side of \eqref{eq:limx'exp}. \end{theorem} \begin{proof} Hypothesis~\eqref{eq:V<1} implies that there exists $t_1\geqslant t_0$ such that \[ \sup_{t\geqslant t_1} \int_0^r \theta |e^{-\int_{t-\theta}^t \lambda(s)ds}| d_\theta|\eta|(t,\theta) < 1. \] Hence without loss of generality, if necessary translating the initial time to $t_1$, we may assume $t_0=0$ and \begin{equation} \label{eq:V<1 t0=0} \mu_{\lambda} := \sup_{t\geqslant 0} \int_0^r \theta |e^{-\int_{t-\theta}^t \lambda(s)ds}| d_\theta|\eta|(t,\theta) < 1. \end{equation} Let $x$ be a solution of \eqref{eq:fde}, and set \[ y(t) = x(t) e^{-\int_{0}^t \lambda(s)ds}, \quad t\geqslant -r. \] Differentiating $y(t)$ when $t\geqslant0$, using that $x(t)$ is a solution of \eqref{eq:fde}, \eqref{eq:gen-chareq} and the fundamental theorem of calculus, we obtain \begin{equation} \begin{aligned} y'(t) & = \Big(x'(t) - x(t)\lambda(t)\Big) e^{-\int_{0}^t \lambda(s)ds} \\ &= \Big( \int_0^r d_\theta\eta(t,\theta) x(t-\theta) -x(t) \int_0^r d_\theta \eta(t,\theta) e^{-\int_{t-\theta}^t \lambda(s)ds} \Big) e^{-\int_{0}^t \lambda(s)ds} \\ &= \int_0^r d_\theta\eta(t,\theta) x(t-\theta) e^{-\int_{0}^{t-\theta} \lambda(s)ds}e^{-\int_{t-\theta}^t \lambda(s)ds} \\ &\quad -x(t)e^{-\int_{0}^t \lambda(s)ds} \int_0^r d_\theta \eta(t,\theta) e^{-\int_{t-\theta}^t \lambda(s)ds} \\ &= \int_0^r d_\theta\eta(t,\theta) y(t-\theta) e^{-\int_{t-\theta}^t \lambda(s)ds} -y(t) \int_0^r d_\theta \eta(t,\theta) e^{-\int_{t-\theta}^t \lambda(s)ds} \\ &= \int_0^r d_\theta\eta(t,\theta) [y(t-\theta) -y(t)] e^{-\int_{t-\theta}^t \lambda(s)ds} \\ &= -\int_0^r d_\theta\eta(t,\theta) \Big[\int_{t-\theta}^t y'(s) ds\Big] e^{-\int_{t-\theta}^t \lambda(s)ds}, \quad t\geqslant 0. \label{eq:y'} \end{aligned} \end{equation} As a characteristic of RFDE, we have that $y'(t)$ is continuous for $t\geqslant 0$, understanding the derivative at $t=0$ as the derivative from the right. Let \begin{equation}\label{eq:def Mx} M_x = \max_{t\in[0,r]} |y'(t)|. \end{equation} Let $t^*\geqslant r$ arbitrary and suppose that for some $A\geqslant 0$ we have \begin{equation} \label{eq:hipotese |y'|0$ for $ t\geqslant t_0$. FDE~\eqref{eq:exampl-variavel} is written in the form~\eqref{eq:fde} letting $\eta(t,\cdot)$ be given by $\eta(t,\theta)=0$ for $\theta<\tau(t)$, $\eta(t,\theta)=1/(t+c-\tau(t))$ for $\theta\geqslant\tau(t)$. We have that $\theta\mapsto \eta(t,\theta)$ is increasing and then $|\eta| = \eta$. The generalized characteristic equation associated to \eqref{eq:exampl-variavel} is given by \begin{equation}\label{eq:ex-var-delay-chareq} \lambda(t) = \frac{1}{t+c-\tau(t)} \exp\Big[{-\int_{t-\tau(t)}^t} \lambda(s)ds\Big] \end{equation} and we have that a solution of \eqref{eq:ex-var-delay-chareq} is given by \begin{equation}\label{eq:ex-var-delay-lambda} \lambda(t) = \frac{1}{t+c}. \end{equation} For \eqref{eq:exampl-variavel} and $\lambda(t)$ in~\eqref{eq:ex-var-delay-lambda}, the left hand side of~\eqref{eq:V<1} reads as \[ \limsup_{t\to\infty} \int_0^r \theta |e^{-\int_{t-\theta}^t \lambda(s)ds}| d_\theta|\eta|(t,\theta) = \limsup_{t\to\infty} \frac{\tau(t)}{t+c} =0. \] and hence the hypothesis~\eqref{eq:V<1} of Theorem~\ref{thm: V<1 => asymptotic} is fulfilled and herefore, for all solutions $x(t)$ of \eqref{eq:exampl-variavel}, we have that \begin{equation}\label{eq:ex var delay - resultados teo} \lim_{t\to\infty} \frac{x(t)}{t+c}\text{ exists, and } \lim_{t\to\infty} \Big[\frac{x(t)}{t+c}\Big]' =0. \end{equation} Manipulating further the limits in \eqref{eq:ex var delay - resultados teo}, we are able to state that $x(t) = O(t)$ and $x'(t) =o(t)$ as $t\to\infty$. \end{example} \begin{example} \rm Consider the linear FDE with distributed delay \begin{equation} \label{eq:exemplo delay distrib} x'(t) = \int_0^1 \frac{x(t-\theta)}{t-\theta},\quad t>1. \end{equation} We write \eqref{eq:exemplo delay distrib} in the form \eqref{eq:fde} by setting $\eta(t,\theta) = \ln t - \ln(t-\theta)$ for $t>1$ and $\theta\in[0,1]$. Since $\theta\mapsto \eta(t,\theta)$ is an increasing function, $|\eta| = \eta$. The generalized characteristic equation associated to \eqref{eq:exemplo delay distrib} is given by \begin{equation}\label{eq:ex var distrib - chareq} \lambda(t) = \int_0^1 \frac{1}{t-\theta} \exp\Big[{-\int_{t-\theta}^t} \lambda(s)ds\Big] d\theta \end{equation} which has a solution given by \begin{equation} \label{eq:lambda ex distrib} \lambda(t) = 1/t. \end{equation} For this $\lambda(t)$ and for $t>1$, the integral in \eqref{eq:V<1} reads as \[ \int_0^1 \frac{\theta}{t-\theta} \exp\Big[{-\int_{t-\theta}^t} \frac{ds}{s}\Big] d\theta = \int_0^1 \frac{\theta}{t}\, d\theta = \frac{1}{2t} \to 0\quad \text{as } t\to\infty. \] Hence the hypothesis~\eqref{eq:V<1} of Theorem~\ref{thm: V<1 => asymptotic} is fulfilled. Again we obtain that \begin{equation} \label{eq:ex var distrib - resultados teo} \lim_{t\to\infty} \frac{x(t)}{t}\text{ exists},\quad \lim_{t\to\infty} \Big[\frac{x(t)}{t}\Big]' =0\quad \text{and}\quad \lim_{t\to\infty} \frac{x'(t)}{t} =0. \end{equation} \end{example} % Generating references by bibtex %\bibliography{gen-chareq-2010} %\bibliographystyle{acm} % Contents of thebibliography are the contents of file cuevas.bbl, % when bibtex is run (but uncomment the two lines above and comment % the thebibliography environment below) \begin{thebibliography}{0} \bibitem{DixPP-nonaut-rfde-05} {\sc Dix, J.~G., Philos, C.~G., and Purnaras, I.~K.} \newblock An asymptotic property of solutions to linear nonautonomous delay differential equations. \newblock {\em Electron. J. Differential Equations\/} (2005), no. 10, 9 pp. (electronic). \bibitem{DixPP06} {\sc Dix, J.~G., Philos, C.~G., and Purnaras, I.~K.} \newblock Asymptotic properties of solutions to linear non-autonomous neutral differential equations. \newblock {\em J. Math. Anal. Appl. 318}, 1 (2006), 296--304. \bibitem{estimates-07} {\sc Frasson, M.} \newblock On the dominance of roots of characteristic equations for neutral functional differential equations. \newblock {\em Journal of Mathematical Analysis and Applications 360\/} (2009), 27--292. \bibitem{large} {\sc Frasson, M. V.~S., and Verduyn~Lunel, S.~M.} \newblock Large time behaviour of linear functional differential equations. \newblock {\em Integral Equations Operator Theory 47}, 1 (2003), 91--121. \bibitem{HVL93} {\sc Hale, J.~K., and Verduyn~Lunel, S.~M.} \newblock {\em Introduction to functional-differential equations}, vol.~99 of {\em Applied Mathematical Sciences}. \newblock Springer-Verlag, New York, 1993. \end{thebibliography} \end{document}