\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 96, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/96\hfil Existence and concentration of solutions] {Existence and concentration of solutions for a $p$-laplace equation with potentials in $\mathbb{R}^N$} \author[M. Wu, Z. Yang\hfil EJDE-2010/96\hfilneg] {Mingzhu Wu, Zuodong Yang} % in alphabetical order \address{Mingzhu Wu \newline Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Jiangsu Nanjing 210046, China} \email{wumingzhu\_2010@163.com} \address{Zuodong Yang \newline Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Jiangsu Nanjing 210046, China. \newline College of Zhongbei, Nanjing Normal University, Jiangsu Nanjing 210046, China} \email{zdyang\_jin@263.net} \thanks{Submitted January 22, 2010. Published July 15, 2010.} \thanks{Supported by grants 10871060 from the National Natural Science Foundation of China, \hfill\break\indent and 08KJB110005 from the Natural Science Foundation of the Jiangsu Higher Education \hfill\break\indent Institutions of China} \subjclass[2000]{35J25, 35J60} \keywords{Potentials; critical point theory; concentration; existence; \hfill\break\indent concentration-compactness; $p$-Laplace} \begin{abstract} We study the $p$-Laplace equation with Potentials $$ -\operatorname{div}(|\nabla u|^{p-2}\nabla u)+\lambda V(x)|u|^{p-2}u=|u|^{q-2}u, $$ $u\in W^{1,p}(\mathbb{R}^N)$, $x\in \mathbb{R}^N$ where $2\leq p$, $p0$ such that the set ${\{x\in \mathbb{R}^N: V(x)p$ and $p^{*}=\infty$ if $1\leq N\leq p$. \end{itemize} Note that if $\varepsilon^{p}=\lambda^{-1}$, then $u$ is a solution of \eqref{e1.2} if and only if $v=\lambda^{\frac{-1}{q-p}}u$ is a solution of \eqref{e1.3}, hence as far as the existence and the number of solutions are concerned, these two problems are equivalent. $\|u\|_{p}$ will denote the usual $L^{p}(\mathbb{R}^N)$ norm and $V^{\pm}(x)=\max{\{\pm V(x),0}\}$. $B_{\rho}$ and $S_{\rho}$ will respectively denote the open ball and the sphere of radius $\rho$ and center at the origin. It is well known that the functional $$ \Phi(u)={\frac{1}{p}}\int_{\mathbb{R}^N}(|\nabla u|^{p}+V(x)|u|^{p})dx-{\frac{1}{q}}\int_{\mathbb{R}^N}|u|^{q}dx $$ is of class $C^{1}$ in the Sobolev space \begin{equation} E={\{u\in W^{1,p}(\mathbb{R}^N):\|u\|^{p}=\int_{\mathbb{R}^N}(|\nabla u|^{p}+V^{+}(x)|u|^{p})dx<\infty}\} \label{e1.4} \end{equation} and critical points of $\Phi$ correspond to solutions $u$ of \eqref{e1.1}. Moreover, $u(x)\to 0$ as $|x|\to\infty$. It is easy to see that if \begin{equation} M=\inf_{u\in E\backslash \{0\}}{\frac{\int_{\mathbb{R}^N}(|\nabla u|^{p}+V(x)|u|^{p})dx}{\|u\|^{p}_{q}}}\; \label{e1.5} \end{equation} is attained at some $\overline{u}$ and $M$ is positive, then $u=M^{\frac{1}{q-p}}\overline{u}/\|\overline{u}\|_{q}$ is a solution of \eqref{e1.1} and $u(x)\to 0$ as $|x|\to\infty$. Such $u$ is called a ground state. Because we have Poincar\'e inequality $$ \int_{\Omega}|u|^{p}dx\leq C\int_{\Omega}|\nabla u|^{p}dx,\quad 1\leq p<+\infty,\quad u\in W^{1,p}_{0}(\Omega) $$ so $E$ is continuously embedded in $W^{1,p}(\mathbb{R}^N)$. Recently, there have been numerous works for the eigenvalue problem \begin{equation} \begin{gathered} -\operatorname{div}(|\nabla u|^{p-2}\nabla u)=V(x)|u|^{p-2}u\\ u\in D^{1,p}_{0}(\Omega),\quad u\neq 0 \end{gathered} \label{e1.6} \end{equation} where $\Omega\subseteq \mathbb{R}^N$. We can see \cite{b1,d2,r1,s1} for different approaches. Szulkin and Willem \cite{s1} generalized several earlier results concerning the existence of an infinite sequence of eigenvalues. Consider the quasilinear elliptic equation \begin{equation} \begin{gathered} -\operatorname{div}(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=f(x,u),\quad \text{in } \Omega\\ u\in W^{1,p}_{0}(\Omega),\quad u\neq 0 \end{gathered} \label{e1.7} \end{equation} where $12$, using the lower semi-continuity of the $L^{p}$-norm with respect to the weak convergence and $u_n\rightharpoonup u$ in $W^{1,p}(\Omega)$, we deduce $$ \lim_{n\to\infty}\langle|\nabla u_n|^{p-2}{\nabla u_n}, {\nabla u_n}\rangle\geq \langle|\nabla u|^{p-2}{\nabla u}, {\nabla u}\rangle $$ and \begin{align*} &\lim_{n\to\infty}\langle |{\nabla u_n}-\nabla u|^{p-2}({\nabla u_n}-{\nabla u}),{\nabla u_n}-{\nabla u}\rangle\\ &=0 \geq \lim_{n\to\infty}\langle |{\nabla u_n}-\nabla u|^{p-2}({\nabla u}-{\nabla u}),{\nabla u}-{\nabla u}\rangle. \end{align*} So \begin{align*} \lim_{n\to\infty}\langle|{\nabla u_n}-\nabla u|^{p-2}{\nabla u_n},{\nabla u_n}\rangle &\geq \lim_{n\to\infty}\langle|{\nabla u_n}-\nabla u|^{p-2}{\nabla u_n},{\nabla u}\rangle \\ &=\lim_{n\to\infty}\langle|{\nabla u_n}-\nabla u|^{p-2}{\nabla u},{\nabla u_n}\rangle\\ &=\lim_{n\to\infty}\langle|{\nabla u_n}-\nabla u|^{p-2}{\nabla u},{\nabla u}\rangle. \end{align*} Then \begin{align*} &\lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p}-|\nabla u|^{p})dx\\ & =\lim_{n\to\infty}\int_{\Omega}|\nabla u_{n}|^{p-2}(|\nabla u_{n}|^{2}-|\nabla u|^{2})dx+\lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p-2}-|\nabla u|^{p-2})|\nabla u|^{2}dx\\ &=\lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p-2}+|\nabla u|^{p-2})(|\nabla u_{n}|^{2}-|\nabla u|^{2})dx\\ &\quad +\lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p-2}|\nabla u|^{2}-|\nabla u|^{p-2}|\nabla u_{n}|^{2})dx. \end{align*} From $u_n\rightharpoonup u$ in $W^{1,p}(\Omega)$, $$ \lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p-2}|\nabla u|^{2}-|\nabla u|^{p-2}|\nabla u_{n}|^{2})dx=0. $$ So \begin{align*} \lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p}-|\nabla u|^{p})dx &=\lim_{n\to\infty}\int_{\Omega}(|\nabla u_{n}|^{p-2}+|\nabla u|^{p-2})(|\nabla u_{n}|^{2}-|\nabla u|^{2})dx\\ & \geq \lim_{n\to\infty}\int_{\Omega}|\nabla u_{n}-\nabla u|^{p-2}(|\nabla u_{n}|^{2}-|\nabla u|^{2}). \end{align*} So we have \begin{align*} &\lim_{n\to\infty}\langle|{\nabla u_n}|^{p-2}{\nabla u_n},{\nabla u_n}\rangle+\langle|{\nabla u_n}-\nabla u|^{p-2}{\nabla u},{\nabla u_n}\rangle+\langle|{\nabla u_n}-\nabla u|^{p-2}{\nabla u_n},{\nabla u}\rangle\\ &\geq \lim_{n\to\infty}\langle|{\nabla u_n}-\nabla u|^{p-2}{\nabla u_n},{\nabla u_n}\rangle\\ &\quad +\lim_{n\to\infty}\langle|{\nabla u_n}-\nabla u|^{p-2}{\nabla u},{\nabla u}\rangle+\langle|{\nabla u}|^{p-2}{\nabla u},{\nabla u}\rangle. \end{align*} Then \begin{align*} &\lim_{n\to\infty}\langle|{\nabla u_n}|^{p-2}{\nabla u_n},{\nabla u_n}\rangle \\ &\geq \lim_{n\to\infty}\langle|{\nabla u_n}-\nabla u|^{p-2}{{\nabla u_n} -{\nabla u}},{\nabla u_n}-{\nabla u}\rangle +\langle|{\nabla u}|^{p-2}{\nabla u},{\nabla u}\rangle. \end{align*} and $$ \lim_{n\to\infty}\int_{\Omega}|\nabla u_n|^{p}dx \geq \lim_{n\to\infty}\int_{\Omega}|\nabla u_n-{\nabla u}|^{p}dx+\int_{\Omega}|\nabla u|^{p}dx. $$ For $p>3$, there exist a $k\in N$ that $00$. Suppose $\|u_m\|\to\infty$ as $m\to\infty$ and let $w_m=u_m/\|u_m\|$. Dividing \eqref{e2.5} by $\|u_m\|^{q}$ we see that $w_m\to 0$ in $L^{q}(\mathbb{R}^N)$ as $m\to\infty$ and therefore $w_m\rightharpoonup 0$ in $E$ as $m\to\infty$ after passing to a subsequence. Hence $\int_{\mathbb{R}^N}V^{-}(x)|w_m|^{p}dx\to 0$ as $m\to\infty$. So dividing \eqref{e2.6} by $\|u_m\|^{p}$, it follows that $w_m\to 0$ in $E$ as $m\to\infty$, a contradiction. Thus ${\{u_m}\}$ is bounded. As in the preceding proof, we may assume $u_m\rightharpoonup u$ in $E$ and $u_m\to u$ in $L^{p}_{\rm loc}(\mathbb{R}^N)$. Set $u_m=v_m+u$. Since $\Phi'(u)=0$ and $$ \Phi(u)=\Phi(u)-{\frac{1}{p}}\langle\Phi'(u),u\rangle =({\frac{1}{p}}-{\frac{1}{q}})\|u\|^{q}_{q}\geq 0, $$ it follows from \eqref{e2.2}, \eqref{e2.3} that $$ \lim_{m\to\infty}(|\|v_m\|^{p}-\|v_m\|^{q}_{q}|)\leq \lim_{m\to\infty}(|\|u_m\|^{p}-\|u_m\|^{q}_{q}| +|\|u\|^{p}-\|u\|^{q}_{q}|)=0 $$ so \begin{equation} \lim_{m\to\infty}(\|v_m\|^{p}-\|v_m\|^{q}_{q})=0 \label{e2.7} \end{equation} and \begin{equation} c=\lim_{m\to\infty}\Phi(u_m) \geq \lim_{m\to\infty}(\Phi(v_m)+\Phi(u)) \geq \lim_{m\to\infty}\Phi(v_m). \label{e2.8} \end{equation} By \eqref{e2.7}, we have \begin{equation} \lim_{m\to\infty}\int_{\mathbb{R}^N}(|\nabla v_m|^{p}+V(x)|v_m|^{p})dx=\lim_{m\to\infty} \int_{\mathbb{R}^N}|v_m|^{q}dx=\gamma \label{e2.9} \end{equation} possibly after passing to a subsequence, and therefore it follows from \eqref{e2.8} that \begin{equation} c\geq ({\frac{1}{p}}-{\frac{1}{q}})\gamma. \label{e2.10} \end{equation} By \eqref{e2.4}, $$ \lim_{m\to\infty}\int_{\mathbb{R}^N}(|\nabla v_m|^{p}+V_{b}(x)|v_m|^{p})dx =\lim_{m\to\infty}\int_{\mathbb{R}^N}(|\nabla v_m|^{p}+V(x)|v_m|^{p})dx=\gamma\,. $$ On the other hand, $$ \|v_m\|^{p}_{q}\leq M^{-}_{b}\lim_{m\to\infty}\int_{\mathbb{R}^N}(|\nabla v_m|^{p}+V_{b}(x)|v_m|^{p})dx; $$ therefore, $\gamma^{\frac{p}{q}}\leq M^{-}_{b}\gamma$. Combining this with \eqref{e2.10}, we see that either $\gamma=0$, or $$ c\geq ({\frac{1}{p}}-{\frac{1}{q}})M_{b}^{\frac{q}{(q-p)}} $$ hence $\gamma$ must be $0$ by the assumption on $c$. So according to \eqref{e2.9}, we have $$ \lim_{m\to\infty}\int_{\mathbb{R}^N}(|\nabla v_m|^{p}+V^{+}(x)|v_m|^{p})dx =\lim_{m\to\infty}\int_{\mathbb{R}^N}(|\nabla v_m|^{p}+V(x)|v_m|^{p})dx=0. $$ Therefore, $v_m\to 0$ and $u_m\to u$ in $E$ as $m\to\infty$. \end{proof} Next we recall a usual critical point theory which will be used in the below Theorem. Here $\gamma(A)$ is the Krasnoselskii genus of $A$. \begin{theorem} \label{thmA} Suppose $E\in C^{1}(M)$ is an even functional on a complete symmetric $C^{1,1}$-manifold $M\subset V\setminus {\{0}\}$ in some Banach space $V$. Also suppose $E$ satisfies $(PS)$ and is bounded below on $M$. Let $\widetilde{\gamma}(M)=\sup\{\gamma(K); K\subset M \text{ and symmetric}\}$. Then the functional $E$ possesses at least $\widetilde{\gamma}(M)\leq \infty$ pairs of critical points. \end{theorem} \section{Proof of Main Theorems} \begin{theorem} \label{thm1} Suppose Assumptions {\rm (V1), (P1)} are satisfied, $\sigma(-\Delta_{p}+V)\subset (0,\infty)$, $\sup_{x\in \mathbb{R}^N}V(x)=b>0$ and the measure of the set ${\{x\in \mathbb{R}^N:V(x)0$. Then the infimum in \eqref{e1.5} is attained at some $u\geq 0$. If $V\geq 0$, then $u>0$ in $\mathbb{R}^N$. \end{theorem} \begin{proof} Since $V^{+}$ is bounded, $E=W^{1,p}(\mathbb{R}^N)$ here. Let $u_b$ be the radially symmetric positive solution of the equation $$ -\operatorname{div}(|\nabla u|^{p-2}\nabla u) +b|u|^{p-2}u=|u|^{q-2}u,\quad x\in \mathbb{R}^N. $$ It is well known that such $u_b$ exists, is unique and minimizes \begin{equation} N_b=\inf_{u\in E\setminus {\{0}\}}{\frac{\int_{\mathbb{R}^N}(|\nabla u|^{p}+b|u|^{p})dx}{\|u\|^{p}_{q}}} \label{e3.1} \end{equation} (see \cite{c1}). So if $V\equiv b$, the proof is complete. Otherwise we may assume without loss of generality that $V(0)0$. A simple computation shows that if $\lambda>0$, then $N_{\lambda b}$ is attained at $$ u_{\lambda b}(x)=\lambda^{\frac{1}{(q-p)}}u_{b} (\lambda^{\frac{1}{p}}x)\quad \mbox{and}\quad N_{\lambda b}=\lambda^{r}N_b, $$ where $r=1-{\frac{N}{p}}+{\frac{N}{q}}$. Choosing $\lambda=(b-\varepsilon)/b$ we see that $N_{b-\varepsilon}0$ in $\mathbb{R}^N$. \end{proof} \begin{theorem} \label{thm2} Suppose $V\geq 0$ and {\rm (V1), (V2), (P1)} are satisfied. Then there exists $\Lambda>0$ such that for each $\lambda\geq \Lambda$ the infimum in \eqref{e1.5} is attained at some $u_{\lambda}>0$. Here $V(x)$ replaced by $\lambda V(x)$. \end{theorem} \begin{proof} Here $V=V^{+}$. Let $b$ be as in (V2) and \begin{equation} \begin{gathered} M^{\lambda}=\inf_{u\in E\setminus {\{0}\}}{\frac{\int_{\mathbb{R}^N}(|\nabla u|^{p}+\lambda V(x)|u|^{p})dx}{\|u\|^{p}_{q}}},\\ M^{\lambda}_{b}=\inf_{u\in E\setminus {\{0}\}}{\frac{\int_{\mathbb{R}^N}(|\nabla u|^{p}+\lambda V_{b}(x)|u|^{p})dx}{\|u\|^{p}_{q}}}. \end{gathered}\label{e3.3} \end{equation} It suffices to show that $M^{\lambda}0$ so that $V(x)0$, \begin{align*} M^{\lambda} &\leq {\frac{\int_{\mathbb{R}^N}(|\nabla w_{\lambda b}|^{p}+\lambda V(x)|w_{\lambda b}|^{p})dx}{\|w_{\lambda b}\|^{p}_{q}}}\\ & \leq {\frac{\int_{\mathbb{R}^N}(|\nabla w_{\lambda b}|^{p}+\lambda (b-\varepsilon)|w_{\lambda b}|^{p})dx}{\|w_{\lambda b}\|^{p}_{q}}}\\ &\leq \lambda^{r}({\frac{\int_{\mathbb{R}^N}(|\nabla u_b|^{p} +\lambda b|u_b|^{p})dx-\varepsilon\int_{\mathbb{R}^N}|u_b|^{p}dx} {\|u_b\|^{p}_{q}}}+\varepsilon)\\ & \leq\lambda^{r}(N_b-C_{0}\varepsilon) \end{align*} where $N_b$ is defined in \eqref{e3.1} and $r$ in \eqref{e3.2}. Using \eqref{e3.2} and \eqref{e3.3} we also see that \begin{equation} M^{\lambda}_{b}\geq \inf_{u\in E\setminus {\{0}\}}{\frac{\int_{\mathbb{R}^N}(|\nabla u|^{p}+\lambda b|u|^{p})dx}{\|u\|^{p}_{q}}}=N_{\lambda b}=\lambda^{r}N_b, \label{e3.4} \end{equation} hence $M^{\lambda}0$. \end{proof} Next we consider the existence of multiple solutions under the hypothesis that $V^{-1}(0)$ has nonempty interior. \begin{theorem} \label{thm3} Suppose $V\geq 0$, $V^{-1}(0)$ has nonempty interior and {\rm (V1), (V2), (P1)} are satisfied. For each $k\geq 1$ there exists $\Lambda_{k}>0$ such that if $\lambda\geq \Lambda_{k}$, then \eqref{e1.2} has at the least $k$ pairs of nontrivial solutions in $E$. \end{theorem} \begin{proof} For a fixed $k$ we can find $\varphi_1$,\dots,$\varphi_{k}\in C^{\infty}_{0}(\mathbb{R}^N)$ such that $\operatorname{supp}\varphi_{j}$, $1\leq j\leq k$, is contained in the interior of $V^{-1}(0)$ and $\operatorname{supp}\varphi_{i}\cap{\operatorname{supp}\varphi_{j}} =\emptyset$ whenever $i\neq j$. Let $$ F_{k}=\operatorname{span}{\{\varphi_{1},\dots,\varphi_{k}}\}. $$ Since $V\geq 0$, $\Phi(u)={\frac{1}{p}}\|u\|^{p}-{\frac{1}{q}}\|u\|^{q}_{q}$ and therefore there exist $\alpha,\quad \rho>0$ such that $\Phi|_{S_{\rho}}\geq \alpha$. Denote the set of all symmetric (in the sense that $-A=A$) and closed subsets of $E$ by $\Sigma$, for each $A\in \Sigma$ let $\gamma(A)$ be the Krasnoselski genus and $$ i(A)=\min_{h\in \Gamma}\gamma(h(A)\cap S_{\rho}) $$ where $\Gamma$ is the set of all odd homeomorphisms $h\in C(E,E)$. Then $i$ is a version of Benci's pseudoindex. Let $$ \Phi_{\lambda}(u)={\frac{1}{p}}\int_{\mathbb{R}^N}(|\nabla u|^{p}+\lambda V(x)|u|^{p})dx-{\frac{1}{q}}\int_{\mathbb{R}^N}|u|^{q}dx,\quad \lambda\geq 1 $$ and $$ c_{j}=\inf_{i(A)\geq j}\sup_{u\in A}\Phi_{\lambda}(u),\quad 1\leq j\leq k. $$ Since $\Phi_{\lambda}(u)\geq \Phi(u)\geq \alpha$ for all $u\in S_{\rho}$ and since $\mbox{i}(F_k)=\dim {F_{k}}=k$, $$ \alpha\leq c_1\leq \dots \leq c_k\leq \sup_{u\in F_k}\Phi_{\lambda}(u)=C. $$ It is clear that $C$ depends on $k$ but not on $\lambda$. As in \eqref{e3.4}, we have $$ M^{\lambda}_{b}\geq N_{\lambda b}=\lambda^{r}N_{b} $$ where $r>0$, and therefore $M^{\lambda}_{b}\to\infty$. Hence $C<({\frac{1}{p}}-{\frac{1}{q}})(M^{\lambda}_{b})^{\frac{q}{(q-p)}}$ whenever $\lambda$ is large enough and it follows from Lemma \ref{lem3} that for such $\lambda$ the Palais-Smale condition is satisfied at all levels $c\leq C$. By the usual critical point theory Theorem \ref{thmA}, all $c_j$ are critical levels and $\Phi_{\lambda}$ has at least $k$ pairs of nontrivial critical points. \end{proof} \begin{theorem} \label{thm4} Suppose {\rm (V1), (V2), (P1)} are satisfied and $V^{-1}(0)$ has nonempty interior $\Omega$. Let $u_m\in E$ be a solution of the equation \begin{equation} -\operatorname{div}(|\nabla u|^{p-2}\nabla u)+\lambda_{m} V(x)|u|^{p-2}u=|u|^{q-2}u,\quad x\in \mathbb{R}^N. \label{e3.5} \end{equation} If $\lambda_{m}\to\infty$ and $\|u_m\|_{\lambda_m}\leq C$ for some $C>0$, then, up to a subsequence, $u_m\to\overline{u}$ in $L^{q}(\mathbb{R}^N)$, where $\overline{u}$ is a weak solution of the equation \begin{equation} -\operatorname{div}(|\nabla u|^{p-2}\nabla u)=|u|^{q-2}u,\quad x\in\Omega, \label{e3.6} \end{equation} and $\overline{u}=0$ a.e. in $\mathbb{R}^N\setminus V^{-1}(0)$. If moreover $V\geq 0$, then $u_m\to\overline{u}$ in $E$ as $m\to\infty$. \end{theorem} \begin{proof} Since $\lambda_{m}\geq 1$, $\|u_m\|\leq \|u_m\|_{\lambda_m}\leq C$. Passing to a subsequence, $u_m\rightharpoonup\overline{u}$ in $E$ and $u_m\to\overline{u}$ in $L^{q}_{\rm loc}(\mathbb{R}^N)$ as $m\to\infty$. Since $\langle{\Phi_{\lambda_m}}'(u_m),\varphi\rangle=0$, we see that $$ \lim_{m\to\infty}\int_{\mathbb{R}^N}V(x)|u_m|^{p-2}u_{m}\varphi dx = 0,\quad \int_{\mathbb{R}^N}V(x)|\overline{u}|^{p-2}\overline{u}\varphi dx=0 $$ and for all $\varphi\in C^{\infty}_{0}(\mathbb{R}^N)$. Therefore, $\overline{u}=0$ a.e. in $\mathbb{R}^N\setminus V^{-1}(0)$. We claim that $u_m\to \overline{u}$ in $L^{q}(\mathbb{R}^N)$ as $m\to\infty$. Assuming the contrary, it follows from Lion vanishing lemma that $$ \int_{B_{\rho}(x_m)}|u_m-\overline{u}|^{p}dx\geq \gamma $$ for some $\{x_m\}\subset \mathbb{R}^N$, $\rho$, $\gamma>0$ and almost all $m$, where $B_{\rho}(x)$ denotes the open ball of radius $\rho$ and center $x$. Since $u_m\to\overline{u}$ in $L^{q}_{\rm loc}(\mathbb{R}^N)$, $|x_m|\to\infty$. Therefore, the measure of the set $B_{\rho}(x_m)\cap{\{x\in \mathbb{R}^N:V(x)0$, it follows that $$ \|u_m\|^{p}\leq \|u_m\|^{p}_{\lambda_m}=\|u_m\|^{q}_{q} $$ and $$ \|\overline{u}\|^{p}= \|\overline{u}\|^{p}_{\lambda_m} =\|\overline{u}\|^{q}_{q}. $$ Hence $\limsup_{m\to\infty}\|u_m\|^{p}\leq \|\overline{u}\|^{q}_{q}=\|\overline{u}\|^{p}$; therefore, $u_m\to\overline{u}$ in $E$ as $m\to\infty$. \end{proof} \begin{theorem} \label{thm5} Suppose {\rm (V1), (V2), (P1)} are satisfied and $V^{-1}(0)$ has nonempty interior, $V\geq 0$, $u_m\in E$ is a solution of \eqref{e3.5}, $\lambda_{m}\to\infty$ and $\Phi_{\lambda_m}(u_m)$ is bounded and bounded away from $0$. Then the conclusion of Theorem \ref{thm4} is satisfied and $\overline{u}\neq 0$. \end{theorem} \begin{proof} We have $$ \Phi_{\lambda_m}(u_m)={\frac{1}{p}}\|u_m\|^{p}_{\lambda_m} -{\frac{1}{q}}\|u_m\|^{q}_{q} $$ and $$ \Phi_{\lambda_m}(u_m)=\Phi_{\lambda_m}(u_m) -{\frac{1}{p}}\langle{\Phi_{\lambda_m}'(u_m),u_m}\rangle =({\frac{1}{p}}-{\frac{1}{q}})\|u_m\|^{q}_{q} $$ Hence $\|u_m\|_{q}$, and therefore also $\|u_m\|_{\lambda_m}$ is bounded. So the conclusion of Theorem \ref{thm4} holds. Moreover, as $\|u_m\|_{q}$ is bounded away from $0$, $\overline{u}\neq 0$. \end{proof} As a consequence of this corollary, if $k$ is fixed, then any sequence of solutions $u_m$ of \eqref{e1.2} with $\lambda=\lambda_{m}\to\infty$ obtained in Theorem \ref{thm3} contains a subsequence concentrating at some $\overline{u}\neq 0$. Moreover, it is possible to obtain a positive solution for each $\lambda$, either via Theorem \ref{thm1} or by the mountain pass theorem. It follows that each sequence ${\{u_m}\}$ of such solutions with $\lambda_{m}\to\infty$ has a subsequence concentrating at some $\overline{u}$ which is positive in $\Omega$. Corresponding to $u_m$ are solutions $v_m=\varepsilon^{p/(q-p)}_{m}u_{m}$ of \eqref{e1.3}, where $\varepsilon^{p}_{m}=\lambda^{-1}_{m}$. Then $v_m\to 0$ and $\varepsilon^{-p/(q-p)}_{m}v_{m}\to\overline{u}$. subsection*{Remark} In the proof of Lemmas \ref{lem2} and \ref{lem3} and Theorems \ref{thm1}--\ref{thm3}, the condition (V1) can be replaced by \begin{itemize} \item[(V1')] $v\in L^{1}_{\rm loc}(\mathbb{R}^N)$ and $V^{-}=\max{\{-V,0}\}\in L^{q}(\mathbb{R}^N)$, where $q=N/p$ if $N\geq p+1$, $q>1$ if $N=p$ and $q=1$ if $N