\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011(2011), No. 01, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/01\hfil Schr\"odinger-Poisson equations] {Schr\"odinger-Poisson equations with supercritical growth} \author[C. O. Alves, S. H. M. Soares, M. A. S. Souto\hfil EJDE-2011/01\hfilneg] {Claudianor O. Alves, S\'ergio H. M. Soares, Marco A. S. Souto} % in alphabetical order \address{Claudianor O. Alves \newline Unidade Acad\^emica de Matem\'atica e Estat\'istica, Universidade Federal de Campina Grande, 58109-970, Campina Grande - PB, Brazil} \email{coalves@dme.ufcg.edu.br} \address{S\'ergio H. M. Soares \newline Departamento de Matem\'atica \\ Instituto de Ci\^encias Matem\'{a}ticas e de Computa\c{c}\~ao\\ Universidade de S\~ao Paulo \\ 13560-970, S\~ao Carlos - SP, Brazil} \email{monari@icmc.usp.br} \address{Marco A. S. Souto \newline Unidade Acad\^emica de Matem\'atica e Estat\'istica, Universidade Federal de Campina Grande, 58109-970, Campina Grande - PB, Brazil} \email{marco@dme.ufcg.edu.br, Phone +5583-3310-1501, Fax +5583-3310-1112} \thanks{Submitted June 1, 2010. Published January 4, 2011.} \thanks{C.O. Alves is supported by grants 620150/2008-4 and 303080/2009-4 from CNPq/Brazil.\hfill\break\indent S.H.M. Soares was supported by grant 313237/2009-3 from CNPq/Brazil. \hfill\break\indent M.A.S. Souto is supported by grants 2009/14218-2 from FAPESP, PROCAD 024/2007 \hfill\break\indent from CAPES/Brazil and 302650/2008-3 from CNPq/Brazil.} \subjclass[2000]{35J20, 35J65} \keywords{Supercritical problems; Schr\"odinger-Poisson equation; \hfill\break\indent variational method} \begin{abstract} In this article, we study a class of Schr\"odinger-Poisson equations in $\mathbb{R}^3$ with supercritical growth. We prove the existence of positive solutions, using variational methods combined with perturbation arguments. The solutions to subcritical Schr\"odinger-Poisson equations are estimated using the $L^\infty$ norm. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction} The system \begin{equation} \label{eS} \begin{gathered} - \Delta u + V(x)u + \phi u = |u|^{p-2}u \quad\text{in }\mathbb{R}^3,\\ -\Delta \phi=u^2 \quad\text{in }\mathbb{R}^3 \end{gathered} \end{equation} has great importance for describing the interaction of a charged particle with an electromagnetic field; see for example \cite{AM,ap,bf,G,Ruiz,Ruiz2}. Recent studies have focused attention on existence, nonexistence and symmetry of solutions to \eqref{eS}. However, most of the references presented here are devoted to pure power type nonlinearities $|u|^{p-2}u$, where $p$ is a subcritical or critical exponent. For example, Ruiz \cite{Ruiz} studies the subcritical case and shows that if $p\leq 3$, the problem \eqref{eS} does not admit any nontrivial solution, and if $30$ such that $V(x) \geq \alpha >0$, $\forall x \in \mathbb{R}^3$. \item[(V1)] $V(x)=V(x+y)$, for all $x \in \mathbb{R}^3$, $y\in \mathbb{Z}^3$. \end{itemize} The function $f\in C(\mathbb{R},\mathbb{R})$ can be written as $$ f(s)=f_o(s)+\lambda g(s), $$ where $\lambda$ is a positive real parameter, $f_o$ and $g$ are locally H\"older continuous functions satisfying: \begin{itemize} \item[(F1)] $f_o(0)=g(0)=0$ and $g(s)\geq 0$ for all $s$; \item[(F2)] $\lim_{|s|\to 0 ^+} f_o(s)/s = 0$ and $\lim_{|s|\to 0 ^+} g(s)/s = 0$; \item[(F3)] There exists $q \in (4,2^*)$, $2^*=6$, such that $$ |f_o(s)|\leq |s|^{q-1},\quad \forall s \in \mathbb{R}; $$ \item[(F4)] $\lim_{|s|\to +\infty} F_o(s)/s^4=+\infty$, where $F_o(s)=\int_0^s f_o(t)dt$; \item[(F5)] For $\alpha>0$ given by $(V_0)$, there exists $\sigma \in (0,\alpha)$ such that $$ sf_o(s)-4F_o(s)\geq -\sigma s^2\quad \text{and}\quad sg(s)-4G(s)\geq 0 $$ for all $s \neq 0$, where $G(s)=\int_0^s g(t)dt$; \item[(F6)] There exists a sequence of positive real numbers, $(M_n)$, converging to $+\infty$ such that $$ \frac{g(s)}{s^{q-1}} \leq \frac{g(M_n)}{M_n^{q-1}},\quad \text{for all } s \in [0,M_n],\; n\in \mathbb{N}. $$ \end{itemize} Since $u\equiv0$ is a solution of \eqref{eP}, the aim of the present article is to prove the existence of nontrivial solutions for \eqref{eP}. However, it should be point out that we can not apply variational methods directly because the Euler-Lagrange functional on $H^1(\mathbb{R}^3)$ associated with \eqref{eP} is not well defined in general. Our technique combines perturbation arguments, estimate for solutions to a subcritical Schr\"odinger-Poisson equation in terms of the $L^\infty$ norm and the mountain pass theorem. Our main result is as follows. \begin{theorem} \label{thm1} Suppose that $V$ satisfies {\rm (V0)--(V1)}, and $f$ satisfies {\rm (F1)--(F6)}. Then there is a $\lambda_o>0$ such that \eqref{eP} possesses a positive solution for all $\lambda \leq \lambda_o$. \end{theorem} To prove the above theorem, we argue as in Alves and Souto \cite{as}. We first provide an estimate involving the $L^{\infty}$-norm of a solution related to a subcritical problem. To do so we modify the nonlinearity obtaining a family of functionals of class $C^1$. Employing conditions (F1)--(F4), we show that these functionals satisfy uniformly the geometric hypotheses of the mountain pass theorem. Using this fact and the estimate, we verify the existence of a sequence in $H^1(\mathbb{R}^3)$ converging weakly to a solution of \eqref{eP}. It is important to stress that our proof does not require a growth assumption on $g$; consequently, on $f$. We observe that the condition (F6) holds if $$ \lim_{|s|\to +\infty}\frac{g(s)}{s^{q-1}} = +\infty. $$ In particular, $f$ may be $f(s)= s^{q-1} + s^{p-1}$, for all $p>6>q$, or $f(s)$ may behave like $e^{s}$ at infinity. In addition, since the term $\int_{\mathbb{R}^3}\phi_u u^2\,dx$ is homogeneous of degree 4, the corresponding Ambrosetti-Rabinowitz condition on $f$ is the following: \begin{itemize} \item[(AR)] There exists $\theta >4$ such that \[ 0 < \theta F(s) \leq sf(s),\quad \forall s\in \mathbb{R}. \] \end{itemize} This condition is important not only to ensure that the functional $I$ (see \eqref{defI} below) has the mountain pass geometry, but also to guarantee that the Palais-Smale, or Cerami, sequences associated with $I$ are bounded. We observe that $f(s) = s^{q-1} + \lambda(1+ \cos s)s^{p-1}$, with $4< q < 6 \leq p$, satisfies the conditions (F1)--(F6), but not the Ambrosetti-Rabinowitz condition. Moreover, the function $f$ considered here does not belong to any class of nonlinearities in the above-cited papers. Since we intend to prove the existence of positive solutions, we consider $f:\mathbb{R} \to \mathbb{R}$ satisfying (F1)--(F6) on $[0,+\infty)$ and defined as zero on $(-\infty,0]$. \section{A solution estimate} This section we obtain an estimate involving the $L^\infty$ norm of a solution to a subcritical problem. This result works for any dimension $N\geq 3$. \begin{proposition}\label{prop1} Let $v\in H^1(\mathbb{R}^N)$ be a weak solution of the problem \begin{equation}\label{4} -\Delta v +b(x)v= h(x,v) , \text{in } \mathbb{R}^N, \end{equation} where $h: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ is a continuous functions verifying, for some $20$, and $b$ is a non-negative function in $\mathbb{R}^N$. Then, for all $C>0$, there exists a constant $k=k(q,C)>0$ such that if $ \|v\|^2 \leq C$, then $ \|v\|_\infty \leq k$. \end{proposition} \begin{proof} For each $m\in \mathbb{N}$ and $\beta>1$, consider \begin{gather*} A_m=\{x \in \mathbb{R}^N: |v|^{\beta-1} \leq m\},\quad B_m=\mathbb{R}^N \setminus A_m,\\ v_{m}= \begin{cases} v|v|^{2(\beta-1)},& \text{in } A_m, \\ m^2v, &\text{in } B_m. \end{cases} \end{gather*} Observe that $v_{m}\in H^{1}(\mathbb{R}^N )$, $v_{m}\leq |v|^{2\beta-1}$ and \begin{equation} \nabla v_{m}=(2\beta-1)|v|^{2(\beta-1)}\nabla v \quad\text{in } A_m , \quad \nabla v_m = m^2\nabla v \quad \text{in } B_m. \label{6} \end{equation} Using $v_m$ as a test function in \eqref{4}, we obtain \[ \int_{\mathbb{R}^N }(\nabla v\nabla v_{m}+b(x)vv_m)\,dx=\int_{\mathbb{R}^N }h(x,v)v_{m}\,dx. \] From \eqref{6}, \begin{equation} \int_{\mathbb{R}^N }\nabla v\nabla v_{m}\,dx=(2\beta-1)\int_{A_m }|v|^{2(\beta-1)}|\nabla v|^{2}\,dx+m^2\int_{B_m}|\nabla v|^2\,dx. \label{7} \end{equation} Let \[ \omega_m= \begin{cases} v|v|^{(\beta-1)}, &\text{in } A_m, \\ mv, &\text{in } B_m. \end{cases} \] Then \[ \omega_m^2=vv_m \leq |v|^{2\beta}, \quad 0\leq b(x)\omega_m^2=b(x)vv_m, \quad \text{in }\mathbb{R}^N \] and \begin{equation} \nabla \omega_m=\beta|v|^{(\beta-1)}\nabla v\quad \text{ in } A_m , \quad \nabla \omega_m = m\nabla v\quad \text{in } B_m. \label{8} \end{equation} Hence, \begin{equation} \int_{\mathbb{R}^N}|\nabla \omega_m|^2\,dx=\beta^2\int_{A_m }|v|^{2(\beta-1)}|\nabla v|^{2}\,dx+m^2\int_{B_m}|\nabla v|^2 \,dx. \label{8+} \end{equation} From \eqref{7}-\eqref{8+}, we obtain \begin{align*} &\int_{\mathbb{R}^N }(|\nabla \omega_{m}|^2+b(x)\omega_m^2)\,dx-\int_{\mathbb{R}^N }(\nabla v\nabla v_{m}+b(x)vv_m)\,dx \\ &=(\beta-1)^2\int_{A_m }|v|^{2(\beta-1)}|\nabla v|^{2}\,dx. \end{align*} From \eqref{7} and $b(x)\geq 0$, we have \[ (2\beta-1)\int_{A_m }|v|^{2(\beta-1)}|\nabla v|^{2}\,dx \leq \int_{\mathbb{R}^N }(\nabla v\nabla v_{m}+b(x)vv_m)\,dx, \] and consequently \[ \int_{\mathbb{R}^N }(|\nabla \omega_{m}|^2+b(x)\omega_m^2)\,dx\leq [\frac {(\beta -1)^2}{2\beta-1}+1] \int_{\mathbb{R}^N }(\nabla v\nabla v_{m}+b(x)vv_m)\,dx. \] Since \eqref{4} holds for $v$, we have \[ \int_{\mathbb{R}^N }(|\nabla \omega_{m}|^2+b(x)\omega_m^2)\,dx\leq\frac{\beta^2}{2\beta-1}\int_{\mathbb{R}^N} h(x,v)v_m\,dx \] and \begin{equation} \int_{\mathbb{R}^N }(|\nabla \omega_{m}|^2+b(x)\omega_m^2)\,dx\leq \beta^2 \int_{\mathbb{R}^N }h(x,v)v_m\,dx, \label{9} \end{equation} because $2\beta-1 >1$. Let E denote the Sobolev space \[ E=\big\{u\in H^1(\mathbb{R}^N): \int_{\mathbb{R}^N} b(x)u^2\,dx< \infty \big\} \] endowed with the norm \[ \|u\|^2 = \int_{\mathbb{R}^N}(|\nabla u|^2+ b(x)u^2)\,dx. \] Throughout the proof, $r$ denotes $2^*=2N/(N-2)$. Let $S$ be the best constant of the Sobolev immersion of $H^1(\mathbb{R}^N)$ in $L^r(\mathbb{R}^N)$. Thus, \[ \|u\|_r^2 \leq S \int_{\mathbb{R}^N}|\nabla u|^2\,dx \] for every $u \in H^1(\mathbb{R}^N)$. From \eqref{9} , since $|h(x,s)| \leq 2|s|^{q-1}$ for all $s>0$, we have \[ \Big[ \int_{A_m}|\omega_m|^{r}\,dx \Big]^{2/r} \leq \Big[\int_{\mathbb{R}^N}|\omega_m|^{r}\,dx \Big]^{2/r} \leq S\beta^2 \int_{\mathbb{R}^N} h(x,v)v_m \,dx. \] Observing that \[ h(x,v)v_m=\frac{h(x,v)}{v}vv_m = \frac{h(x,v)}{v}w_m^2, \] we obtain \[ \Big[ \int_{A_m}|\omega_m|^{r}\,dx \Big]^{2/r} \leq 2S\beta^2 \int_{\mathbb{R}^N}|v|^{q-2}\omega_m^2 \,dx. \] For $q_1$ such that $1/q_1+(q-2)/r=1$, it then follows from H\"older's inequality that \[ \Big[ \int_{A_m}|\omega_m|^{r}\,dx \Big]^{2/r} \leq S\beta^2 \|v\|_r^{q-2} \Big[\int_{\mathbb{R}^N}|\omega_m|^{2q_1} \,dx\Big]^{1/q_1}. \] Since $|\omega_m|\leq |v|^\beta$ in $\mathbb{R}^N$ and $|\omega_m|= |v|^\beta$ in $A_m$, we have \[ \Big[ \int_{A_m }|v|^{r\beta}\Big]^{2/r}\leq S\beta^2 \|v\|_r^{q-2} \Big[\int_{\mathbb{R}^N}|v|^{2q_1\beta} \,dx \Big]^{1/q_1}. \] By the Monotone Convergence Theorem, we obtain \begin{equation} \|v\|_{r\beta} \leq \beta^{1/\beta} (S \|v\|_r^{q-2})^{1/(2\beta)}\|v\|_{2\beta q_1}. \label{importante} \end{equation} Since $q< r$, we have $r>2q_1$. Set $\sigma = r/{2q_1}>1$. Setting $\beta = \sigma$ in \eqref{importante}, we obtain $2q_1\beta=r$ and \begin{equation} \|v\|_{r\sigma} \leq \sigma^{1/\sigma}(S \|v\|_r^{q-2}) ^{1/(2\sigma)}\|v\|_{r}. \label{loop1} \end{equation} Taking $\beta=\sigma^2$ in \eqref{importante}, we obtain $2q_1\beta=r\sigma$ and \begin{equation} \|v\|_{r\sigma^2} \leq \sigma^{2/\sigma^2} (S \|v\|_r^{q-2})^{ 1/(2\sigma^2)}\|v\|_{r\sigma}. \label{loop2} \end{equation} From \eqref{loop1} and \eqref{loop2}, we find \begin{equation} \|v\|_{r\sigma^2} \leq \sigma^{\frac 1\sigma+\frac 2{\sigma^2}}(S \|v\|_r^{q-2})^{\frac 12(\frac 1{\sigma}+\frac 1{\sigma^2})}\|v\|_{r}. \label{passo2} \end{equation} The result is obtained by iteration of the estimate \eqref{importante}. Taking $\beta = \sigma^j$, $j=1,2, \dots$, yields \begin{equation} \|v\|_{r\sigma^m} \leq \sigma^{\frac 1\sigma+\frac 2{\sigma^2}+\frac 3{\sigma^3}+...+\frac j{\sigma^j}}(S \|v\|_r^{q-2})^{\frac 12(\frac 1{\sigma}+\frac 1{\sigma^2}+\frac 1{\sigma^3}+...+\frac 1{\sigma^j})}\|v\|_{r}. \label{passoM} \end{equation} Since the series bellow are convergent and \[ \sum_{j=1}^\infty \frac j{\sigma^j}= \frac {\sigma}{(\sigma-1)^2}, \quad \frac 12\sum_{j=1}^\infty \frac 1{\sigma^j}=\frac 1{2(\sigma-1)}, \] from \eqref{passoM}, we have \[ \|v\|_p \leq \sigma^{\sigma/(\sigma-1)^2} (S \|v\|_r^{q-2})^{\frac 1{2(\sigma-1)}}\|v\|_{r}, \] for all $p\geq r$. Since $b(x)$ is nonnegative, we have $\|v\|_r\leq S^{1/2}C^{1/2}$. Using that \[ \|v\|_\infty =\lim_{p\to +\infty} \|v\|_p, \] we conclude that Proposition \ref{prop1} is valid for \[ k = \sigma^{\frac {\sigma}{(\sigma-1)^2}}(S^{q/2} C^{(q-2)/2})^{\frac 1{2(\sigma-1)}}S^{1/2}C^{1/2}. \] \end{proof} \section{Auxiliary problem}\label{section3} In this section we study the existence of a solution for the Schr\"odinger-Poisson system with subcritical growth. This result will be useful for obtaining our main result. More precisely, we consider the system \begin{equation} \label{eAP} \begin{gathered} - \Delta u +V(x)u+\phi u= h(u), \quad \text{in } \mathbb{R}^3, \\ -\Delta \phi=u^2, \quad\text{in } \mathbb{R}^3, \end{gathered} \end{equation} where $V:\mathbb{R}^3 \to \mathbb{R}$ is a bounded locally H\"older continuous that satisfies (V0) and (V1), and the function $h\in C(\mathbb{R}^+,\mathbb{R})$ and satisfies: \begin{itemize} \item[(H1)] $h(0)=0$; \item[(H2)] $\lim_{s\to 0 ^+} h(s)/s = 0$; \item[(H3)] There exist $C>0$ and $p \in (4,6)$ such that $$ |h(s)|\leq C(|s|+|s|^{p-1}), \forall s \in \mathbb{R}^+; $$ \item[(H4)] $\lim_{s\to +\infty} H(s)/s^4=+\infty$, where $H(s)=\int_0^s h(t)dt$; \item[(H5)] For $\alpha >0$ given by (V0), there exists $\sigma \in (0, \alpha)$ such that $$ sh(s)-4H(s)\geq -\sigma s^2 $$ for all $s \neq 0$. \end{itemize} Next we review some of the standard facts on the Schr\"odinger-Poisson equations (see \cite{ap,G,Ruiz,zz}). We begin by observing that \eqref{eAP} can be transformed into a Schr\"odinger equation with a nonlocal term. In fact, by Lax-Milgram theorem, given $u\in H^1(\mathbb{R}^3)$, there exists a unique $\phi=\phi_u \in {D}^{1,2}(\mathbb{R}^3)$ such that $$ -\Delta \phi=u^2. $$ The function $\phi_u$ has the following properties (see \cite{Daprile1}): \begin{lemma}\label{lm1} \begin{itemize} \item[(i)] There exists $C>0$ such that $\|\phi_u\|_{{D}^{1,2}(\mathbb{R}^3)}\leq C\|u\|^2$ and $$ \int_{\mathbb{R}^3}|\nabla \phi_u|^2\,dx=\int_{\mathbb{R}^3}\phi_u u^2\,dx\leq C \|u\|^4,\quad \forall u\in H^1(\mathbb{R}^3); $$ \item[(ii)] $\phi_u\geq 0$, $\forall u\in H^1(\mathbb{R}^3)$; \item[(iii)] $\phi_{tu}=t^2\phi_u$, $\forall t>0, u\in H^1(\mathbb{R}^3)$. \item[(iv)] If $y\in \mathbb{R}^3$ and $\tilde u(x)=u(x+y)$, then $\phi_{\tilde u}(x) = \phi_{u} (x+y)$ and $$ \int_{\mathbb{R}^3}\phi_{\tilde u} \tilde u ^2\,dx =\int_{\mathbb{R}^3}\phi_u u^2\,dx; $$ \item[(v)] if $u_n \rightharpoonup u$ in $H^1(\mathbb{R}^3)$, then $\phi_{u_n} \rightharpoonup \phi_u$ in ${D}^{1,2}(\mathbb{R}^3)$. \end{itemize} \end{lemma} From (V0), we can see that the $H^1(\mathbb{R}^3)$ norm is equivalent to $$ \|u\|^2=\int_{\mathbb{R}^3}(|\nabla u|^2+V(x)u^2)\,dx. $$ Let $I$ be the functional on $H^1(\mathbb{R}^3)$ defined by \begin{equation}\label{defI} I(u) = \frac{1}{2}\int_{\mathbb{R}^3}(|\nabla u|^2+V(x)u^2)\,dx + \frac14\int_{\mathbb{R}^3} \phi_uu^2\,dx - \int_{\mathbb{R}^3}H(u)\,dx. \end{equation} From the conditions on $h$, the functional $I\in C^1(H^1(\mathbb{R}^3),\mathbb{R})$ and its Gateaux derivative is $$ I'(u)v= \int_{\mathbb{R}^3} (\nabla u \cdot \nabla v + V(x) uv)\,dx +\int_{\mathbb{R}^3}\phi_u u v\,dx - \int_{\mathbb{R}^3}h(u)v\,dx, $$ for every $u, v \in H^1(\mathbb{R}^3)$. Hence, corresponding to each critical point of $I$ there is a weak solution of the Schr\"odinger equation with a nonlocal term: \begin{equation} -\Delta u +V(x)u+\phi_u u= h(u),\quad \text{in } \mathbb{R}^3. \label{PP} \end{equation} \begin{lemma} \label{lm2} Suppose that $V$ satisfies {\rm (V0)} and $h$ satisfies {\rm (H1)--(H5)}. If $(u_n)\subset H^1(\mathbb{R}^3)$ is a Cerami sequence of $I$; i. e., $(I(u_n))$ is bounded and $(1+\|u_n\|)I'(u_n)\to 0$, then $(u_n)$ is bounded in $H^1(\mathbb{R}^3)$. \end{lemma} \begin{proof} From (H5), \begin{align*} 4I(u_n)-I'(u_n)(u_n) &= \|u_n\|^2+ \int_{\mathbb{R}^3}[(u_n)h(u_n)-4H(u_n)]\,dx\\ &\geq \|u_n\|^2-\sigma \int_{\mathbb{R}^3}u_n^2\,dx \geq \big( 1-\frac \sigma \alpha \big)\|u_n\|^2. \end{align*} Since $(4I(u_n)-I'(u_n)(u_n))$ is bounded, we conclude that $(u_n)$ is bounded in $H^1(\mathbb{R}^3)$. \end{proof} \begin{lemma}\label{lm3} Suppose that $V$ satisfies {\rm (V0)} and $h$ satisfies {\rm (H1)--(H4)}. Then, there exist $\rho>0$ and $e\in H^1(\mathbb{R}^3)$ with $\|e\|>\rho$, such that $$ b\doteq\inf_{\|u\|=\rho}I(u)>I(0)=0\geq I(e). $$ \end{lemma} \begin{proof} From (H2)--(H3), for each $\epsilon >0$ there exists $C_\epsilon >0$ such that \[ H(s) \leq \epsilon s^2 + C_\epsilon s^p, \quad \forall\, s \in \mathbb{R}. \] By Sobolev inequalities, there exist positive constants $\alpha$ and $\beta$ such that \[ I(u) \geq \big[(\frac12 - \epsilon \alpha) - \beta C_\epsilon \|u\|^{p-2}\big]\|u\|^2 \] We can assume, by decreasing $\epsilon$ if necessary, that there exist positive numbers $b, \rho$ such that $b = \inf\{I(u),\|u\|=\rho\} > I(0)=0$. From (H4), for any $v\in H^1(\mathbb{R}^3)$ and $M >(1/4)\int_{\mathbb{R}^3}\phi_vv^2 \,dx$, there exists $C>0$ such that $ H(s) \geq Ms^4 - Cs^2$, for all $s\in \mathbb{R}$. Hence, \[ I(tv) \leq (C+\frac12)\|v\|^2t^2 - \Big(M-\frac14\int_{\mathbb{R}^3}\phi_vv^2 \,dx\Big)t^4 \to -\infty,\quad \text{as }t\to \infty. \] Thus, $e=tv$ satisfies $\|e\| >\rho$ and $I(e) <0 = I(0)$, provided $t$ sufficiently large. \end{proof} By a version of the mountain pass theorem (see \cite{Ek}), there is a Cerami sequence $(u_n)\subset H^1(\mathbb{R}^3)$ such that $$ I(u_n)\to c\quad \text{and} \quad (1+\|u_n\|)I'(u_n)\to 0, $$ where $$ c= \inf_{\gamma \in \Gamma}\max_{t\in [0,1]} I(\gamma(t)), \quad \Gamma = \{ \gamma:[0,1]\to H^1(\mathbb{R}^3): \gamma (0)=0, \gamma(1)=e \}. $$ The main result of this section is the following. \begin{proposition}\label{prop2} Suppose that $V$ satisfies {\rm (V0), (V1)}, and $h$ satisfies {\rm (H1)--(H5)}. Then \eqref{eAP} possesses a positive solution $u$ such that $\|u\|^2\leq 4c\alpha/(\alpha-\sigma)$, where $\alpha$ and $\sigma$ are given by {\rm(V0)} and {\rm (H4)} respectively and $c$ is the minimax level associated with \eqref{eAP}. \end{proposition} \begin{proof} By Lemma \ref{lm2}, we can assume that $(u_n)$ is weakly convergent to $u$, for some $u\in H^1(\mathbb{R}^3)$. Taking $v\in C^\infty_0(\mathbb{R}^3)$, from Lemma \ref{lm1}(v), $\phi_{u_n} \rightharpoonup \phi_u$ in ${D}^{1,2}(\mathbb{R}^3)$, as $n\to \infty$, and so \[ \int_{\mathbb{R}^3}\phi_{u_n}u v\,dx \to \int_{\mathbb{R}^3}\phi_{u}u v\,dx,\quad \text{as }n\to \infty. \] Moreover, using H\"{o}lder's inequality we obtain \[ |\int_{\mathbb{R}^3}\phi_{u_n} (u_n-u) v\,dx| \leq \|\phi_{u_n}\|_{L^{2^*}(\mathbb{R}^3)}\|u_n - u\|_{L^{12/5}(\Omega) }\|v\|_{L^{12/5}(\Omega)}=o_n(1), \] where $\Omega= \operatorname{supp}v$. Therefore, $$ \int_{\mathbb{R}^3}\phi_{u_n} u_n v\,dx-\int_{\mathbb{R}^3}\phi_{u} u v\,dx= \int_{\mathbb{R}^3}(\phi_{u_n}-\phi_u) u v\,dx +\int_{\mathbb{R}^3}\phi_{u_n} (u_n-u) v\,dx= o_n(1), $$ for all $v\in C^\infty_0(\mathbb{R}^3)$, which implies $$ I'(u)v=0, \quad \text{for all } v \in H^1(\mathbb{R}^3). $$ Consequently, $u$ is a weak solution for \eqref{PP}. To conclude the proof, it only remains to show that $u\neq 0$. Assume by contradiction that $u\equiv 0$. By \cite[Lemma 2.1]{zr} (see also \cite{L1}), we can claim that only one of the following conditions hold: \begin{itemize} \item[(i)] For all $q\in (2,2^*)$, $$ \lim_{n\to +\infty} \int_{\mathbb{R}^3}|u_n|^q\,dx=0. $$ \item[(ii)] There are positive numbers $R$ and $\eta$, and a sequence $(y_n)\subset \mathbb{R}^3$ such that $$ \liminf_{n\to +\infty} \int_{B_R(y_n)}u_n^2\,dx > \eta>0. $$ \end{itemize} If $(i)$ occurs, then from (F2) and (F3), we have $$ \lim_{n\to +\infty} \int_{\mathbb{R}^3}h(u_n)u_n\,dx=0. $$ By Lemma \ref{lm1}(ii), $$ \|u_n\|^2\leq\|u_n\|^2+\int_{\mathbb{R}^3}\phi_{u_n} u_n^2\,dx = \int_{\mathbb{R}^3}h(u_n)u_n\,dx+o_n(1). $$ As a consequence, the sequence $(u_n)$ is strongly convergent in $H^1(\mathbb{R}^3)$ to $0$. Then $I(u_n)\to 0$, contrary to $I(u_n)\to c>0$. Hence, (ii) is valid. From (V1) we can assume that $y_n \in \mathbb{Z}^N$. Define $$ \tilde{u}_n(x)=u_n(x+y_n). $$ From (V1) again, $(\tilde{u}_n)$ is bounded in $H^1(\mathbb{R}^3)$ and we can clearly assume that $(\tilde{u}_n)$ is weakly convergent to $\tilde{u}$ for some $\tilde{u}\in H^1(\mathbb{R}^3)$. From (ii), $\tilde{u}\neq 0$. Observing that Lemma \ref{lm1}(iv) implies that \[ I'(\tilde{u}_n)\tilde{u}_n = I'({u}_n)u_n\quad \text{and}\quad I(\tilde{u}_n) = I({u}_n), \] hence that $(\tilde{u}_n)$ is a Cerami sequence of $I$, and finally $$ I'(\tilde{u})=0\quad \mbox {with}\quad \tilde{u}\neq 0, $$ where we have again used Lemma \ref{lm1}(v). It follows that $\tilde{u}$ is a nontrivial solution to \eqref{PP}. Using bootstrap arguments and the maximum principle, we can conclude that the solution $\tilde{u}$ is positive. Finally, to verify that $\tilde{u}$ satisfies inequality $\|u\|^2\leq 4c\alpha/(\alpha-\sigma)$, we observe that from (H5), \begin{align*} 4I(\tilde u_n) - I'(\tilde u_n)\tilde u_n \geq \big( 1-\frac \sigma \alpha \big) \|\tilde u_n\|^2, \quad \forall n. \end{align*} Passing to the limit we obtain \begin{align*} 4c &= \liminf_{n\to \infty} (4I(\tilde u_n) - I'(\tilde u_n)\tilde u_n) \geq \big( 1-\frac \sigma \alpha \big) \|u\|^2, \end{align*} and the proof is complete. \end{proof} \section{Preliminary results} To establish the existence of a solution to \eqref{eP}, we define a sequence of functions $\{g_n\}$ by setting $$ g_n(s)= \begin{cases} 0, & \text{if }s \leq 0 \\ g(s), & \text{if } 0 \leq s \leq M_n \\ \frac{g(M_n)}{M_n^{q-1}}s^{q-1}, & \text{if } s \geq M_n. \end{cases} $$ From (F6), we have \begin{equation} |g_n(s)| \leq \frac{g(M_n)}{M_n^{q-1}}|s|^{{q-1}} \quad \text{for all } s.\label{hmgmp-q} \end{equation} We conclude from (F3) that $f_{\lambda,n}(s)=f_o(s)+ \lambda g_n(s)$ satisfies \begin{equation}\label{eq1.1} |f_{\lambda,n}(s)| \leq (1+\lambda g(M_n)M_n)|s|^{q-1}, \end{equation} which implies that the problem \begin{equation} \label{Plambdan} \begin{gathered} - \Delta u +V(x)u+\phi u= f_{\lambda,n}(u), \quad\text{in } \mathbb{R}^3, \\ -\Delta \phi=u^2, \quad\text{in } \mathbb{R}^3, \end{gathered} \end{equation} is variational for every $\lambda >0$ and $n\in \mathbb{N}$. The functional associated with \eqref{Plambdan} is denoted by $J_{\lambda,n}:H^1(\mathbb{R}^3)\times D^{1,2}(\mathbb{R}^3) \to \mathbb{R}$ and given by \begin{align*} &J_{\lambda,n}(u,\phi) \\ &= \frac 12 \int_{\mathbb{R}^3}(|\nabla u|^2+V(x)u^2)\,dx -\frac 14\int_{\mathbb{R}^3}|\nabla \phi|^2\,dx + \frac 12\int_{\mathbb{R}^3}\phi u^2\,dx - \int_{\mathbb{R}^3}F_{\lambda,n}(u)\,dx. \end{align*} We observe that $J_{\lambda,n}$ is strongly indefinite. To overcome this difficulty, we introduce the functional $I_{\lambda,n}: H^1(\mathbb{R}^3)\to \mathbb{R}$ defined by $$ I_{\lambda,n}(u)=\frac 12 \int_{\mathbb{R}^3}(|\nabla u|^2+V(x)u^2)\,dx +\frac 14\int_{\mathbb{R}^3}\phi_u u^2\,dx - \int_{\mathbb{R}^3}F_{\lambda,n}(u)\,dx, $$ with $\phi_u$ being the function defined in Section \ref{section3}. By \eqref{eq1.1}, the functional $I_{\lambda,n}\in C^1(H^1(\mathbb{R}^3),\mathbb{R})$ and its Gateaux derivative is $$ I_{\lambda,n}'(u)v= \int_{\mathbb{R}^3} (\nabla u \nabla v + V(x) uv)\,dx +\int_{\mathbb{R}^3}\phi_u u v\,dx - \int_{\mathbb{R}^3}f_{\lambda,n}(u)v\,dx, $$ for every $u,v \in H^1(\mathbb{R}^3)$. Hence, corresponding to each critical point of $I_{\lambda,n}$ there exists a weak solutions of \begin{equation} \label{P'lambdan} \begin{gathered} - \Delta u +V(x)u+\phi_u u= f_{\lambda,n}(u), \quad\text{in } \mathbb{R}^3, \\ \quad u\in H^1(\mathbb{R}^3). \end{gathered} \end{equation} For $F_o$ given by (F4), we introduce an auxiliary Euler-Lagrange functional $I_o: H^1(\mathbb{R}^3) \to \mathbb{R}$ given by $$ I_o(u)=\frac 12 \|u\|^2 +\frac 14\int_{\mathbb{R}^3}\phi_u u^2\,dx- \int_{\mathbb{R}^3}F_o(u)\,dx. $$ From (F1)--(F4) and Lemma \ref{lm1}(i,iii), it is standard to check that $I_o$ possesses the geometric hypotheses of the mountain pass theorem (see Lemma \ref{lm3}). Then, there exist $e \in H^1(\mathbb{R}^3)$ and $c_o \in \mathbb{R}$ such that $$ c_o= \inf_{\gamma \in \Gamma}\max_{t\in [0,1]} I_o(\gamma(t)) >0, $$ where \begin{equation} \Gamma = \{ \gamma\in C([0,1], H^1(\mathbb{R}^3)) : \gamma (0)=0, \gamma(1)=e \} \neq \emptyset. \label{gama} \end{equation} Since $f_{\lambda,n}$ satisfies conditions (H1)--(H5) of Proposition \ref{prop2}, for every $\lambda >0$ and $n\in \mathbb{N}$, and $V$ satisfies (V0)--(V1), the problem \eqref{P'lambdan} has a positive solution such that $u_{\lambda,n}\in H^1(\mathbb{R}^3)$ and $$ \|u_{\lambda,n}\|^2\leq c_{\lambda,n}\alpha/(\alpha-\sigma) $$ where $c_{\lambda,n}= \inf_{\gamma \in \Gamma}\max_{t\in [0,1]} I_{\lambda,n}(\gamma(t))$ and $\Gamma$ is defined by \eqref{gama} and is independent of $\lambda$ and $n$. In fact, since $g(s)\geq 0$ for all $s$, we have $F_{\lambda,n}(s)\geq F_o(s)$. Hence \begin{equation} I_{\lambda,n}(v)\leq I_o(v), \quad\text{for all } v\in H^1(\mathbb{R}^3). \label{I0} \end{equation} In particular, $I_{\lambda,n}(e)\leq I_o(e)<0$. Thus, $\Gamma$ is independent of $\lambda$ and $n$. Moreover, from \eqref{I0}, we have \begin{equation} c_{\lambda,n} \leq c_o. \label{ck$. Let $\lambda_o >0$ be such that $\lambda_o g(M_n)M_n \leq 1$. From \eqref{eq1.1}, we have $$ |f_{\lambda,n}(s)|\leq 2|s|^{q-1},\quad \forall s. $$ By Proposition \ref{prop2}, there exists a solution $u=u_{\lambda,n}$ of \eqref{Plambdan} such that $\|u\|^2\leq 4c_{\lambda,n}\alpha/(\alpha-\sigma)$. Combining this inequality with \eqref{c0$, and the proof is complete. \subsection*{Acknowledgments} This work was done while M. A. S. Souto was visiting the Universidade de S\~{a}o Paulo at S\~{a}o Carlos. He thanks all the faculty and staff of the Department of Mathematics for their support and kind hospitality. We are grateful to the anonymous referee for a number of helpful comments that improved this article and also to Professor Alfonso Castro for your attention with us. \begin{thebibliography}{00} \bibitem{as} {Alves, C. O.}; {Souto, M. A. S.}; {On existence of solution for a class of semilinear elliptic equations wit nonlinearities that lies between two different powers}, {Abst. and Appl. Analysis} ({2008}), {1--7}. \bibitem{AM}{Ambrosetti, A.}; { Ruiz, D.}; {Multiple bound states for the {S}chr\"odinger-{P}oisson problem}, {Commun. Contemp. Math.} {10} {(2008)}, {391--404}. \bibitem{ap} {Azzollini, A.}; {Pomponio, A.}; Ground state solutions for the nonlinear Schr\"{o}dinger-Maxwell equations, J. Math. Anal. Appl. 345 (2008), 90--108. \bibitem{bf} {Benci, V.}; {Fortunato, D.}; {An eigenvalue problem for the Schr\"odinger-Maxwell equations}, {Top. Meth. Nonlinear Anal.} {11} ({1998}), {283--293}. \bibitem{Cerami} {Cerami, G.}; {Vaira, G.}; {Positive solutions for some non-autonomous {S}chr\"odinger-{P}oisson systems}, {J. Differential Equations} {248} {(2010)}, {521--543}. \bibitem{C}{Coclite, G. M.}; {A multiplicity result for the nonlinear {S}chr\"odinger-{M}axwell equations}, {Commun. Appl. Anal.} {7} {(2003)}, {417--423}. \bibitem{zr} {Coti-Zelati, V.}; {Rabinowitz, P. H.}; {Homoclinic type solutions for a semilinear elliptic PDE on $\mathbb{R}^3$}, {Comm. Pure and Appl. Math} {45} {(1992)}, {1217--1269}. \bibitem{Daprile1} {D'Aprile, T.}; {Mugnai, D.}; {Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr\"o\-dinger-Maxwell equations}, {Proc. Roy. Soc. Edinburgh Sect. A} {134} {(2004)}, {893--906} \bibitem{Daprile2} {D'Aprile, T.}; {Mugnai, D.}; {Non-existence results for the coupled {K}lein-{G}ordon-{M}axwell equations}, {Adv. Nonlinear Stud.} {4} {(2004)}, {307--322}. \bibitem{Davenia} {d'Avenia, P.}; {Non-radially symmetric solutions of nonlinear {S}chr\"odinger equation coupled with {M}axwell equations}, {Adv. Nonlinear Stud.} {2} {(2002)}, {177--192}. \bibitem{Ek} {Ekeland, I.}; {Convexity Methods in Hamilton Mechanics}, {Springer Verlag}, {1990}. \bibitem{G} {Gaetano, S.}; {Multiple positive solutions for a Schr\"odinger-Poisson-Slater system}, {J. Math. Analysis and Appl.} {365}, ({2010}) {288--299}. \bibitem{Ianni} {Ianni, I.}; {Vaira, G.}; {On concentration of positive bound states for the {S}chr\"odinger-{P}oisson problem with potentials}, {Adv. Nonlinear Stud.} {8} {(2008)}, {573--595}. \bibitem{K1}{Kikuchi, H.}; {On the existence of a solution for elliptic system related to the {M}axwell-{S}chr\"odinger equations}, {Nonlinear Anal.} {67} {(2007)}, {1445--1456}. \bibitem{K2}{Kikuchi, H.}; {Existence of standing waves for the nonlinear {S}chr\"odinger equation with double power nonlinearity and harmonic potential}, {Asymptotic analysis and singularities---elliptic and parabolic {PDE}s and related problems}, {Adv. Stud. Pure Math.} {47} {623--633}, {Math. Soc. Japan}, {Tokyo}, {(2007)}. \bibitem{L1} {Lions, P. L.}; {The concentration-compactness principle in the calculus of variations. The locally compact case, part 2}, {Analyse Nonlin\'{e}aire}, {I} {(1984)}, {223--283}. \bibitem{Ruiz} {Ruiz, D.}; {The Schr\"odinger-Poisson equation under the effect of a nonlinear local term}, {J. Funct. Analysis} {237} ({2006}), {655--674}. \bibitem{Ruiz2} {Ruiz, D.}; { Gaetano, S.}; {A note on the {S}chr\"odinger-{P}oisson-{S}later equation on bounded domains}, {Adv. Nonlinear Stud.} {8} {(2008)}, {179--190}. \bibitem{zz} {Zhao, F.}; {Zhao, L.}; Positive solutions for Schr\"{o}dinger-Poisson equations with a critical exponent, Nonlinear Anal. 70 (2009), 2150--2164. \end{thebibliography} \end{document}