\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011(2011), No. 03, pp. 1--26.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/03\hfil Renormalized solutions] {Solvability of degenerated parabolic equations without sign condition and three unbounded nonlinearities} \author[Y. Akdim, J. Bennouna, M. Mekkour \hfil EJDE-2011/03\hfilneg] {Youssef Akdim, Jaouad Bennouna, Mounir Mekkour} % in alphabetical order \address{D\'epartement de Math\'ematiques, Facult\'e des Sciences Dhar-Mahraz, F\`es, Morocco} \email[Y. Akdim]{akdimyoussef@yahoo.fr} \email[J. Bennouna]{jbennouna@hotmail.com} \email[M. Mekkour]{mekkour.mounir@yahoo.fr} \thanks{Submitted June 28, 2010. Published January 4, 2011.} \subjclass[2000]{A7A15, A6A32, 47D20} \keywords{Weighted Sobolev spaces; truncations; time-regularization;\hfill\break\indent renormalized solutions} \begin{abstract} In this article, we study the problem \begin{gather*} \frac{\partial}{\partial t} b(x, u)-\operatorname{div}(a(x,t,u,D u)) +H(x,t,u,Du) = f\quad \text{in } \Omega\times ]0,T[,\\ b(x,u)(t=0)=b(x,u_0)\quad\text{in } \Omega,\\ u=0\quad\text{in } \partial\Omega\times ]0,T[ \end{gather*} in the framework of weighted Sobolev spaces, with $b(x,u)$ unbounded function on $u$. The main contribution of our work is to prove the existence of a renormalized solution without the sign condition and the coercivity condition on $H(x,t,u,Du)$. The critical growth condition on $H$ is with respect to $Du$ and no growth condition with respect to $u$. The second term $f$ belongs to $L^1(Q)$, and $b(x,u_0)\in L^1(\Omega)$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \newcommand{\norm}[1]{\|#1\|} \section{Introduction} Let $\Omega$ be a bounded open set of $\mathbb{R}^N$, $p$ be a real number such that $2\max (N,p)\quad\text{such that } w_i^{\frac{-r_0}{r_0-p}} \in L^1_{\rm loc}(\Omega), \\ w_i \in L^1_{\rm loc}(\Omega),\label{2.1} \\ w_i^{\frac{-1}{p-1}} \in L^1_{\rm loc}(\Omega),\label{2.2} \end{gather} for any $0\leq i\leq N$. We denote by $W^{1,p}(\Omega,w)$ the space of real-valued functions $u \in L^p(\Omega,w_0)$ such that the derivatives in the sense of distributions fulfill $$ \frac{\partial u}{\partial x_i} \in L^p(\Omega, w_i)\quad \text{for } i=1, \dots, N. $$ Which is a Banach space under the norm \begin{equation} \|u\|_{1,p,w}=\Big[\int_{\Omega}|u(x)|^pw_0(x)\,dx + \sum_{i=1}^N\int_\Omega |\frac{\partial u(x)}{\partial x_i}|^p w_i(x)\,dx \Big]^{1/p}.\label{2.3} \end{equation} Condition \eqref{2.1} implies that $C_0^{\infty}(\Omega)$ is a space of $W^{1,p}(\Omega,w)$ and consequently, we can introduce the subspace $V=W_0^{1,p}(\Omega,w)$ of $W^{1,p}(\Omega,w)$ as the closure of $C_0^{\infty}(\Omega)$ with respect to the norm \eqref{2.3}. Moreover, condition \eqref{2.2} implies that $W^{1,p}(\Omega,w)$ as well as $W_0^{1,p}(\Omega,w)$ are reflexive Banach spaces. We recall that the dual space of weighted Sobolev spaces $W_0^{1,p}(\Omega,w)$ is equivalent to $W^{-1, p'}(\Omega, w^{*})$, where $w^{*} = \{w_i^{*} = w_i^{1-p'}$, $i = 0, \dots, N \}$ and where $p'$ is the conjugate of $p$; i.e., $p' = \frac{p}{p-1}$, (see \cite{Kufner}). \section{Basic assumptions} \subsection*{Assumption (H1)} For $2\leq p<\infty$, we assume that the expression \begin{equation} \||u|\|_{V}=\Big(\sum_{i=1}^N\int_\Omega |\frac{\partial u(x)} {\partial x_i}|^pw_i(x)\,dx\Big)^{1/p}\label{h2.6} \end{equation} is a norm defined on $V$ which is equivalent to the norm \eqref{2.3}, and there exists a weight function $\sigma$ on $\Omega$ such that, $$ \sigma\in L^1(\Omega)\quad\text{and } \sigma^{-1}\in L^1(\Omega). $$ We assume also the Hardy inequality, \begin{equation} \Big(\int_\Omega|u(x)|^p\sigma \,dx\Big)^{1/q} \leq c\Big(\sum_{i=1}^N\int_\Omega |\frac{\partial u(x)} {\partial x_i}|^pw_i(x)\,dx\Big)^{1/p},\label{h2.7} \end{equation} holds for every $u\in V$ with a constant $c>0$ independent of $u$, and moreover, the imbedding \begin{equation} W^{1,p}(\Omega,w)\hookrightarrow\hookrightarrow L^p(\Omega, \sigma), \label{h2.8} \end{equation} expressed by the inequality \eqref{h2.7} is compact. Notice that $(V,\||\cdot|\|_V)$ is a uniformly convex (and thus reflexive) Banach space. \begin{remark} \label{rmk3.1} \rm If we assume that $w_0(x)\equiv 1$ and in addition the integrability condition: There exists $ \nu \in ]\frac{N}{p},{+\infty}\, [\cap[\frac{1}{p-1},{+\infty}[$ such that \begin{equation} w_i^{-\nu} \in L^1(\Omega)\quad\text{and}\quad w_i^{\frac{N}{N-1}} \in L^1_{\rm loc}(\Omega) \quad \text{for all } i=1,\dots,N. \label{2.4} \end{equation} Notice that the assumptions \eqref{2.1} and \eqref{2.4} imply \begin{equation} \||u\|| = \Big({ \sum_{i=1}^N}{\int_{\Omega}|\frac{\partial u} {\partial x_i}|^p w_i(x)\,dx}\Big)^{1/p},\label{2.5} \end{equation} which is a norm defined on $W_0^{1,p}(\Omega,w)$ and its equivalent to \eqref{2.3} and that, the imbedding \begin{equation} W_0^{1,p}(\Omega,w) \hookrightarrow L^p(\Omega), \label{2.6} \end{equation} is compact for all $1\leq q\leq p_1^*$ if $p\nu0$, there exists $\lambda_k>0$ and functions $A_k\in L^1(\Omega)$ and $B_k\in L^p(\Omega)$ such that \begin{equation} \lambda_k\leq\frac{\partial b(x,s)}{\partial s}\leq A_k(x)\quad \text{and}\quad \Big|D_x\Big(\frac{\partial b(x,s)}{\partial s}\Big)\Big|\leq B_k(x) \label{condbb} \end{equation} for almost every $x\in \Omega$, for every $s$ such that $|s| \leq k$ , we denote by $D_x\big(\frac{\partial b(x,s)}{\partial s}\big)$ the gradient of $\frac{\partial b(x,s)}{\partial s}$ defined in the sense of distributions. For $i=1,\dots ,N$, \begin{equation} |a_i(x, t,s, \xi)|\leq \beta w_i^{1/p}(x) [ k(x,t) + \sigma^{1/p'}|s|^{q/p'}+ { \sum_{j=1}^N}w_j^{1/p'}(x)|\xi_j|^{p-1}] ,\label{2.7} \end{equation} for a.e. $(x,t)\in Q$,all $(s,\xi)\in \mathbb{R}\times\mathbb{R}^N$, some function $k(x,t)\in L^{p'}(Q)$ and $\beta>0$. Here $\sigma$ and $q$ are as in (H1). \begin{gather} [a(x,t,s,\xi) -a(x,t,s,\eta)](\xi-\eta) > 0 \quad \text{for all } (\xi,\eta) \in \mathbb{R}^N\times\mathbb{R}^N, \label{2.8} \\ a(x, t,s, \xi).\xi \geq \alpha {\sum_{i=1}^N}w_i |\xi_i|^p, \label{2.9} \end{gather} Where $\alpha$ is a strictly positive constant. \subsection*{Assumption (H3)} Furthermore, let $H(x,t,s,\xi): \Omega\times [0,T]\times\mathbb{R}\times\mathbb{R}^N \to \mathbb{R}$ be a Carath\'eodory function such that for a.e $(x,t)\in Q$ and for all $s\in \mathbb{R}, \xi\in \mathbb{R}^N$, the growth condition \begin{equation} |H(x, t,s, \xi)|\leq \gamma(x,t)+g(s) { \sum_{i=1}^N}w_i(x)|\xi_i|^p \label{H} \end{equation} is satisfied, where $g:\mathbb{R}\to \mathbb{R}^+$ is a continuous positive positive function that belongs to $L^1(\mathbb{R})$, while $\gamma(x,t)$ belongs to $L^1(Q)$. We recall that, for $k>1$ and $s$ in $\mathbb{R}$, the truncation is defined as $$ T_k(s)=\begin{cases} s & \text{if } |s| \leq k\\ k \frac{s}{|s|} & \text{if } |s|>k. \end{cases} $$ \section{Some technical results} \subsection*{Characterization of the time mollification of a function $u$} To deal with time derivative, we introduce a time mollification of a function $u$ belonging to a some weighted Lebesgue space. Thus we define for all $\mu\geq 0$ and all $(x,t)\in Q$, $$ u_{\mu}=\mu \int_{\infty}^{t}\tilde{u}(x,s)\exp(\mu(s-t))ds $$ where $\tilde{u}(x,s)=u(x,s)\chi _{(0,T)}(s)$. \begin{proposition}[\cite{ahar2}] \label{mol} (1) If $u\in L^p(Q,w_i)$ then $u_{\mu}$ is measurable in $Q$ and $\frac{\partial u_{\mu}}{\partial t}=\mu(u-u_{\mu})$ and, $$ \|u_{\mu}\|_{L^p(Q,w_i)}\leq \|u\|_{L^p(Q,w_i)}. $$ (2) If $u\in W^{1,p}_{0}(Q,w)$, then $u_{\mu} \to u$ in $W^{1,p}_{0}(Q,w)$ as $\mu\to \infty$. (3) If $u_n \to u$ in $W^{1,p}_{0}(Q,w)$, then $(u_n)_{\mu} \to u_{\mu}$ in $W^{1,p}_{0}(Q,w) $. \end{proposition} \subsection*{Some weighted embedding and compactness results} In this section we establish some embedding and compactness results in weighted Sobolev spaces, some trace results, Aubin's and Simon's results \cite{simon}. Let $V=W^{1, p}_0(\Omega,w)$, $H=L^2(\Omega,\sigma)$ and let $V^*=W^{-1,p'}$, with $(2\leq p< \infty)$. Let $X=L^p(0,T;W^{1,p}_0(\Omega,w))$. The dual space of $X$ is $X^*=L^{p'}(0,T,V^*)$ where $\frac{1}{p}+\frac{1}{p'}=1$ and denoting the space $W^1_{p}(0,T,V,H)=\{ v\in X:v'\in X^*\}$ endowed with the norm $$ \|u\|_{W^1_{p}}=\|u\|_{X}+\|u'\|_{X^*}, $$ which is a Banach space. Here $u'$ stands for the generalized derivative of $u$; i.e., $$ \int_0^Tu'(t)\varphi(t)dt=-\int_0^T u(t)\varphi'(t)dt \quad\text{for all }\varphi\in C_0^{\infty}(0,T). $$ \begin{lemma}[\cite{19}] \label{compact} (1) The evolution triple $V\subseteq H\subseteq V^*$ is satisfied. (2) The imbedding $W^1_{p}(0,T,V,H)\subseteq C(0,T,H)$ is continuous. (3) The imbedding $W^1_{p}(0,T,V,H)\subseteq L^p(Q,\sigma)$ is compact. \end{lemma} \begin{lemma}[\cite{ahar2}] \label{gr} Let $g\in L^r(Q,\gamma)$ and let $g_n\in L^r(Q,\gamma)$, with $ \|g_n\|_{L^r(Q,\gamma)}\leq C$, $10$, let us define the following approximation of $b, H, f$ and $u_0$; \begin{equation} b_n(x,r)=b(x,T_n(r))+\frac{1}{n}r\quad\text{for } n>0,\label{bn} \end{equation} In view of \eqref{bn}, $b_n$ is a Carath\'eodory function and satisfies \eqref{condb}, there exist $\lambda_n>0$ and functions $A_n\in L^1(\Omega)$ and $B_n\in L^p(\Omega)$ such that $$ \lambda_n\leq \frac{\partial b_n(x,s)}{\partial s}\leq A_n(x) \quad\text{and}\quad \big|D_x \Big(\frac{\partial b_n(x,s)}{\partial s}\Big)\big|\leq B_n(x) $$ a.e. in $\Omega$, $s\in\mathbb{R}$. $$ H_n(x,t,s,\xi)=\frac{H(x,t,s,\xi)}{1+\frac{1}{n} |H(x,t,s,\xi)|}\chi_{\Omega_n}. $$ Note that $\Omega_n$ is a sequence of compacts covering the bounded open set $\Omega$ and $\chi_{\Omega_n}$ is its characteristic function. \begin{gather} f_n\in L^{p'}(Q), \quad\text{and}\quad f_n\to f\quad\text{a.e. in $Q$ and strongly in $L^1(Q)$ as } n\to +\infty,\label{fn} \\ u_{0n}\in D(\Omega),\quad \norm{b_n(x,u_{0n})}_{L^1} \leq\norm{b(x,u_{0})}_{L^1}, \\ b_n(x,u_{0n})\to b(x,u_0)\quad\text{a.e. in $\Omega$ and strongly in }L^1(\Omega). \label{uzn} \end{gather} Let us now consider the approximate problem: \begin{equation} \label{Pn} \begin{gathered} \frac{\partial b_n(x,u_n)}{\partial t} - \operatorname{div} (a(x,t,u_n,D u_n))+H_n(x,t,u_n,Du_n) = f_n\quad\text{in } D'(Q),\\ u_n=0\quad\text{in }(0,T)\times \partial\Omega ,\\ b_n(x,u_n(t=0))=b_n(x,u_{0n}). \end{gathered} \end{equation} Note that $H_n(x,t,s,\xi)$ satisfies the following conditions $$ |H_n(x,t,s,\xi)|\leq H(x,t,s,\xi)\quad\text{and}\quad |H_n(x,t,s,\xi)|\leq n. $$ For all $u,v\in L^p(0,T;W^{1,p}_0(\Omega,w))$, \begin{align*} &\big|\int_Q H_n(x,t,u,Du)v\,dx\,dt\big|\\ &\leq \Big( \int_Q |H_n(x,t,u,Du)|^{q'}\sigma^{-\frac{q'}{q}} \,dx\,dt\Big)^{1/q'}\Big( \int_Q|v|^q\sigma \,dx\,dt\Big)^{1/q}\\ &\leq n\int_0^T\Big(\int_{\Omega_n}\sigma ^{1-q'}dx\Big)^{1/q'}dt \|v\|_{L^q(Q,\sigma)}\\ &\leq C_n\norm{v}_{L^p(0,T;W^{1,p}_0(\Omega,w))}. \end{align*} Moreover, since $f_n\in L^{p'}(0,T;W^{-1,p'}(\Omega, w^*))$, proving existence of a weak solution $u_n\in L^p(0,T;W^{1,p}_0(\Omega,w))$ of \eqref{Pn} is an easy task (see e.g. \cite{lions},\cite{ahar2}). Let $\varphi\in L^p(0,T;W^{1,p}_0(\Omega,w))\cap L^{\infty}(Q)$ with $\varphi >0$, choosing $v=\exp(G(u_n))\varphi$ as test function in $\ref{Pn}$ where $G(s)=\int_0^s \frac{g(r)}{\alpha}dr$ (the function $g$ appears in \eqref{H}). We have \begin{align*} &\int_Q \frac{\partial b_n(x,u_n)}{\partial t} \exp(G(u_n))\varphi \,dx\,dt+\int_Q a(x,t,u_n,Du_n)D(\exp(G(u_n))\varphi)\,dx\,dt\\ &=\int_Q H_n(x,t,u_n,Du_n)\exp(G(u_n))\varphi \,dx\,dt +\int_Q f_n \exp(G(u_n))\varphi \,dx\,dt. \end{align*} In view of \eqref{H}, we obtain \begin{align*} &\int_Q \frac{\partial b_n(x,u_n)}{\partial t} \exp(G(u_n))\varphi \,dx\,dt\\ &+\int_Q a(x,t,u_n,Du_n)Du_n\frac{g(u_n)}{\alpha}\exp(G(u_n))\varphi \,dx\,dt\\ &+\int_Q a(x,t,u_n,Du_n)\exp(G(u_n))D\varphi \,dx\,dt\\ &\leq \int_Q \gamma(x,t)\exp(G(u_n))\varphi \,dx\,dt +\int_Q g(u_n)\sum_{i=1}^N \big|\frac{\partial u_n}{\partial x_i}\big|w_i\exp(G(u_n))\varphi dx dt\\ &\quad +\int_Q f_n \exp(G(u_n))\varphi \,dx\,dt. \end{align*} By \eqref{2.9}, we obtain \begin{equation} \begin{aligned} & \int_Q \frac{\partial b_n(x,u_n)}{\partial t} \exp(G(u_n))\varphi \,dx\,dt +\int_Q a(x,t,u_n,Du_n)\exp(G(u_n))D\varphi \,dx\,dt\\ &\leq \int_Q \gamma(x,t)\exp(G(u_n))\varphi \,dx\,dt+ \int_Q f_n \exp(G(u_n))\varphi \,dx\,dt, \end{aligned} \label{positif} \end{equation} for all $\varphi \in L^p(0,T;W^{1,p}_0(\Omega,w)) \cap L^{\infty }(Q), \varphi >0$. On the other hand, taking $v=\exp(-G(u_n))\varphi$ as test function in \eqref{Pn} we deduce, as in \eqref{positif}, that \begin{align} &\int_Q \frac{\partial b_n(x,u_n)}{\partial t} \exp(-G(u_n))\varphi \,dx\,dt +\int_Q a(x,t,u_n,Du_n)\exp(-G(u_n))D\varphi \,dx\,dt \notag \\ &+\int_Q \gamma(x,t)\exp(-G(u_n))\varphi \,dx\,dt \notag\\ &\geq \int_Q f_n \exp(-G(u_n))\varphi \,dx\,dt, \label{negatif} \end{align} for all $\varphi \in L^p(0,T;W^{1,p}_0(\Omega,w)) \cap L^{\infty }(Q), \varphi >0$. Let $\varphi=T_k(u_n)^+\chi_{(0,\tau)}$, for every $\tau\in [0,T]$, in \eqref{positif} we have, \begin{equation} \label{599} \begin{aligned} &\int_{\Omega} B _k^n(x,u_n(\tau)) \exp(G(u_n)) dx +\int_{Q_{\tau}} a(x,t,u_n,Du_n)\exp(G(u_n))DT_k(u_n)^+ \,dx\,dt\\ & \leq \int_{Q_{\tau}} \gamma(x,t)\exp(G(u_n))T_k(u_n)^+ \,dx\,dt+ \int_{Q_{\tau}}f_n \exp(G(u_n))T_k(u_n)^+ \,dx\,dt\\ &\quad +\int_{\Omega} B _k^n(x,u_{0n})dx, \end{aligned} \end{equation} where $B_k^n(x,r)=\int_0^rT_k(s)^+\frac{\partial b_n(x,s)}{\partial s}ds$. Due to this definition, we have \begin{equation} 0\leq\int_{\Omega} B _k^n(x,u_{0n})dx\leq k\int_{\Omega} |b_n(x,u_{0n})|dx\leq k\norm{b(x,u_0)}_{L^1(\Omega)}. \label{511} \end{equation} Using this inequality, $B_k^n(x,u_n)\geq 0$ and $G(u_n)\leq \frac{\norm{g}_{L^1(\mathbb{R})}}{\alpha}$, we deduce \begin{align*} & \int_{Q_{\tau}} a(x,t,u_n,DT_k(u_n)^+)DT_k(u_n)^+ \exp(G(u_n)) \,dx\,dt \\ &\leq k\exp\Big( \frac{\|g\|_{L^1(\mathbb{R})}} {\alpha}\Big) \Big(\norm{u_{0n}}_{L^1(\Omega)} +\norm{f_n}_{L^1(Q)} +\norm{\gamma}_{L^1(Q)} +\norm{b_n(x,u_{0n})}_{L^1(\Omega)}\Big) \\ &\leq c_1 k. \end{align*} Thanks to \eqref{2.9}, we have \begin{equation} \alpha \int_{Q_{\tau}}\sum_{i=1}^Nw_i(x)\big| \frac{\partial T_k(u_n)^+}{\partial x_i}\big|^p \exp(G(u_n))\,dx\,dt\leq c_1k. \label{eqtk} \end{equation} We deduce that \begin{equation} \alpha \int_Q\sum_{i=1}^Nw_i(x)\big| \frac{\partial T_k(u_n)^+}{\partial x_i}\big|^p\,dx\,dt\leq c_1k .\label{tk1} \end{equation} Similarly to \eqref{tk1}, we take $\varphi=T_k(u_n)^-\chi_{(0,\tau)}$ in \eqref{negatif} we deduce that \begin{equation} \alpha \int_Q\sum_{i=1}^Nw_i(x)\big| \frac{\partial T_k(u_n)^-}{\partial x_i}\big|^p\,dx\,dt\leq c_2k \label{tk2} \end{equation} where $c_2$ is a positive constant. Combining \eqref{tk1} and \eqref{tk2} we conclude that \begin{equation} \norm{T_k(u_n)}^p_{L^p(0,T;W^{1,p}_0(\Omega,w))}\leq ck. \label{tk} \end{equation} We deduce from the above inequality, \eqref{599} and \eqref{511}, that \begin{equation} \int_{\Omega} B _k^n(x,u_n)dx\leq k(\norm{f}_{L^1(Q)}+ \norm{b(x,u_{0})}_{L^1(\Omega)})\equiv Ck .\label{514} \end{equation} Then, $T_k(u_n)$ is bounded in $L^p(0,T;W^{1,p}_0(\Omega,w))$, and $T_k(u_n)\rightharpoonup v_k$ in the space $L^p(0,T;W^{1,p}_0(\Omega,w))$, and by the compact imbedding \eqref{2.6} gives $$ T_k(u_n)\to v_k\quad\text{strongly in $L^p(Q,\sigma)$ and a.e. in }Q. $$ Let $k>0$ be large enough and $B_R$ be a ball of $\Omega$, we have \begin{align*} & k\operatorname{meas}(\{ |u_n|>k\}\cap B_R\times[0,T])\\ &=\int_{0}^{T}\int_{\{ |u_n|>k\}\cap B_R}|T_k(u_n)|\,dx\,dt\\ &\leq \int_{0}^{T}\int_{B_R}|T_k(u_n)|\,dx\,dt\\ &\leq \Big( \int_Q|T_k(u_n)|^p \sigma \,dx\,dt\Big)^{1/p} \Big(\int_{0}^{T}\int_{B_R} \sigma^{1-p'} \,dx\,dt \Big)^{1/p'}\\ &\leq T c_R\Big(\int_{Q}\sum_{i=1}^Nw_i(x) \big|\frac{\partial T_k(u_n)}{\partial x_i}\Big|^p\,dx\,dt\Big)^{1/p} \\ &\leq c k^{1/p}, \end{align*} which implies $$ \operatorname{meas}(\{ |u_n|>k\}\cap B_R\times[0,T])\leq \frac{c_1}{k^{1-\frac{1}{p}}},\quad \forall k\geq 1. $$ So, we have $$ \lim_{k\to +\infty }(\operatorname{meas}(\{ |u_n|>k\} \cap B_R\times[0,T]))=0. $$ Now we turn to prove the almost every convergence of $u_n$ and $b_n(x,u_n)$. Consider now a function non decreasing $g_k\in C^2(\mathbb{R})$ such that $g_k(s)=s$ for $|s|\leq \frac{k}{2}$ and $g_k(s)=k$ for $|s|\geq k $. Multiplying the approximate equation by $g'_k(b_n(x,u_n))$, we obtain \begin{equation} \begin{aligned} &\frac{\partial g_k(b_n(x,u_n))}{\partial t}-\operatorname{div} (a(x,t,u_n,Du_n)g'_k(b_n(x,u_n)))\\ &+a(x,t,u_n,Du_n)g''_k(b_n(x,u_n))D_x\Big(\frac{\partial b_n(x,u_n)}{\partial s}\Big)Du_n\\ &+H_n(x,t,u_n,Du_n)g'_k(b_n(x,u_n))\\ &=f_n g'_k(b_n(x,u_n)) \end{aligned}\label{518} \end{equation} in the sense of distributions, which implies that \begin{gather} g_k(b_n(x,u_n)) \text{ is bounded in }L^p(0,T;W^{1,p}_0(\Omega,w)), \label{519}\\ \frac{\partial g_k(b_n(x,u_n))}{\partial t} \text{ is bounded in }X^*+L^1(Q), \label{520} \end{gather} independent of $n$ as long as $k0$,) \begin{align*} &\operatorname{meas}(\{ \big|b_n(x,u_n)-b_m(x,u_m)\big|>\lambda\} \cap B_R\times[0,T])\\ &\leq \operatorname{meas}(\{ |b_n(x,u_n)|>k\}\cap B_R\times[0,T]) +\operatorname{meas}(\{ |b_m(x,u_m)|>k\}\cap B_R\times[0,T])\\ &\quad +\operatorname{meas}(\{ \big|g_k(b_n(x,u_n)) -g_k(b_m(x,u_m))\big|>\lambda\}). \end{align*} Let $\varepsilon >0$, then there exist $k(\varepsilon)>0$ such that $$ \operatorname{meas}(\{ \big|b_n(x,u_n)-b_m(x,u_m)\big| >\lambda\}\cap B_R\times[0,T]) \leq \varepsilon $$ for all $n,m\geq n_0(k(\varepsilon),\lambda,R)$. This proves that $(b_n(x,u_n))$ is a Cauchy sequence in measure in $B_R\times[0,T]$, thus converges almost everywhere to some measurable function $v$. Then for a subsequence denoted again $u_n$, \begin{gather} u_n\to u\quad\text{a.e. in }Q, \label{523}\\ b_n(x,u_n)\to b(x,u)\quad\text{a.e. in } Q.\label{524} \end{gather} We can deduce from \eqref{tk} that \begin{equation} T_k(u_n)\rightharpoonup T_k(u)\quad\text{weakly in }L^p(0,T;W^{1,p}_0(\Omega,w)) \label{faible} \end{equation} and then, the compact imbedding \eqref{h2.8} gives $$ T_k(u_n)\to T_k(u)\quad\text{strongly in $L^q(Q,\sigma)$ and a.e. in }Q. $$ Which implies, by using \eqref{2.7}, for all $k>0$ that there exists a function $h_k\in \prod_{i=1}^N L^{p'}(Q,w_i^*)$, such that \begin{equation} a(x,t,T_k(u_n),DT_k(u_n))\rightharpoonup h_k \quad \text{weakly in } \prod_{i=1}^N L^{p'}(Q,w_i^*). \label{hk} \end{equation} We now establish that $b(x,u)$ belongs to $L^{\infty}(0,T;L^1(\Omega))$. Using \eqref{523} and passing to the limit-inf in \eqref{514} as $n$ tends to $+\infty$, we obtain that $$ \frac{1}{k}\int_{\Omega}B_k(x,u)(\tau)dx \leq [\norm{f}_{L^1(Q)}+\norm{u_0}_{L^1(\Omega)}]\equiv C, $$ for almost any $\tau$ in $(0,T)$. Due to the definition of $B_k(x,s)$ and the fact that $\frac{1}{k}B_k(x,u)$ converges pointwise to $b(x,u)$, as $k$ tends to $+\infty$, shows that $b(x,u)$ belong to $L^{\infty}(0,T;L^1(\Omega))$. \begin{lemma} \label{lem5.4} Let $u_n$ be a solution of the approximate problem \eqref{Pn}. Then \begin{equation}\lim _{m\to \infty}\limsup_{n\to \infty}\int_{\{m\leq|u_n|\leq m+1\}} a(x,t,u_n,Du_n)Du_n\,dx\,dt=0 \label{an} \end{equation} \end{lemma} \begin{proof} Considering the function $\varphi=T_1(u_n-T_m(u_n))^-:=\alpha_m(u_n)$ in \eqref{negatif} this function is admissible since $\varphi\in L^p(0,T;W^{1,p}_0(\Omega,w))$ and $\varphi\geq 0$. Then, we have \begin{align*} & \int_Q \frac{\partial b_n(x,u_n)}{\partial t} \alpha_m(u_n) \,dx\,dt +\int_{\{-(m+1)\leq u_n\leq -m\}} a(x,t,u_n,Du_n)Du_n \alpha'_m(u_n) \,dx\,dt \\ &\quad + \int_Q f_n \exp(-G(u_n))\alpha_m(u_n) \,dx\,dt \\ &\leq \int_Q \gamma(x,t)\exp(-G(u_n))\alpha_m(u_n) \,dx\,dt. \end{align*} Which, by setting $B_n^{m}(x,r)=\int_0^r \frac{\partial b_n(x,s)}{\partial s}\alpha_m(s) ds$, gives \begin{align*} &\int_{\Omega}B_n^{m}(x,u_n)(T)dx +\int_{\{-(m+1)\leq u_n\leq -m\}} a(x,t,u_n,Du_n)Du_n \alpha'_m(u_n) \,dx\,dt \\ &+ \int_Q f_n \exp(-G(u_n))\alpha_m(u_n) \,dx\,dt \\ &\leq \int_Q \gamma(x,t)\exp(-G(u_n))\alpha_m(u_n) \,dx\,dt+ \int_{\Omega}B_n^{m}(x,u_{0n})dx. \end{align*} Since $B_n^{m}(x,u_n)(T)\geq 0$ and by Lebesgue's theorem, we have \begin{equation}\lim _{m\to \infty}\lim_{n\to \infty}\int_Q f_n \exp(-G(u_n))\alpha_m(u_n) \,dx\,dt =0.\label{fexp} \end{equation} Similarly, since $\gamma \in L^1(\Omega)$, we obtain \begin{equation}\lim _{m\to \infty}\lim_{n\to \infty}\int_Q \gamma \exp(-G(u_n))\alpha_m(u_n) \,dx\,dt =0.\label{gexp} \end{equation} We conclude that \begin{equation}\lim _{m\to \infty}\limsup_{n\to \infty}\int_{\{-(m+1)\leq u_n\leq -m\}} a(x,t,u_n,Du_n)Du_n\,dx\,dt=0 .\label{an1} \end{equation} On the other hand, let $\varphi=T_1(u_n-T_m(u_n))^+$ as test function in \eqref{positif} and reasoning as in the proof of \eqref{an1} we deduce that \begin{equation} \lim _{m\to \infty}\limsup_{n\to \infty}\int_{\{m)\leq u_n\leq m+1\}} a(x,t,u_n,Du_n)Du_n\,dx\,dt=0 .\label{an2} \end{equation} Thus \eqref{an} follows from \eqref{an1} and \eqref{an2}. \end{proof} \subsection*{Step 2: Almost everywhere convergence of the gradients.} This step is devoted to introduce for $k\geq 0$ fixed a time regularization of the function $T_k(u)$ in order to perform the monotonicity method. This kind of regularization has been first introduced by R. Landes (see Lemma 6 and proposition 3, p.230, and proposition 4, p.231, in\cite{landes}). Let $\psi_i\in D(\Omega)$ be a sequence which converge strongly to $u_0$ in $L^1(\Omega)$. Set $w_{\mu}^i=(T_k(u))_{\mu}+e^{-\mu t}T_k(\psi_i)$ where $(T_k(u))_{\mu}$ is the mollification with respect to time of $T_k(u)$. Note that $w_{\mu}^i$ is a smooth function having the following properties: \begin{gather} \frac{\partial w_{\mu}^i}{\partial t}=\mu(T_k(u)-w_{\mu}^i),\quad w_{\mu}^i(0)=T_k(\psi_i),\quad \big|w_{\mu}^i\big|\leq k,\\ w_{\mu}^i\to T_k(u) \quad\text{in }L^p(0,T;W^{1,p}_0(\Omega,w)), \end{gather} as $\mu\to \infty$. We introduce the following function of one real: $$ h_m(s)=\begin{cases} 1 & \text{if } |s| \leq m\\ 0 & \text{if } |s|\geq m+1\\ m+1- s & \text{if } m\leq s\leq m+1\\ m+1+s & \text{if } -(m+1)\leq s\leq -m \end{cases} $$ where $m>k$. Let $\varphi=(T_k(u_n)-w_{\mu}^i)^+h_m(u_n)\in L^p(0,T;W^{1,p}_0(\Omega,w))\cap L^{\infty}(Q)$ and $\varphi\geq 0$, then we take this function in \eqref{positif}, we obtain \begin{equation} \label{test} \begin{aligned} &\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \frac{\partial b_n(x,u_n)}{\partial t} \exp(G(u_n))(T_k(u_n)-w_{\mu}^i)h_m(u_n) \,dx\,dt\\ &+\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} a(x,t,u_n,Du_n)D(T_k(u_n)-w_{\mu}^i)h_m(u_n) \,dx\,dt\\ & - \int_{\{m\leq u_n\leq m+1\}} \exp(G(u_n))a(x,t,u_n,Du_n)Du_n(T_k(u_n)-w_{\mu}^i)^+ \,dx\,dt\\ &\leq \int_Q \gamma(x,t)\exp(G(u_n))(T_k(u_n)-w_{\mu}^i)^+h_m(u_n) \,dx\,dt\\ &\quad +\int_Q f_n \exp(G(u_n))(T_k(u_n)-w_{\mu}^i)^+h_m(u_n) \,dx\,dt. \end{aligned} \end{equation} Observe that \begin{align*} &\int_{\{m\leq u_n\leq m+1\}} \exp(G(u_n))a(x,t,u_n,Du_n)Du_n(T_k(u_n)-w_{\mu}^i)^+ \,dx\,dt\\ &\leq 2k \int_{\{m\leq u_n\leq m+1\}} a(x,t,u_n,Du_n)Du_n\,dx\,dt. \end{align*} Thanks to \eqref{an} the third integral tend to zero as $n$ and $m$ tend to infinity, and by Lebesgue's theorem, we deduce that the right hand side converge to zero as $n$, $m$ and $\mu$ tend to infinity. Since \begin{gather*} (T_k(u_n)-w_{\mu}^i)^+h_m(u_n)\rightharpoonup (T_k(u)-w_{\mu}^i)^+h_m(u) \quad\text{weakly* in $L^{\infty}(Q)$, as $n\to \infty$},\\ \text{and } (T_k(u)-w_{\mu}^i)^+h_m(u)\rightharpoonup 0 \quad \text{weakly* in $L^{\infty}(Q)$ as $\mu\to \infty$}. \end{gather*} Let $\varepsilon_l(n,m,\mu,i)$ $l=1,\dots ,n$ various functions tend to zero as $n$, $m$, $i$ and $\mu$ tend to infinity. The definition of the sequence $w_{\mu}^i$ makes it possible to establish the following lemma, which will be proved in the Appendix. \begin{lemma}\cite{R1}\label{znn} For $k\geq 0$ we have \begin{equation} \int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \frac{\partial b_n(x,u_n)}{\partial t} \exp(G(u_n))(T_k(u_n)-w_{\mu}^i)h_m(u_n) \,dx\,dt\geq \varepsilon(n,m,\mu,i)\label{zn} \end{equation} \end{lemma} On the other hand, the second term of left hand side of \eqref{test} reads as follows \begin{align*} &\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} a(x,t,u_n,Du_n)D(T_k(u_n)-w_{\mu}^i)h_m(u_n) \,dx\,dt\\ &=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0,|u_n|\leq k\}} a(x,t,T_k(u_n),DT_k(u_n))D(T_k(u_n)-w_{\mu}^i)h_m(u_n) \,dx\,dt \\ &\quad - \int_{\{T_k(u_n)-w_{\mu}^i\geq 0,|u_n|\geq k\}} a(x,t,u_n,Du_n)Dw_{\mu}^ih_m(u_n) \,dx\,dt. \end{align*} Since $m>k$, $ h_m(u_n)=0$ on $\{|u_n|\geq m+1\}$, One has \begin{equation} \begin{aligned} &\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} a(x,t,u_n,Du_n)D(T_k(u_n)-w_{\mu}^i)h_m(u_n) \,dx\,dt\\ &=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} a(x,t,T_k(u_n),DT_k(u_n))D(T_k(u_n)-w_{\mu}^i)h_m(u_n) \,dx\,dt \\ &\quad - \int_{\{T_k(u_n)-w_{\mu}^i\geq 0,|u_n|\geq k\}} a(x,t,T_{m+1}(u_n),DT_{m+1}(u_n))Dw_{\mu}^ih_m(u_n) \,dx\,dt\\ &=J_1+J_2 \end{aligned}\label{tm} \end{equation} In the following we pass to the limit in \eqref{tm}: first we let $n$ tend to $+\infty$, then $\mu$ and finally $m$, tend to $+\infty$. Since $a(x,t,T_{m+1}(u_n),DT_{m+1}(u_n))$ is bounded in $\prod_{i=1}^N L^{p'}(Q,w_i^*)$, we have that $$ a(x,t,T_{m+1}(u_n),DT_{m+1}(u_n))h_m(u_n) \chi_{\{|u_n|>k\}}\to h_mh_m(u) \chi_{\{|u|>k\}} $$ strongly in $\prod_{i=1}^N L^{p'}(Q,w_i^*)$ as $n$ tends to infinity, it follows that \begin{align*} J_2&=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0 \}}h_mDw_{\mu}^ih_m(u)\chi_{\{|u|>k\}}\,dx\,dt+\varepsilon(n)\\ &=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0 \}}h_m(DT_k(u)_{\mu}-e^{-\mu t}DT_k(\psi_i))h_m(u)\chi_{\{|u|>k\}}\,dx\,dt+\varepsilon(n). \end{align*} By letting $\mu\to +\infty$, $$ J_2=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0 \}}h_mDT_k(u)\,dx\,dt+\varepsilon(n,\mu). $$ Using now the term $J_1$ of \eqref{tm} one can easily show that \begin{equation} \label{i1} \begin{aligned} &\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} a(x,t,T_k(u_n),DT_k(u_n))D(T_k(u_n)-w_{\mu}^i)h_m(u_n) \,dx\,dt\\ &=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\quad\times\left[DT_k(u_n)-DT_k(u)\right]h_m(u_n) \,dx\,dt\\ &\quad +\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} a(x,t,T_k(u_n),DT_k(u))(DT_k(u_n)-DT_k(u))h_m(u_n) \,dx\,dt\\ &\quad +\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} a(x,t,T_k(u_n),DT_k(u_n))DT_k(u)h_m(u_n) \,dx\,dt\\ &\quad -\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} a(x,t,T_k(u_n),DT_k(u_n))Dw_{\mu}^ih_m(u_n) \,dx\,dt\\ &=K_1+K_2+K_3+K_4. \end{aligned} \end{equation} We shall go to the limit as $n$ and $\mu\to +\infty$ in the three integrals of the right-hand side. Starting with $K_2$, we have by letting $n\to +\infty$, \begin{equation} K_2=\varepsilon(n).\label{k2} \end{equation} About $K_3$, we have by letting $n\to +\infty$ and using \eqref{hk}, $$ K_3=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0 \}}h_kDT_k(u)h_m(u)\chi_{\{|u|>k\}}\,dx\,dt+\varepsilon(n) $$ By letting $\mu\to +\infty$, \begin{equation} K_3=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0 \}}h_kDT_k(u)\,dx\,dt+\varepsilon(n,\mu).\label{k3} \end{equation} For $K_4$ we can write $$ K_4=-\int_{\{T_k(u_n)-w_{\mu}^i\geq 0 \}}h_kDw_{\mu}^ih_m(u)\,dx\,dt+\varepsilon(n), $$ By letting $\mu\to +\infty$, \begin{equation} K_4=-\int_{\{T_k(u_n)-w_{\mu}^i\geq 0 \}}h_kDT_k(u)\,dx\,dt+\varepsilon(n,\mu).\label{k4} \end{equation} We then conclude that \begin{align*} &\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} a(x,t,T_k(u_n),DT_k(u_n))D(T_k(u_n)-w_{\mu}^i)h_m(u_n) \,dx\,dt \\ &=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\quad \times\left[DT_k(u_n)-DT_k(u)\right]h_m(u_n) \,dx\,dt +\varepsilon(n,\mu). \end{align*} On the other hand, we have \begin{equation} \label{545} \begin{aligned} &\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\quad \times\left[DT_k(u_n)-DT_k(u)\right] \,dx\,dt\\ &=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\quad \times\left[DT_k(u_n)-DT_k(u)\right]h_m(u_n) \,dx\,dt\\ &\quad +\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} a(x,t,T_k(u_n),DT_k(u_n))(DT_k(u_n)-DT_k(u))\\ &\quad\times (1-h_m(u_n)) \,dx\,dt\\ &\quad -\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} a(x,t,T_k(u_n),DT_k(u))(DT_k(u_n)-DT_k(u))\\ &\quad\times (1-h_m(u_n)) \,dx\,dt. \end{aligned} \end{equation} Since $h_m(u_n)=1\quad\text{in }\{|u_n|\leq m\}$ and $ \{|u_n|\leq k\}\subset \{|u_n|\leq m\}$ for $m$ large enough, we deduce from \eqref{545} that \begin{align*} &\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\times\left[DT_k(u_n)-DT_k(u)\right] \,dx\,dt\\ &=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\quad \times\left[DT_k(u_n)-DT_k(u)\right]h_m(u_n) \,dx\,dt\\ &\quad +\int_{\{T_k(u_n)-w_{\mu}^i\geq 0,|u_n|>k\}} a(x,t,T_k(u_n),DT_k(u))DT_k(u)(1-h_m(u_n)) \,dx\,dt. \end{align*} It is easy to see that the last terms of the last equality tend to zero as $n\to +\infty$, which implies \begin{align*} &\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\times\left[DT_k(u_n)-DT_k(u)\right] \,dx\,dt\\ &=\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\quad \times\left[DT_k(u_n)-DT_k(u)\right]h_m(u_n) \,dx\,dt +\varepsilon(n) \end{align*} Combining \eqref{zn}, \eqref{i1}, \eqref{k2}, \eqref{k3}, \eqref{k4} and \eqref{545}, we obtain \begin{equation} \label{qa} \begin{aligned} &\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\times\left[DT_k(u_n)-DT_k(u)\right] \,dx\,dt\leq \varepsilon(n,\mu,m) \end{aligned} \end{equation} Passing to the limit in \eqref{qa} as $n$ and $m$ tend to infinity, we obtain \begin{equation} \label{plus} \begin{aligned} &\lim_{n\to \infty}\int_{\{T_k(u_n)-w_{\mu}^i\geq 0\}} \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\times\left[DT_k(u_n)-DT_k(u)\right] \,dx\,dt=0. \end{aligned} \end{equation} On the other hand, taking $\varphi=(T_k(u_n)-w_{\mu}^i)^-h_m(u_n)$ in \eqref{negatif}, we deduce as in \eqref{plus} that \begin{equation} \label{moin} \begin{aligned} &\lim_{n\to \infty}\int_{\{T_k(u_n)-w_{\mu}^i\leq 0\}} \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\times\left[DT_k(u_n)-DT_k(u)\right] \,dx\,dt=0. \end{aligned} \end{equation} Combining \eqref{plus} and \eqref{moin}, we conclude \begin{equation} \begin{aligned} &\lim_{n\to \infty}\int_Q \left[a(x,t,T_k(u_n),DT_k(u_n))-a(x,t,T_k(u_n),DT_k(u))\right]\\ &\times\left[DT_k(u_n)-DT_k(u)\right] \,dx\,dt=0. \end{aligned}\label{ll} \end{equation} Which, by lemma \eqref{lem4.5}, implies \begin{equation} T_k(u_n)\to T_k(u)\quad\text{strongly in $L^p(0,T;W^{1,p}_0(\Omega,w))$ for all }k. \label{tfort} \end{equation} Now, observe that for every $\sigma>0$, \begin{align*} &\operatorname{meas}\{(x,t)\in\Omega\times [0,T]: |Du_n-Du|>\sigma\}\\ &\leq \operatorname{meas}\{(x,t)\in\Omega\times [0,T]:|Du_n|>k\}\\ &\quad +\operatorname{meas}\{(x,t)\in\Omega\times [0,T]:|u|>k\}\\ &\quad +\operatorname{meas}\{(x,t)\in\Omega\times [0,T]: \big|DT_k(u_n)-DT_k(u)\big|>\sigma\} \end{align*} then as a consequence of \eqref{tfort} we have that $Du_n$ converges to $Du$ in measure and therefore, always reasoning for a subsequence, \begin{equation} Du_n\to Du \quad\text{a. e. in }Q .\label{grad} \end{equation} Which implies \begin{equation} a(x,t,T_k(u_n),DT_k(u_n))\rightharpoonup a(x,t,T_k(u),DT_k(u)) \quad\text{in } \prod_{i=1}^NL^{p'}(Q,w_i^*). \label{atk} \end{equation} \subsection*{Step 3: Equi-integrability of the nonlinearity sequence} We shall now prove that $H_n(x,t,u_n,Du_n)\to H(x,t,u,Du)$ strongly in $L^1(Q)$ by using Vitali's theorem. Since $H_n(x,t,u_n,Du_n)\to H(x,t,u,Du)$ a.e. in $Q$, Consider a function $\rho_h(s)=\int_0^s g(\nu)\chi_{\{\nu>h\}}d\nu$, take $\varphi=\rho_h(u_n)=\int_0^{u_n}g(s)\chi_{\{s>h\}}ds$ as test function in \eqref{positif}, we obtain \begin{align*} &\Big[\int_{\Omega} B_h^n(x,u_n) dx\Big]_0^T +\int_Q a(x,t,u_n,Du_n)Du_ng(u_n)\chi_{\{u_n>h\}} \,dx\,dt \\ &\leq \Big( \int_h^{\infty}g(s)\chi_{\{s>h\}}ds\Big) \exp\Big( \frac{\norm{g}_{L^1(\mathbb{R})}}{\alpha}\Big) \Big(\norm{\gamma}_{L^1(Q)}+\norm{f_n}_{L^1(Q)}\Big), \end{align*} where $B_h^n(x,r)=\int_0^r\frac{\partial b_n(x,s)}{\partial s} \rho_h(s)ds$, which implies, since $B_h^n(x,r)\geq 0$, \begin{align*} &\int_Q a(x,t,u_n,Du_n)Du_ng(u_n)\chi_{\{u_n>h\}} \,dx\,dt \\ &\leq \Big( \int_h^{\infty}g(s)ds\Big) \exp\Big(\frac{\norm{g}_{L^1(\mathbb{R})}}{\alpha}\Big) \left(\norm{\gamma}_{L^1(Q)} + \norm{f_n}_{L^1(Q)}\right)+\int_{\Omega} B_h^n(x,u_{0n}) dx. \end{align*} Using \eqref{2.9}, we have $$ \int_{\{u_n>h\}}g(u_n)\sum_{i=1}^N w_i \big|\frac{\partial u_n}{\partial x_i}\big|^p\,dx\,dt \leq C\int_h^{\infty}g(s)\,ds. $$ Since $g\in L^1(\mathbb{R})$, we have $$ \lim_{h\to \infty}\sup_{n\in \mathbb{N}}\int_{\{u_n>h\}}g(u_n)\sum_{i=1}^Nw_i \big|\frac{\partial u_n}{\partial x_i}\big|^p\,dx\,dt=0. $$ Similarly, let $\varphi=\int_{u_n}^0g(s)\chi_{\{s<-h\}}ds$ as a test function in \eqref{negatif}, we conclude that $$ \lim_{h\to \infty}\sup_{n\in \mathbb{N}}\int_{\{u_n<-h\}}g(u_n)\sum_{i=1}^Nw_i \big|\frac{\partial u_n}{\partial x_i}\big|^p\,dx\,dt=0. $$ Consequently, $$ \lim_{h\to +\infty}\sup_{n\in \mathbb{N}}\int_{\{|u_n|>h\}}g(u_n)\sum_{i=1}^Nw_i \big|\frac{\partial u_n}{\partial x_i}\big|^p\,dx\,dt=0, $$ which, for $h$ large enough, implies \begin{align*} \int_Q g(u_n)\sum_{i=1}^Nw_i\big|\frac{\partial u_n}{\partial x_i}\big|^p\,dx\,dt &\leq \int_{\{|u_n|0$, there exist $\lambda_k>0$ and functions $A_k\in L^1(\Omega)$ and $B_k\in L^p(\Omega)$ such that \begin{gather} \lambda_k\leq\frac{\partial b(x,s)}{\partial s}\leq A_k(x),\quad \big|D_x\Big(\frac{\partial b(x,s)}{\partial s}\Big)\big| \leq B_k(x), \label{condb}\\ H(x,t,s,\xi)=\rho \sin (s)\exp(s^{-2}) \sum_{i=1}^N w_i(x)|\xi_i|^p,\quad \rho\in\mathbb{R},\\ a_i(x,t,s,d)=w_i(x)|d_i|^{p-1}\operatorname{sgn}(d_i),\quad i=1,\dots ,N, \end{gather} with $w_i(x)$, ($i=1,\dots ,N$), a weight function strictly positive, $x\in Q$. Then, we can consider the Hardy inequality in the form $$ \Big(\int_{\Omega}|u(x)|^p\sigma(x)dx\Big)^{1/p} \leq c \Big(\int_{\Omega}|Du(x)|^pw(x)dx\Big)^{1/p}. $$ It is easy to show that the $a_i(t,x,s,d)$ are Caratheodory functions satisfying the growth condition \eqref{2.7} and the coercivity \eqref{2.9}. On the order hand the monotonicity condition is verified. In fact, \begin{align*} &\sum_{i=1}^N\left( a_i(x,t,d)-a(x,t,d')\right)(d_i-d'_i)\\ &= w(x)\sum_{i=1}^{N-1}\left( |d_i|^{p-1}\operatorname{sgn}(d_i)- |d'_i|^{p-1}\operatorname{sgn}(d'_i)\right)(d_i-d'_i)> 0, \end{align*} for almost all $x\in \Omega$ and for all $d, d'\in\mathbb{R}^N$. This last inequality can not be strict, since for $d\neq d'$ , since $w>0$ a.e. in $\Omega$. While the Carath\'eodory function $H(x,t,s,\xi)$ satisfies the condition \eqref{H} indeed $$ |H(x,t,s,\xi)|\leq |\rho|\exp(s^{-2}) \sum_{i=1}^N w_i(x)|\xi_i|^p=g(s)\sum_{i=1}^N w_i(x)|\xi_i|^p $$ where $g(s)=|\rho|\exp(s^{-2}$ is a function positive continuous which belongs to $L^1(\mathbb{R})$. Note that $H(x,t,s,\xi)$ does not satisfy the sign condition \eqref{sign} and the coercivity condition \eqref{coer}. In particular, let us use special weight function, $w$, expressed in terms of the distance to the bounded $\partial \Omega$. Denote $d(x)=\operatorname{dist}(x,\partial\Omega)$ and set $w(x)=d^{\lambda}(x)$, $\sigma(x)=d^{\mu}(x)$. Finally, the hypotheses of Theorem \ref{thm1} are satisfied. Therefore, for all $f\in L^1(Q)$, the problem \begin{gather*} b(x,u)\in L^{\infty}([0,T];L^1(\Omega));\quad T_k(u)\in L^p(0,T;W^{1,p}_0(\Omega,w)), \\ \lim_{m\to +\infty} \int_{\{m\leq |u|\leq m+1\}}d^{\lambda}(x)\sum_{i=1}^N \big|\frac{\partial u}{\partial x_i}\big|^{p-1}\operatorname{sgn} (\frac{\partial u}{\partial x_i})\frac{\partial u }{\partial x_i} \,dx\,dt=0;\\ B_S(x,r)=\int_0^r \frac{\partial b(x,\sigma)}{\partial \sigma} S'(\sigma)d\sigma,\\ \begin{aligned} &\int_{\Omega}B_S(x,u(T))\varphi(T)dx -\int_Q B_S(x,u)\frac{\partial \varphi}{\partial t}\,dx\,dt\\ &+\int_Q S'(u)d^{\lambda}(x)\sum_{i=1}^N \big|\frac{\partial u}{\partial x_i}\big|^{p-1}\operatorname{sgn} (\frac{\partial u}{\partial x_i}) \frac{\partial\varphi }{\partial x_i}\,dx\,dt\\ &+\int_Q S''(u) d^{\lambda}(x)\sum_{i=1}^N \big|\frac{\partial u}{\partial x_i}\big|^{p-1}\operatorname{sgn} (\frac{\partial u}{\partial x_i}) \frac{\partial u }{\partial x_i}\varphi \,dx\,dt\\ &+\int_Q \rho S'(u) \sin (u)\exp(u^{-2}) \sum_{i=1}^N w_i\big|\frac{\partial u}{\partial x_i}\big|^{p-1} \varphi \,dx\,dt\\ &=\int_Q fS'(u)\varphi \,dx\,dt+\int_{\Omega}B_S(x,u_0)\varphi(0)dx, \end{aligned} \\ B_S(x,u)(t=0)=B_S(x,u_0)\quad\text{in }\Omega, \end{gather*} for all $\varphi \in C^{\infty}_0(Q)$ and $S\in W^{1, \infty}(\mathbb{R})$ with $S'\in C^{\infty}_0(\mathbb{R})$, has at least one renormalised solution. \section{Appendix} \begin{proof}[Proof of Lemma \ref{znn}] (see also \cite{R2}) Integration by parts and the use of the properties of $(w)_{\mu}^i$ yield \begin{equation} \begin{aligned} &\int_{0}^{T}\int_{\{x\in \Omega; T_k(u_n)-w_{\mu}^i\geq 0\}} \frac{\partial b_n(x,u_n)}{\partial t} h_m(u_n)\exp(G(u_n))(T_k(u_n)-w_{\mu}^i) \,dx\,dt\\ &=\int_{0}^{T}\int_{\{x\in \Omega; T_k(u_n)-w_{\mu}^i\geq 0\}} \frac{\partial b_n(x,u_n)}{\partial t} h_m(u_n)T_k(u_n)\exp(G(u_n)),dx\,dt\\ &-\int_{0}^{T}\int_{\{x\in \Omega; T_k(u_n)-w_{\mu}^i\geq 0\}} \frac{\partial b_n(x,u_n)}{\partial t} h_m(u_n)\exp(G(u_n))w_{\mu}^i dx dt\\ &=I_1^n+I_2^{n,\mu}. \end{aligned}\label{611} \end{equation} We denote \begin{gather*} B_{m,k}^n(x,r)=\int_0^r\frac{\partial b_n(x,s)} {\partial s}h_m(s)T_k(s)\exp(G(s))ds,\\ B_m^n(x,r)=\int_0^r\frac{\partial b_n(x,s)}{\partial s}h_m(s)\exp(G(s))ds. \end{gather*} By a standard argument we can write the first term on the right-hand side of \eqref{611} as \begin{equation}\begin{aligned} I_1^n&=\Big[\int_{\{x\in\Omega;\ T_k(u_n)-w_{\mu}^i\geq 0\}}B_{m,k}^n(x,u_n)dx \Big]_0^T\\ &=\int_{\{x\in \Omega; \ T_k(u_n)(T)-w_{\mu}^i(T)\geq 0\}} B_{m,k}^n(x,T_m(u_n)(T))dx\\ &-\int_{\{x\in \Omega;\ T_k(u_n)(0)-w_{\mu}^i(0)\geq 0\}}B_{m,k}^n(x,T_m(u_n)(0))dx. \end{aligned} \label{622} \end{equation} We observe that $$ \frac{\partial b_n(x,T_m(u_n))}{\partial s}h_m(u_n)=\left(\frac{\partial b_n(x,T_m(u_n))}{\partial s}+\frac{1}{n}\right)h_m(u_n) $$ for $n>m$ with $\operatorname{supp}h_m\subset [-m; m]$. Passing to the limit in \eqref{622} as $n\to +\infty$, we deduce that \begin{equation} \begin{aligned} I_1^n &=\int_{\{x\in \Omega;\ T_k(u)(T)-w_{\mu}^i(T)\geq 0\}}B_{m,k}(x,T_m(u(T)))dx\\ &-\int_{\{x\in \Omega;\ T_k(u)(0)-w_{\mu}^i(0)\geq 0\}}B_{m,k}(x,T_m(u_{0}))dx+\varepsilon(n). \end{aligned} \label{6333} \end{equation} where $B_{m,k}(x,r)=\int_0^r\frac{\partial b(x,s)}{\partial s}h_m(s)T_k(s)\exp(G(s))ds$. Passing to the limit in \eqref{6333} as $i\to +\infty$ and $\mu\to +\infty$, we have \begin{equation} \begin{aligned} I_1^n =\int_{\Omega}[B_{m,k}(x,u(T))-B_{m,k}(x,u_{0})]dx+\varepsilon(n,\mu,i). \end{aligned} \label{633} \end{equation} The second term on the right-hand side of \eqref{611} can be written as \begin{equation} \begin{aligned} I_2^{n,\mu} &=-\int_{0}^{T}\int_{\{x\in \Omega;/ T_k(u_n)-w_{\mu}^i\geq 0\}}\frac{\partial b_n(x,u_n)}{\partial t} h_m(u_n)\exp(G(u_n))w_{\mu}^i dx dt\\ &=-\left[\int_{\{x\in \Omega;\ T_k(u_n)-w_{\mu}^i\geq 0\}}B_m^n(x,u_n)w_{\mu}^idx\right]_0^T\\ &\int_0^T\quad \int_{\{x\in \Omega;\ T_k(u_n)-w_{\mu}^i\geq 0\}} B_m^n(x,u_n)\frac{\partial w_{\mu}^i}{\partial t}\,dx\,dt\\ &=-\int_{\{x\in \Omega;\ T_k(u_n)(T)-w_{\mu}^i(T)\geq 0\}}B_m^n(x,T_m(u_n(T)))w_{\mu}^i(T)dx\\ &+\int_{\{x\in \Omega;\ T_k(u_n)(0)-w_{\mu}^i(0)\geq 0\}}B_m^n(x,u_{0n})w_{\mu}^i(0)dx\\ &\quad +\mu\int_0^T\int_{\{x\in \Omega;\ T_k(u_n)-w_{\mu}^i\geq 0\}}B_m^n(x,u_n)(T_k(u)-w_{\mu}^i)\,dx\,dt. \end{aligned} \label{644} \end{equation} By passing to the limit as $n$ tends to infinity in \eqref{644}, we obtain \begin{align*} I_2^{n,\mu} &=-\int_{\{x\in \Omega;\ T_k(u)-w_{\mu}^i\geq 0\}}[B_m(x,u(T)) w_{\mu}^i(T)-B_m(x,u_{0})w_{\mu}^i(0)dx\\ &\quad +\mu\int_{\{x\in \Omega;\ T_k(u)-w_{\mu}^i\geq 0\}}\int_0^TB_m(x,u)(T_k(u)-w_{\mu}^i)\,dx\,dt+\varepsilon(n), \end{align*} where $B_m(x,r)=\int_0^r\frac{\partial b(x,s)}{\partial s}h_m(s)\exp(G(s))ds$. Therefore, passing to the limit, in $i$ and $\mu$ , in the first terms on the right-hand side of the last equality, we deduce that \begin{equation}\begin{aligned} &\int_{\{x\in \Omega;\ T_k(u)-w_{\mu}^i\geq 0\}}[B_m(x,u(T))w_{\mu}^i(T)-B_m(x,u_{0})w_{\mu}^i(0)dx\\ &=\int_{\Omega}[B_m(x,u(T))(T_k(u(T))-B_m(x,u_{0})T_k(u_0))dx+\varepsilon(n,\mu,i). \end{aligned}\label{666} \end{equation} The second term on the right-hand side of \eqref{644} can be rewritten as \begin{equation}\begin{aligned} &\mu\int_0^T\int_{\{x\in \Omega;\ T_k(u)-w_{\mu}^i\geq 0\}}B_m(x,u)(T_k(u)-w_{\mu}^i)\,dx\,dt\\ &=\mu\int_0^T\int_{\{x\in \Omega;\ T_k(u)-w_{\mu}^i\geq 0\}}(B_m(x,u)-B_m(x,T_k(u)))(T_k(u)-w_{\mu}^i)\,dx\,dt\\ &+\mu\int_0^T\int_{\{x\in \Omega;\ T_k(u)-w_{\mu}^i\geq 0\}}(B_m(x,T_k(u))-B_m(x,w_{\mu}^i)(T_k(u)-w_{\mu}^i)\,dx\,dt\\ &+\mu\int_0^T\int_{\{x\in \Omega;\ T_k(u)-w_{\mu}^i\geq 0\}}B_m(x,w_{\mu}^i)(T_k(u)-w_{\mu}^i)\,dx\,dt\\ &=J_1+J_2+J_3, \end{aligned}\label{677} \end{equation} where \begin{equation}\begin{aligned} J_1&=\mu\int_0^T\int_{\{x\in \Omega;\ T_k(u)-w_{\mu}^i\geq 0;u>k\}}(B_m(x,u)-B_m(x,k))(k-w_{\mu}^i)\,dx\,dt\\ &\quad +\mu\int_0^T\int_{\{x\in \Omega;\ T_k(u)-w_{\mu}^i\geq 0;u<-k\}}(B_m(x,u)-B_m(x,-k))(-k-w_{\mu}^i)\,dx\,dt\\ &\geq 0. \end{aligned}\label{688} \end{equation} As $B_m(x,z)$ is non-decreasing for $z$ and $-k\leq w_{\mu}^i\leq k$, it follows that \begin{equation} J_2\geq 0.\label{699} \end{equation} Moreover, \begin{equation}\begin{aligned} J_3&=\mu\int_0^T\int_{\{x\in \Omega;\ T_k(u)-w_{\mu}^i\geq 0\}}B_m(x,w_{\mu}^i)(T_k(u)-w_{\mu}^i)\,dx\,dt\\ &=\int_0^T\int_{\{x\in \Omega;\ T_k(u)-w_{\mu}^i\geq 0\}}B_m(x,w_{\mu}^i)\frac{\partial(w)_{\mu}^i}{\partial t}dx dt\\ &=\int_{\{x\in \Omega;\ T_k(u)(T)-w_{\mu}^i(T)\geq 0\}}\overline{B}(x,w_{\mu}^i(T))dx\\ &-\int_{\{x\in \Omega;\ T_k(u)(0)-w_{\mu}^i(0)\geq 0\}}\overline{B}((x,w_{\mu}^i(0))dx, \end{aligned}\label{610} \end{equation} where $\overline{B}(x,z)=\int_0^zB_m(x,r)dr$. Also $w_{\mu}^i\to T_k(u)$ a.e. in $Q$ as $i$ and $\mu$ tends to $+\infty$ and $|w_{\mu}^i|\leq k$. Then Lebegue's convergence theorem shows that \begin{equation} J_3=\int_{\Omega}(\overline{B}(x,T_k(u(T)))-\overline{B}(x,T_k(u_0)))dx +\varepsilon(n,\mu,i).\label{6111} \end{equation} In view of \eqref{666}-\eqref{6111}, one has \begin{equation} \begin{aligned} I_2^{n,\mu} &\geq -\int_{\Omega}[B_m(x,u(T))T_k(u(T))-B_m(x,u_0)T_k(u_0)]dx\\ &\quad +\int_{\Omega}(\overline{B}(x,T_k(u(T)))-\overline{B}(x,T_k(u_0)))dx +\varepsilon(n,\mu,i). \end{aligned}\label{6122} \end{equation} As a consequence of \eqref{611}, \eqref{633} and \eqref{6122}, we deduce that \begin{equation} \begin{aligned} &\int_{\{(x,t)\in\Omega\times(0,T);\ \ T_k(u)-w_{\mu}^i\geq 0\}}\frac{\partial b_n(x,u_n)}{\partial t} h_m(u_n)\exp(G(u_n))(T_k(u_n)-w_{\mu}^i)dxdt\geq\\ &\geq\int_{\Omega}[B_{m,k}(x,u(T))-B_{m,k}(x,u_{0})]dx\\ &\quad -\int_{\Omega}[B_m(x,u(T))T_k(u(T))-B_m(x,u_0)T_k(u_0)]dx\\ &\quad +\int_{\Omega}(\overline{B}(x,T_k(u(T)))-\overline{B}(x,T_k(u_0)))dx +\varepsilon(n,\mu,i). \end{aligned}\label{6133} \end{equation} Observe that for any $z\in \mathbb{R}$ and for almost every $x\in\Omega$, we have $$ \overline{B}(x,T_k(z))=B_m(x,z)T_k(z)-B_{m,k}(x,z). $$ Indeed, \begin{equation} \begin{aligned} \overline{B}(x,T_k(z)) &=\int_0^{T_k(z)}B_m(x,r)dr\\ &=\Big[r\int_0^r \frac{\partial b(x,\sigma)} {\partial \sigma}h_m(\sigma)\exp(G(\sigma))d\sigma\Big]_0^{T_k(z)}\\ &\quad -\int_0^{T_k(z)}r \frac{\partial b(x,r)}{\partial r}h_m(r)\exp(G(r))dr\\ &=T_k(z)\int_0^{T_k(z)} \frac{\partial b(x,r)}{\partial r}h_m(r)\exp(G(r))dr\\ &\quad -\int_0^{T_k(z)}T_k(r) \frac{\partial b(x,r)}{\partial r}h_m(r)\exp(G(r))dr\\ &=T_k(z)B_m(x,T_k(z))-B_{m,k}(x,T_k(z)). \end{aligned}\label{6144} \end{equation} This is due to the fact that for $|r|k$ we have \begin{align*} &B_{m,k}(x,r)\\ &=\int_0^k\frac{\partial b(x,\sigma)}{\partial \sigma} h_m(\sigma)\sigma \exp(G(\sigma)) d\sigma+ k\int_k^r\frac{\partial b(x,\sigma)}{\partial \sigma}h_m (\sigma)\exp(G(\sigma))d\sigma, \end{align*} \begin{align*} &-T_k(r)B_m(x,r)\\ &=-k\int_0^k\frac{\partial b(x,\sigma)} {\partial \sigma}h_m(\sigma)\exp(G(\sigma))d\sigma - k\int_k^r\frac{\partial b(x,\sigma)}{\partial \sigma}h_m(\sigma)\exp(G(\sigma))d\sigma, \end{align*} and \[ \overline{B}(x,k)=k\int_0^k\frac{\partial b(x,\sigma)} {\partial \sigma}h_m(\sigma)\exp(G(\sigma))d\sigma- k\int_0^k\frac{\partial b(x,\sigma)}{\partial \sigma}h_m(\sigma)\exp(G(\sigma))\sigma\,d\sigma. \] The case $r<-k$ is similar to the previous one. This conclude the proof. \end{proof} \subsection*{Acknowledgements} The authors are grateful to Professor H. Redwane for his comments and suggestions. His article \cite{R2} was the motivation for writing this article. \begin{thebibliography}{00} \bibitem{adams} R. Adams; \emph{Sobolev spaces}, AC, Press, New York, 1975. \bibitem{ahar2} L. Aharouch, E. Azroul and M. Rhoudaf; \emph{Strongly nonlinear variational parabolic problems in weighted sobolev spaces. } The Australian journal of Mathematical Analysis and Applications, Vol.5, Issue 2, Article 13, pp. 1-25,2008 . \bibitem{ahar3} L. Aharouch, E. Azroul and M. Rhoudaf; \emph{ Existence results for Strongly nonlinear degenerated parabolic equations via strong convergence of truncations with $L^1$ data}. \bibitem{benona} Y. Akdim, J. Bennouna, M. Mekkour and M. Rhoudaf; \emph{Renormalised solutions of nonlinear degenerated parabolic problems with $L^1$ data: existence and uniqueness}, to appear in ``Series in Contemporary Applied Mathematics'' World Scientific. \bibitem{boca} L. Boccardo, D. Giachetti, J. I. Diaz, F. Murat; \emph{Existence and Regularity of Renormalized Solutions of some Elliptic Problems involving derivatives of nonlinear terms}, Journal of differential equations 106, 215-237 (1993) \bibitem{orsina} A. Dall’Aglio and L. Orsina; \emph{Nonlinear parabolic equations with natural growth conditions and $L^1$ data}, Nonlinear Anal. 27 (1996), 59–73. \bibitem{D.M.O.P} G. Dal Maso, F. Murat, L. Orsina and A. Prignet; \emph{Definition and existence of renormalized solutions of elliptic equations with general measure data,} C. R. Acad. Sci. Paris 325 (1997), 481-486. \bibitem{lion} R. J. Diperna and P.-L. Lions; \emph{On the Cauchy problem for Boltzman equations: global existence and weak stability}. Ann. of Math. (2) 130(1989), 321-366. \bibitem{drabekk} P. Drabek, A. Kufner and V. Mustonen; \emph{Pseudo-monotonicity and degenerated or singular elliptic operators}, Bull. Austral. Math. Soc. Vol. 58 (1998), 213-221. \bibitem{drabek} P. Drabek, A. Kufner and F. Nicolosi; \emph{Non linear elliptic equations, singular and degenerated cases}, University of West Bohemia, (1996). \bibitem{Kufner} A. Kufner; \emph{Weighted Sobolev Spaces}, John Wiley and Sons, (1985). \bibitem{landes} R. Landes; \emph{On the existence of weak solutions for quasilinear parabolic initial-boundary value problems}, Proc. Roy. Soc. Edinburgh Sect A 89 (1981), 321-366. \bibitem{lions} J.-L. Lions; \emph{quelques m\'ethodes de r\'esolution des probl\`eme aux limites non lineaires}, Dundo, Paris (1969). \bibitem{R1} J.-M. Rakotoson; \emph{Uniqueness of renormalized solutions in a $T$-set for $L^1$ data problems and the link between various formulations}, Indiana University Math. Jour., vol. 43, 2(1994). \bibitem{R2} H. Redwane; \emph{Existence of a solution for a class of parabolic equations with three unbounded nonlinearities}, Adv. Dyn. Syst. Appl., \textbf{2}, (2007), 241-264. \bibitem{R3} H. Redwane; \emph{Existence results for a class of parabolic equations in Orlicz spaces}, Electronic Journal of Qualitative Theory of Diferential Equations, 2010, No. 2, 1-19. \bibitem{simon} J. Simon; \emph{Compact sets in the space $L^p(0,T,B)$}, Ann. Mat. Pura. Appl., 146 (1987),pp. 65-96. \bibitem{19} E. Zeidler; \emph{Nonlinear Functional Analysis and its Applications}, Springer-Verlag, New York-Heidlberg, (1990). \end{thebibliography} \end{document}