\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 101, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/101\hfil Oscillation theorems] {Oscillation theorems for second-order neutral functional dynamic equations on time scales} \author[C. Gao, T. Li, S. Tang, E. Thandapani\hfil EJDE-2011/101\hfilneg] {Cunchen Gao, Tongxing Li, Shuhong Tang, Ethiraju Thandapani} % in alphabetical order \address{Cunchen Gao \newline College of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China} \email{ccgao@ouc.edu.cn} \address{Tongxing Li \newline School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China.\newline School of Mathematical Science, University of Jinan, Jinan, Shandong 250022, China} \email{litongx2007@hotmail.com} \address{Shuhong Tang \newline School of Information and Control Engineering, Weifang University, Weifang, Shandong 261061, China.\newline College of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China} \email{wfxytang@163.com} \address{Ethiraju Thandapani \newline Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, India} \email{ethandapani@yahoo.co.in} \thanks{Submitted March 21, 2011. Published August 10, 2011.} \subjclass[2000]{34K11, 39A21, 34N05} \keywords{Oscillation; neutral functional dynamic equation; \hfill\break\indent comparison theorem; time scales} \begin{abstract} In this article, we obtain several comparison theorems for the second-order neutral dynamic equation $$ \Big(r(t)\big([x(t)+p(t)x(\tau(t))]^\Delta\big)^\gamma\Big)^\Delta +q_1(t)x^\lambda(\delta(t))+q_2(t)x^\beta(\eta(t))=0, $$ where $\gamma,\lambda, \beta$ are ratios of positive odd integers. We compare such equation with the first-order dynamic inequalities in the sense that the absence of the eventually positive solutions of these first-order inequalities implies the oscillation of the studied equation. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \section{Introduction} A time scale $\mathbb{T}$ is an arbitrary nonempty closed subset of the real numbers. The theory of time scales was introduced in 1988 by Hilger \cite{hilger} in order to unify continuous and discrete analysis. Several authors have expounded on various aspect of this new theory; see \cite{agarwal1, bohner1, bohner2}. This article concerns the oscillation of solutions to the second-order nonlinear neutral dynamic equation \begin{equation}\label{101} \Big(r(t)\big(\left[x(t)+p(t)x(\tau(t))\right]^\Delta \big)^\gamma\Big)^\Delta +q_1(t)x^\lambda(\delta(t))+q_2(t)x^\beta(\eta(t))=0 \end{equation} on a time scale $\mathbb{T}$. Since we are interested in oscillatory behavior of solutions we will assume that the time scale $\mathbb{T}$ is not bounded above; i.e., it is a time scale interval of the form $[t_0,\infty)_\mathbb{T}:=[t_0,\infty)\cap\mathbb{T}$. Below we assume that $\gamma,\lambda,\beta$ are ratios of positive odd integers; $r,p,q_1, q_2$ are real-valued rd-continuous functions; $r(t)>0$, $q_1(t)>0$, $q_2(t)>0$ for $t\in[t_0,\infty)_\mathbb{T}$, $\int_{t_0}^\infty r^{-1/\gamma}(t)\Delta t=\infty$, $\tau\in C_{rd}(\mathbb{T},\mathbb{T})$, $\tau$ is strictly increasing and $\tau([t_0,\infty)_\mathbb{T})=[\tau(t_0),\infty)_\mathbb{T}$, $\delta\in C_{rd}(\mathbb{T},\mathbb{T})$, $\eta\in C_{rd}(\mathbb{T},\mathbb{T})$, $\lim_{t\to\infty}\delta(t)=\lim_{t\to\infty}\eta(t)=\infty$, $\tau\circ\delta=\delta\circ\tau$ and $\tau\circ\eta=\eta\circ\tau$. We know from \cite{mad} that $\tau\circ\sigma=\sigma\circ\tau$. By a solution of \eqref{101}, we mean a nontrivial real-valued function $x\in C_{rd}^1[T_x,\infty)_{\mathbb{T}}$, $T_x\geq t_0$ which has the properties $x(t)+p(t)x(\tau(t))$ and $r(t)\big([x(t)+p(t)x(\tau(t))]^\Delta\big)^\gamma$ are defined, and is $\Delta$-differentiable for $\mathbb{T}$, and satisfies \eqref{101} on $t\in[T_x,\infty)_{\mathbb{T}}$. The solutions vanishing in some neighbourhood of infinity will be excluded from our consideration. A solution $x$ of \eqref{101} is said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is nonoscillatory. Equation \eqref{101} is called oscillatory if all its solutions are oscillatory. During the last few years, Ladde et al. \cite{Lad} summarized some known oscillation criteria for differential equations. Tang and Liu \cite{tang} investigated the oscillatory behavior of the first-order nonlinear delay difference equation of the form $$ x(n+1)-x(n)+p(n)x^\gamma(n-l)=0. $$ With the development of dynamic equations on time scales, there has been much research activity concerning the oscillation and nonoscillation of solutions of non-neutral dynamic equations and neutral functional dynamic equations on time scales, we refer the reader to the articles [7--25], and the references cited therein. Agarwal and Bohner \cite{RPA}, Bohner et al. \cite{mbbo}, \c{S}ahiner and Stavroulakis \cite{sahiner1}, Braverman and B. Karpuz \cite{ebr}, and Zhang and Deng \cite{binggen} studied the oscillation of first-order delay dynamic equation on time scales $$ x^\Delta(t)+p(t)x(\tau(t))=0. $$ Agarwal et al. \cite{abs} considered the second-order delay dynamic equation on time scales $$ x^{\Delta\Delta}(t)+p(t)x(\tau(t))=0. $$ Braverman and Karpuz \cite{ebr1} investigated the non-oscillation of second-order delay dynamic equation $$ (A_0x^\Delta)^\Delta(t)+\sum_{i\in[1,n]_\mathbb{N}} A_i(t)x(\alpha_i(t))=f(t). $$ We note that \cite{mad,RPA,mbbo,sahiner1,ebr} obtained some sufficient conditions for the nonexistence of eventually positive solutions of the first-order dynamic inequality $$ x^\Delta(t)+p(t)x(\tau(t))\leq0, $$ where $\tau(t)t\}, \ \ \text{and}\ \ \rho(t):=\sup\{s\in\mathbb{T}|st$. The graininess $\mu$ of the time scale is defined by $\mu(t):=\sigma(t)-t$. For a function $f:\mathbb{T}\to\mathbb{R}$ (the range $\mathbb{R}$ of $f$ may actually be replaced by any Banach space), the (delta) derivative is defined by $$ f^\Delta(t)=\frac{f(\sigma(t))-f(t)}{\sigma(t)-t}, $$ if $f$ is continuous at $t$ and $t$ is right-scattered. If $t$ is not right-scattered then the derivative is defined by $$ f^\Delta(t)=\lim_{s\to t^+}\frac{f(\sigma(t))-f(s)}{t-s} =\lim_{s\to t^+}\frac{f(t)-f(s)}{t-s}, $$ provided this limit exists. A function $f:\mathbb{T}\to\mathbb{R}$ is said to be rd-continuous if it is continuous at each right-dense point and if there exists a finite left limit in all left-dense points. The set of rd-continuous functions $f:\mathbb{T}\to\mathbb{R}$ is denoted by $C_{rd}(\mathbb{T},\mathbb{R})$. A function $f$ is said to be differentiable if its derivative exists. The set of functions $f:\mathbb{T}\to\mathbb{R}$ that are differentiable and whose derivative is rd-continuous function is denoted by $C_{rd}^1(\mathbb{T},\mathbb{R})$. The derivative and the shift operator $\sigma$ are related by the formula $$ f^\sigma(t)=f(\sigma(t))=f(t)+\mu(t)f^\Delta(t). $$ Let $f$ be a real-valued function defined on an interval $[a,b]$. We say that $f$ is increasing, decreasing, nondecreasing, and non-increasing on $[a,b]$ if $t_1,\ t_2\in[a,b]$ and $t_2>t_1$ imply $f(t_2)>f(t_1),\ f(t_2)0$, $f^\Delta(t)<0$, $f^\Delta(t)\geq0$, and $f^\Delta(t)\leq0$ for all $t\in[a,b)$, respectively. We will make use of the following product and quotient rules for the derivative of the product $fg$ and the quotient $f/g$ (where $g(t)g(\sigma(t))\neq0$) of two differentiable functions $f$ and $g$ \begin{gather*} (fg)^\Delta(t)=f^\Delta(t)g(t)+f(\sigma(t))g^\Delta(t) =f(t)g^\Delta(t) +f^\Delta(t)g(\sigma(t)), \\ \big(\frac{f}{g}\big)^\Delta(t) =\frac{f^\Delta(t)g(t)-f(t)g^\Delta(t)}{g(t)g(\sigma(t))}. \end{gather*} For $a, b\in \mathbb{T}$ and a differentiable function $f$, the Cauchy integral of $f^\Delta$ is defined by $$ \int_a^bf^\Delta(t)\Delta t=f(b)-f(a). $$ The integration by parts formula reads $$ \int_a^bf^\Delta(t)g(t)\Delta t=f(b)g(b)-f(a)g(a)-\int_a^bf^\sigma(t)g^\Delta(t)\Delta t, $$ and infinite integrals are defined as $$ \int_a^\infty f(s)\Delta s=\lim_{t\to\infty}\int_a^tf(s)\Delta s. $$ \section{Main Results} In this section, we shall establish some comparison theorems for the oscillation of \eqref{101}. Firstly, we give the following chain rule on time scales which will play an important role in the proofs of our results. \begin{lemma}[\cite{bohner1}] \label{lem3.1} Assume that $\sup \mathbb{T}=\infty$, and $v\in C_{rd}^1([t_0,\infty)_\mathbb{T})$ is a strictly increasing function and unbounded such that $v([t_0,\infty)_\mathbb{T})=[v(t_0),\infty)_\mathbb{T}$. Then for $x\in C_{rd}^1([t_0,\infty)_\mathbb{T},\mathbb{R})$, we have \begin{equation}\label{32} (x\circ v)^\Delta(t)=x^\Delta(v(t))v^\Delta(t) \end{equation} for $t\in[t_0,\infty)_\mathbb{T}$. \end{lemma} Below, we will give our results. For the sake of convenience, we denote \begin{gather*} z(t)=x(t)+p(t)x(\tau(t)), \quad Q_1(t)=\min\{q_1(t),q_1(\tau(t))\},\\ Q_2(t)=\min\{q_2(t),q_2(\tau(t))\},\quad R(t)=\int_{t_0}^t\frac{1}{r^{1/\gamma}(s)}\Delta s,\\ H(t)=R(t)-R(t_1), \quad Q_3(t)=Q_1(t)\int_{t_1}^{\sigma(t)}\frac{1}{r(s)} \Delta s, \\ Q_4(t)=Q_2(t)\int_{t_1}^{\sigma(t)}\frac{1}{r(s)} \Delta s, \end{gather*} for $t_1\geq t_0$ sufficiently large. Without loss of generality we can deal only with the eventually positive solutions of \eqref{101} in our proofs. \begin{theorem} \label{thm3.2} Assume that $\tau^\Delta(t)\geq \tau_0>0$, $\lambda\leq1$ and $\beta\leq1$. Further, assume that there exists a $p_0>0$ such that $0\leq p(t)\leq p_0^{\gamma/\lambda}<\infty$, and $0\leq p(t)\leq p_0^{\gamma/\beta}<\infty$. If the first-order neutral dynamic inequality \begin{equation}\label{2931} \begin{aligned} &\Big(y(t)+\frac{p_0^\gamma}{\tau_0}y(\tau(t))\Big)^\Delta +Q_1(t)H^\lambda(\delta(t))y^{\lambda/\gamma}(\delta(t))\\ &+Q_2(t)H^\beta(\eta(t))y^{\beta/\gamma}(\eta(t))\leq0 \end{aligned} \end{equation} has no eventually positive solution for all sufficiently large $t_1$, then every solution of \eqref{101} is oscillatory. \end{theorem} \begin{proof} Assume that $x$ is an eventually positive solution of \eqref{101}. Then we have $\big(r(t)(z^\Delta(t))^\gamma\big)^\Delta<0$. It follows from \eqref{101} and \eqref{32} that \begin{equation}\label{301} \left(r(t)(z^\Delta(t))^\gamma\right)^\Delta+q_1(t)x^\lambda(\delta(t)) +q_2(t)x^\beta(\eta(t))=0 \end{equation} and \begin{equation}\label{302} \begin{aligned} &\frac{p_0^\gamma}{\tau^\Delta(t)}\left(r(\tau(t))(z^\Delta (\tau(t)))^\gamma\right)^\Delta +p_0^\gamma q_1(\tau(t))x^\lambda(\delta(\tau(t)))\\ &+p_0^\gamma q_2(\tau(t))x^\beta(\eta(\tau(t)))=0. \end{aligned} \end{equation} In view of $\tau^\Delta(t)\geq\tau_0>0$ and \eqref{302}, we see that \[ % \label{303} \frac{p_0^\gamma}{\tau_0}\left(r(\tau(t)) (z^\Delta(\tau(t)))^\gamma\right)^\Delta +p_0^\gamma q_1(\tau(t))x^\lambda(\delta(\tau(t)))+p_0^\gamma q_2(\tau(t))x^\beta(\eta(\tau(t)))\leq0. \] Combining this inequality with \eqref{301}, we have \begin{equation} \label{304} \begin{aligned} &\left(r(t)(z^\Delta(t))^\gamma\right)^\Delta +\frac{p_0^\gamma}{\tau_0}\left(r(\tau(t)) (z^\Delta(\tau(t)))^\gamma\right)^\Delta\\ & + q_1(t)x^\lambda(\delta(t))+p_0^\gamma q_1(\tau(t))x^\lambda(\delta(\tau(t))) \\ & +q_2(t)x^\beta(\eta(t))+p_0^\gamma q_2(\tau(t))x^\beta(\eta(\tau(t)))\leq0. \end{aligned} \end{equation} If $\lambda\leq1$, from \cite[Lemma 2]{eth1}, we obtain $$ x^\lambda(\delta(t))+p_0^\gamma x^\lambda(\delta(\tau(t)))\geq [x(\delta(t))+p_0^{\gamma/\lambda}x(\delta(\tau(t)))]^\lambda\geq z^\lambda(\delta(t)). $$ Similarly, $$ x^\beta(\eta(t))+p_0^\gamma x^\beta(\eta(\tau(t)))\geq \left[x(\eta(t))+p_0^{\gamma/\beta}x(\eta(\tau(t)))\right]^\beta\geq z^\beta(\eta(t)). $$ Hence by \eqref{304}, we have \begin{equation}\label{315} \begin{aligned} &\left(r(t)(z^\Delta(t))^\gamma\right)^\Delta +\frac{p_0^\gamma}{\tau_0}\left(r(\tau(t))(z^\Delta(\tau(t)))^\gamma \right)^\Delta\\ &+Q_1(t)z^\lambda(\delta(t))+Q_2(t)z^\beta(\eta(t))\leq0. \end{aligned} \end{equation} It follows from \eqref{101} and $\int_{t_0}^\infty\frac{1}{r^{1/\gamma}(t)}\Delta t=\infty$ that $y(t)=r(t)(z^\Delta(t))^\gamma>0$ is decreasing. Thus, there exists a $t_1\geq t_0$ such that \begin{equation}\label{316} z(t)\geq\int_{t_1}^t\frac{\big(r(s) (z^\Delta(s))^\gamma\big)^{1/\gamma}}{r^{1/\gamma}(s)} \Delta s\geq y^{1/\gamma}(t)\big(R(t)-R(t_1)\big). \end{equation} Then, setting $y(t)=r(t)(z^\Delta(t))^\gamma$ in \eqref{315} and using \eqref{316}, one can see that $y$ is a positive solution of inequality \eqref{2931}. This is a contradiction and the proof is complete. \end{proof} \begin{theorem} \label{thm3.3} Assume that $\tau^\Delta(t)\geq \tau_0>0$, $\tau(t)\geq t$, $\lambda\leq1$ and $\beta\leq1$. Moreover, assume that there exists a $p_0>0$ such that $0\leq p(t)\leq p_0^{\gamma/\lambda}<\infty$, and $0\leq p(t)\leq p_0^{\gamma/\beta}<\infty$. If the first-order dynamic inequality \begin{equation} \begin{aligned} &u^\Delta(t) +\Big(\frac{\tau_0}{\tau_0+p_0^\gamma} \Big)^{\lambda/\gamma} Q_1(t)H^\lambda(\delta(t))u^{\lambda/\gamma}(\delta(t))\\ &\quad + \Big(\frac{\tau_0}{\tau_0+p_0^\gamma}\Big)^{\beta/\gamma} Q_2(t)H^\beta(\eta(t))u^{\beta/\gamma}(\eta(t))\leq0 \end{aligned} \label{9131} \end{equation} has no eventually positive solution for all sufficiently large $t_1$, then every solution of \eqref{101} is oscillatory. \end{theorem} \begin{proof} Assume that $x$ is a positive solution of \eqref{101}. By the proof of Theorem \ref{thm3.2}, we find $y(t)=r(t)(z^\Delta(t))^\gamma>0$ is decreasing and satisfies \eqref{2931}. Let $u(t)=y(t)+p_0^\gamma y(\tau(t))/\tau_0$. From $\tau(t)\geq t$, we have $$ u(t)\leq \big(1+\frac{p_0^\gamma}{\tau_0}\big)y(t). $$ Hence, we get that $u$ is a positive solution of \eqref{9131}. This is a contradiction and the proof is complete. \end{proof} From Theorem \ref{thm3.3}, we have the following results. \begin{corollary} \label{coro3.4} Assume that $\delta(t)\leq\eta(t)$, $\tau^\Delta(t)\geq \tau_0>0$, $\tau(t)\geq t$, $\lambda=\beta\leq1$. Furthermore, assume that there exists a $p_0>0$ such that $0\leq p(t)\leq p_0^{\gamma/\lambda}<\infty$. If the first-order dynamic inequality $$ u^\Delta(t) +\frac{\tau_0^{\lambda/\gamma}}{(\tau_0+p_0^\gamma )^{\lambda/\gamma}} [Q_1(t)H^\gamma(\delta(t))+Q_2(t)H^\gamma(\eta(t))]u^{\lambda/\gamma} (\eta(t))\leq0 $$ has no positive solution for all sufficiently large $t_1$, then every solution of \eqref{101} is oscillatory. \end{corollary} \begin{proof} Proceeding as in the proof of Theorem \ref{thm3.3}, $u$ is decreasing and if $\delta(t)\leq\eta(t)$, then $u(\delta(t))\geq u(\eta(t))$. Therefore, $u$ is a positive solution of the dynamic inequality $$ u^\Delta(t) +\frac{\tau_0^{\lambda/\gamma}}{(\tau_0+p_0^\gamma)^{\lambda/\gamma}} [Q_1(t)H^\gamma(\delta(t))+Q_2(t)H^\gamma(\eta(t))] u^{\lambda/\gamma}(\eta(t))\leq0. $$ This is a contradiction and the proof is complete. \end{proof} Similar to the proof of Corollary \ref{coro3.4}, we have the another comparison result. \begin{corollary} \label{coro3.5} Assume that $\delta(t)\geq\eta(t)$, $\tau^\Delta(t)\geq \tau_0>0$, $\tau(t)\geq t$, $\lambda=\beta\leq1$. Moreover, assume that there exists a $p_0>0$ such that $0\leq p(t)\leq p_0^{\gamma/\lambda}<\infty$. If the first-order dynamic inequality $$ u^\Delta(t) +\frac{\tau_0^{\lambda/\gamma}}{(\tau_0+p_0^\gamma)^{\lambda/\gamma}} [Q_1(t)H^\gamma(\delta(t))+Q_2(t)H^\gamma(\eta(t))]u^{\lambda/\gamma} (\delta(t))\leq0 $$ has no positive solution for all sufficiently large $t_1$, then every solution of \eqref{101} is oscillatory. \end{corollary} \begin{theorem} \label{thm3.6} Assume that $\tau(t)\geq t$, $\tau^\Delta(t)\geq \tau_0>0$, $\gamma=1$, $\lambda\leq1$ and $\beta\leq1$. Further, assume that there exists a $p_0>0$ such that $0\leq p(t)\leq p_0^{1/\lambda}<\infty$, and $0\leq p(t)\leq p_0^{1/\beta}<\infty$. If the first-order dynamic inequality \begin{equation}\label{931} \phi^\Delta(t)-\frac{\tau_0}{\tau_0+p_0} Q_3(t)\phi^\lambda(\delta(t))-\frac{\tau_0}{\tau_0+p_0} Q_4(t)\phi^\beta(\eta(t))\geq0 \end{equation} has no eventually positive solution for all sufficiently large $t_1$, then every solution of \eqref{101} is oscillatory. \end{theorem} \begin{proof} Assume that $x$ is an eventually positive solution of \eqref{101}. Then we have $\big(r(t)z^\Delta(t)\big)^\Delta<0$ and $z^\Delta(t)>0$. Proceeding as in the proof of Theorem \ref{thm3.2}, we have \begin{equation}\label{001} \left(r(t)z^\Delta(t)\right)^\Delta +\frac{p_0}{\tau_0}\left(r(\tau(t))z^\Delta(\tau(t))\right)^\Delta +Q_1(t)z^\lambda(\delta(t))+Q_2(t)z^\beta(\eta(t))\leq0. \end{equation} Integrating \eqref{001} from $t$ to $\infty$, we obtain \begin{equation}\label{002} r(t)z^\Delta(t)+\frac{p_0}{\tau_0}r(\tau(t))z^\Delta(\tau(t)) \geq\int_t^\infty \left(Q_1(s)z^\lambda(\delta(s))+Q_2(s)z^\beta(\eta(s))\right) \Delta s. \end{equation} Since $r(t)z^\Delta(t)$ is decreasing and $\tau(t)\geq t$, it follows that $$ \big(1+\frac{p_0}{\tau_0}\big)r(t)z^\Delta(t) \geq\int_t^\infty \left(Q_1(s)z^\lambda(\delta(s))+Q_2(s)z^\beta(\eta(s))\right) \Delta s. $$ Integrating the last inequality from $t_1$ to $t$, from \cite[Lemma 1]{karpuz}, we obtain \begin{align*} z(t) &\geq \frac{\tau_0}{\tau_0+p_0}\int_{t_1}^t\frac{1}{r(u)}\int_u^\infty \left(Q_1(s)z^\lambda(\delta(s))+Q_2(s)z^\beta(\eta(s))\right) \Delta s\Delta u\\ &= \frac{\tau_0}{\tau_0+p_0}\int_{t_1}^t\left(Q_1(s) z^\lambda(\delta(s))+Q_2(s)z^\beta(\eta(s))\right) \int_{t_1}^{\sigma(s)}\frac{1}{r(u)} \Delta u\Delta s. \end{align*} Thus, we see that $$ z(t)\geq\frac{\tau_0}{\tau_0+p_0}\int_{t_1}^t \left(Q_3(s)z^\lambda(\delta(s))+Q_4(s)z^\beta(\eta(s))\right) \Delta s. $$ Denote the right hand side of the above inequality by $\phi(t)$. Since $z(t)\geq \phi(t)$, we find that $\phi$ is a positive solution of \eqref{931}. This is a contradiction and the proof is complete. \end{proof} From Theorem \ref{thm3.6}, we get the following result. \begin{corollary} \label{coro3.7} Assume that $\delta(t)\leq\eta(t)$, $\tau(t)\geq t$, $\tau^\Delta(t)\geq \tau_0>0$, $\gamma=1$, $\lambda=\beta\leq1$. Furthermore, assume that there exists a $p_0>0$ such that $0\leq p(t)\leq p_0^{1/\lambda}<\infty$. If the first-order dynamic inequality $$ \phi^\Delta(t)-\frac{\tau_0}{\tau_0+p_0} \big(Q_3(t)+Q_4(t)\big)\phi^\lambda(\delta(t))\geq0 $$ has no eventually positive solution for all sufficiently large $t_1$, then every solution of \eqref{101} is oscillatory. \end{corollary} \begin{proof} Proceeding as in the proof of Theorem \ref{thm3.6}, $\phi$ is increasing and if $\delta(t)\leq\eta(t)$, then $\phi(\delta(t))\leq \phi(\eta(t))$. Therefore, $\phi$ is a positive solution of the dynamic inequality $$ \phi^\Delta(t) -\frac{\tau_0}{\tau_0+p_0} \big(Q_3(t)+Q_4(t)\big)\phi^\lambda(\delta(t))\geq0. $$ This is a contradiction and the proof is complete. \end{proof} Similar to the proof of Corollary \ref{coro3.7}, we have another comparison result. \begin{corollary} \label{coro3.8} Assume that $\delta(t)\geq\eta(t)$, $\tau(t)\geq t$, $\tau^\Delta(t)\geq \tau_0>0$, $\gamma=1$, $\lambda=\beta\leq1$. Moreover, assume that there exists a $p_0>0$ such that $0\leq p(t)\leq p_0^{1/\lambda}<\infty$. If the first-order dynamic inequality $$ \phi^\Delta(t)-\frac{\tau_0}{\tau_0+p_0} \big(Q_3(t)+Q_4(t)\big)\phi^\lambda(\eta(t))\geq0 $$ has no eventually positive solution for all sufficiently large $t_1$, then every solution of \eqref{101} is oscillatory. \end{corollary} \begin{remark} \label{rmk3.9} \rm Assume that $\tau^\Delta(t)\geq\tau_0>0$ and $\tau^{-1}\in C_{rd}(\mathbb{T},\mathbb{T})$, where $\tau^{-1}$ is the inverse function of $\tau$. Similar to the methods of the above, we can derive some comparison theorems for \eqref{101} when $\tau(t)\leq t$, the details are left to the interested reader. Our results can be extended to the equation of the general form $$ \Big(r(t)\big([x(t)+p(t)x(\tau(t))]^\Delta\big)^\gamma\Big)^\Delta +\sum_{i=1}^nq_i(t)x^{\lambda_i}(\delta_i(t))=0. $$ \end{remark} \subsection*{Acknowledgements} The authors thank the anonymous referees for their suggestions which improve the content of this article. \begin{thebibliography}{00} \bibitem{hilger} S. Hilger; \emph{Analysis on measure chains--a unified approach to continuous and discrete calculus}, Results Math., 18 (1990) 18--56. \bibitem{agarwal1} R. P. Agarwal, M. Bohner, D. O'Regan, A. Peterson; \emph{Dynamic equations on time scales: a survey}, J. Comput. Appl. Math., 141 (2002) 1--26. \bibitem{bohner1} M. Bohner, A. Peterson; \emph{Dynamic Equations on Time Scales, An Introduction with Applications}, Birkh\"{a}user, Boston, 2001. \bibitem{bohner2} M. Bohner, A. Peterson; \emph{Advances in Dynamic Equations on Time scales}, Birkh\"{a}user, Boston, 2003. \bibitem{Lad} G. S. Ladde, V. Lakshmikantham, B. G. Zhang; \emph{Oscillation Theory of Differential Equations with Deviating Arguments}, Marcel Dekker, New York, 1987. \bibitem{tang} X. H. Tang, Y. J. Liu; \emph{Oscillation for nonlinear delay difference equations}, Tamkang J. Math., 32 (2001) 275--280. \bibitem{mad} M. Adivar, Y. N. Raffoul; \emph{A note on Stability and periodicity in dynamic delay equations} [Comput. Math. Appl. 58 (2009) 264--273], Comput. Math. Appl., 59 (2010) 3351--3354. \bibitem{RPA} R. P. Agarwal, M. Bohner; \emph{An oscillation criterion for first order delay dynamic equations}, Funct. Differ. Equ., 16 (2009) 11--17. \bibitem{mbbo} M. Bohner, B. Karpuz, \"{O}. \"{O}calan; \emph{Iterated oscillation criteria for delay dynamic equations of first order}, Adv. Differ. Equ., 2008 (2008) 1--12. \bibitem{sahiner1} Y. \c{S}ahiner, I. P. Stavroulakis; \emph{Oscillation of first order delay dynamic equations}, Dynam. Syst. Appl., 15 (2006) 645--656. \bibitem{ebr} E. Braverman, B. Karpuz; \emph{Nonoscillation of first order dynamic equations with several delays}, Adv. Differ. Equ., 2010 (2010) 1--22. \bibitem{binggen} B. G. Zhang, X. H. Deng; \emph{Oscillation of delay differential equations on time scales}, Math. Comput. Modelling, 36 (2002) 1307--1318. \bibitem{abs} R. P. Agarwal, M. Bohner, S. H. Saker; \emph{Oscillation of second order delay dynamic equations}, Can. Appl. Math. Q., 13 (2005) 1--18. \bibitem{ebr1} E. Braverman, B. Karpuz; \emph{Nonoscillation of second-order dynamic equations with several delays}, Abstr. Appl. Anal., 2011 (2011) 1--34. \bibitem{hlsz} Z. Han, T. Li, S. Sun, C. Zhang; \emph{Oscillation for second-order nonlinear delay dynamic equations on time scales}, Adv. Differ. Equ., 2009 (2009) 1--13. \bibitem{agarwal2} R. P. Agarwal, D. O'Regan, S. H. Saker; \emph{Oscillation criteria for second-order nonlinear neutral delay dynamic equations}, J. Math. Anal. Appl., 300 (2004) 203--217. \bibitem{erbe} L. Erbe, T. S. Hassan, A. Peterson; \emph{Oscillation criteria for nonlinear functional neutral dynamic equations on time scales}, J. Differ. Equ. Appl., 15 (2009) 1097--1116. \bibitem{sahiner} Y. \c{S}ahiner; \emph{Oscillation of second order neutral delay and mixed type dynamic equations on time scales}, Adv. Differ. Equ., 2006 (2006) 1--9. \bibitem{saker1} S. H. Saker; \emph{Oscillation of second-order nonlinear neutral delay dynamic equations on time scales}, J. Comput. Appl. Math., 187 (2006) 123--141. \bibitem{saker2} S. H. Saker, R. P. Agarwal, D. O'Regan; \emph{Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales}, Applicable Anal., 86 (2007) 1--17. \bibitem{saker3} S. H. Saker, D. O'Regan; \emph{New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution}, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011) 423--434. \bibitem{Tripathy} A. K. Tripathy; \emph{Some oscillation results for second order nonlinear dynamic equations of neutral type}, Nonlinear Anal., 71 (2009) 1727--1735. \bibitem{chen} D. X. Chen; \emph{Oscillation of second-order Emden-Fowler neutral delay dynamic equations on time scales}, Math. Comput. Modelling, 51 (2010) 1221--1229. \bibitem{shaoyan} S. Y. Zhang, Q. R. Wang; \emph{Oscillation of second-order nonlinear neutral dynamic equations on time scales}, Appl. Math. Comput., 216 (2010) 2837--2848. \bibitem{wu} H. W. Wu, R. K. Zhuang, R. M. Mathsen; \emph{Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations}, Appl. Math. Comput., 178 (2006) 321--331. \bibitem{karpuz} B. Karpuz; \emph{Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients}, Electron. J. Qualitative Theory of Diff. Equ., 2009 (2009) 1--14. \bibitem{lhsy} T. Li, Z. Han, S. Sun, D. Yang; \emph{Existence of nonoscillatory solutions to second-order neutral delay dynamic equations on time scales}, Adv. Differ. Equ., 2009 (2009) 1--10. \bibitem{eth} E. Thandapani, V. Piramanantham, S. Pinelas; \emph{Oscillation criteria for second order neutral delay dynamic equations with mixed nonlinearities}, Adv. Differ. Equ., 2011 (2011) 1--14. \bibitem{eth1} E. Thandapani, T. Li; \emph{On the oscillation of third-order quasi-linear neutral functional differential equations}, Arch. Math., 47 ( 2011) 181-199. \end{thebibliography} \end{document}