\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 104, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/104\hfil Existence of solutions] {Existence of solutions of systems of Volterra integral equations via Brezis-Browder arguments} \author[R.P. Agarwal, D. O'Regan, P. J. Y. Wong \hfil EJDE-2011/104\hfilneg] {Ravi P. Agarwal, Donal O'Regan, Patricia J. Y. Wong} % in alphabetical order \address{Ravi P. Agarwal \newline Department of Mathematics, Texas A\&M University - Kingsville, Kingsville, Texas 78363-8202, USA \newline KFUPM Chair Professor, Mathematics and Statistics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia} \email{agarwal@tamuk.edu} \address{Donal O'Regan \newline Department of Mathematics, National University of Ireland, Galway, Ireland} \email{donal.oregan@nuigalway.ie} \address{Patricia J. Y. Wong \newline School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore} \email{ejywong@ntu.edu.sg} \thanks{Submitted April 26, 2011. Published August 16, 2011.} \subjclass[2000]{45B05, 45G15, 45M20} \keywords{System of Volterra integral equations; Brezis-Browder argument} \begin{abstract} We consider two systems of Volterra integral equations $$ u_i(t)=h_i(t) + \int_{0}^{t}g_i(t,s)f_i(s,u_1(s),u_2(s),\dots, u_n(s))ds, \quad 1\leq i\leq n $$ where $t$ is in the closed interval $[0,T]$, or in the half-open interval $[0,T)$. By an argument originated from Brezis and Browder \cite{BB}, criteria are offered for the existence of solutions of the systems of Volterra integral equations. We further establish the existence of \emph{constant-sign} solutions, which include \emph{positive} solutions (the usual consideration) as a special case. Some examples are also presented to illustrate the results obtained. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we shall consider the system of Volterra integral equations \begin{equation} u_i(t)=h_i(t)+\int_{0}^{t}g_i(t,s)f_i(s,u_1(s),u_2(s),\dots, u_n(s))ds, \label{e1.1} \end{equation} for $t\in [0,T]$, $1\leq i\leq n$, where $01$. Using an argument originated from Brezis and Browder \cite{BB}, we shall establish the existence of solutions as well as constant-sign solutions of the systems \eqref{e1.1} and \eqref{e1.2}. Our results extend, improve and complement the existing theory in the literature \cite{AOW, C2, 6, 7, d90, D}. We have generalized the problems to (i) \emph{systems}, (ii) more \emph{general} form of nonlinearities $f_i,\;1\leq i\leq n$, and (iii) existence of \emph{constant-sign} solutions. Other related work on systems of integral equations can be found in \cite{sys14, sys16, sys18, sys20, sys27, sys30}. Note that the technique employed in Volterra integral equations \cite{sys20, sys27, sys30} is entirely different from the present work. The paper is outlined as follows. In Section 2, we present an existence result for a system of Fredholm integral equations which will be used in Section 3 to develop existence criteria for \eqref{e1.1} and \eqref{e1.2}. The existence of constant-sign solutions is tackled in Section 4. Finally, some examples are included in Section 5 to illustrate the results obtained. \section{Preliminary result} We shall obtain an existence result for the following system of Fredholm integral equations which will be used later in Section 3: \begin{equation} u_i(t)=h_i(t)+\int_{0}^{T}g_i(t,s)f_i(s,u_1(s),u_2(s),\dots, u_n(s))ds, \label{e2.1} \end{equation} for $t\in [0,T]$, $1\leq i\leq n$. Let the Banach space $B=(C[0,T])^{n} $ be equipped with the norm $$ \| u\|=\max_{1\leq i\leq n}~\sup_{t\in [0,T]}|u_i(t)| =\max_{1\leq i\leq n}|u_i|_0 $$ where we let $|u_i|_0:=\sup_{t\in [0,T]}|u_i(t)|$, $1\leq i\leq n$. \begin{theorem} \label{thm2.1} For each $1\leq i\leq n$, let $1 \leq p_i \leq \infty$ be an integer and $q_i$ be such that $\frac{1}{p_i}+\frac{1}{q_i}=1$. Assume the following conditions hold for each $1\leq i\leq n$: \begin{equation} h_i\in C[0,T]; \label{e2.2} \end{equation} \begin{equation} f_i:[0,T] \times \mathbb{R}^n \to \mathbb{R} \quad\text{is an $L^{q_i}$-Carath\'eodory function;} \label{e2.3} \end{equation} i.e., \begin{itemize} \item[(i)] the map $u \mapsto f_i(t,u)$ is continuous for almost all $t\in [0,T]$, \item[(ii)] the map $t \mapsto f_i(t,u)$ is measurable for all $u\in\mathbb{R}^n$, \item[(iii)] for any $r>0$, there exists $\mu_{r,i} \in L^{q_i}[0,T]$ such that $|u| \leq r$ implies $|f_i(t,u)| \leq \mu_{r,i}(t)$ for almost all $t\in [0,T]$; \end{itemize} \begin{equation} g^t_i(s):=g_i(t,s) \in L^{p_i}[0,T]\quad \text{for each }t\in [0,T] \label{e2.4} \end{equation} and \begin{equation} \text{the map }t \mapsto g^t_i\text{ is continuous from } [0,T] \text{ to }L^{p_i}[0,T]. \label{e2.5} \end{equation} In addition, suppose there is a constant $M>0$, independent of $\lambda$, with $\|u\|\neq M$ for any solution $u\in (C[0,T])^n$ to \begin{equation} u_i(t)=\lambda\Big(h_i(t)+ \int^T_0 g_i(t,s)f_i(s,u(s))ds\Big),\quad t\in [0,T],\;1\leq i\leq n \label{e2.6lambda} \end{equation} for each $\lambda \in (0,1)$. Then \eqref{e2.1} has at least one solution in $(C[0,T])^n$. \end{theorem} \begin{proof} Let the operator $S$ be defined by \begin{equation} Su(t)=\big(S_1u(t),S_2u(t),\dots,S_nu(t)\big),\quad t\in [0,T] \label{e2.7} \end{equation} where \begin{equation} S_iu(t)=h_i(t)+\int^T_0 g_i(t,s)f_i(s,u(s))ds,\quad t\in [0,T],\;1\leq i\leq n. \label{e2.8} \end{equation} Clearly, system \eqref{e2.1} is equivalent to $u=Su$, and \eqref{e2.6lambda} is the same as $u=\lambda Su$. Note that $S$ maps $(C[0,T])^n$ into $(C[0,T])^n$; i.e., $S_i:(C[0,T])^n\to C[0,T]$, $1\leq i\leq n$. To see this, note that for any $u\in (C[0,T])^n$, there exits $r>0$ such that $\|u\|0$ such that $\|u^m\|,\|u\|0$, independent of $\lambda$, with $\|u\|\neq M$ for any solution $u\in (C[0,T])^n$ to \begin{equation} u_i(t)=\lambda\Big(h_i(t)+ \int^t_0 g_i(t,s)f_i(s,u(s))ds\Big),\quad t\in [0,T],\;1\leq i\leq n \label{e3.5lambda} \end{equation} for each $\lambda \in (0,1)$. Then \eqref{e1.1} has at least one solution in $(C[0,T])^n$. \end{theorem} \begin{proof} For each $1\leq i\leq n$, define $$ g_i^*(t,s)=\begin{cases} g_i(t,s), & 0\leq s\leq t\leq T\\ 0, & 0\leq t\leq s\leq T. \end{cases}\ $$ Then \eqref{e1.1} is equivalent to \begin{equation} u_i(t)=h_i(t)+\int^T_0 g_i^*(t,s)f_i(s,u(s))ds,\quad t\in [0,T],\;1\leq i\leq n. \label{e3.6} \end{equation} In view of \eqref{e3.3} and \eqref{e3.4}, $g_i^*$ satisfies \eqref{e2.4} and \eqref{e2.5}. Hence, by Theorem \ref{thm2.1} the system \eqref{e3.6} (or equivalently \eqref{e1.1}) has at least one solution in $(C[0,T])^n$. \end{proof} \begin{remark} \label{rmk3.1}\rm If \eqref{e3.4} is changed to: for any $t,t'\in[0,T]$ with $t^*=\min\{t,t'\}$ and $t^{**}=\max\{t,t'\}$, we have \begin{equation} \begin{gathered} \int_0^{t^*}|g_i(t,s)-g_i(t',s)|^{p_i}\,ds +\int_{t^*}^{t^{**}}|g_i(t^{**},s)|^{p_i}\,ds \to 0 \quad \text{as } t\to t',\quad 1\leq p_i<\infty, \\ \operatorname{ess\,sup}_{s\in[0,t^*]}|g_i(t,s)-g_i(t',s)| +\operatorname{ess\,sup}_{s\in[t^*,t^{**}]}|g_i(t^{**},s)| \to 0 \end{gathered}\label{e3.4p} \end{equation} as $t\to t'$, $p_i=\infty$; then automatically we have the inequalities in \eqref{e3.3}. \end{remark} Our subsequent results use an argument originated from Brezis and Browder \cite{BB}. \begin{theorem} \label{thm3.2} Let the following conditions be satisfied: for each $1\leq i\leq n$, \eqref{e3.1}, \eqref{e3.2}--\eqref{e3.4} with $p_i=\infty$ and $q_i=1$, there exist $B_i> 0$ such that for any $u\in (C[0,T])^n$, \begin{equation} \int_0^T[f_i(t,u(t))\int_0^tg_i(t,s)f_i(s,u(s))ds]dt\leq B_i; \label{e3.7} \end{equation} and there exist $r>0$ and $\alpha_i>0$ with $r\alpha_i>H_i\equiv \sup_{t\in [0,T]}|h_i(t)|$ such that for any $u\in (C[0,T])^n$, \begin{equation} u_i(t)f_i(t,u(t))\geq r\alpha_i |f_i(t,u(t))|\quad \text{for a. e. $t\in[0,T]$ such that $\|u(t)\|>r$,} \label{e3.8} \end{equation} where we denote $\|u(t)\|:=\max_{1\leq i\leq n}|u_i(t)|$. Then \eqref{e1.1} has at least one solution in $(C[0,T])^n$. \end{theorem} \begin{proof} We shall employ Theorem \ref{thm3.1}, so let $u=(u_1,u_2,\dots,u_n)\in (C[0,T])^n$ be any solution of \eqref{e3.5lambda} where $\lambda\in (0,1)$. For each $z\in [0,T]$, define \begin{equation} I_z=\{t\in[0,z]:\|u(t)\|\leq r\}, \quad J_{z}=\{t\in[0,z]:\|u(t)\|> r\}. \label{e3.9} \end{equation} Clearly, $[0,z]=I_z\cup J_z$ and hence \begin{equation} \int_0^z = \int_{I_z}+\int_{J_z} .\label{e3.10} \end{equation} Let $1\leq i\leq n$. For a.e. $t\in I_z$, by \eqref{e3.2} there exists $\mu_{r,i}\in L^1[0,T]$ such that $|f_i(t,u(t))|\leq \mu_{r,i}(t)$. Thus, we obtain \begin{equation} \int_{I_z}|f_i(t,u(t))|dt\leq \int_{I_z}\mu_{r,i}(t)dt\leq \int_0^T\mu_{r,i}(t)dt= \|\mu_{r,i}\|_1. \label{e3.11} \end{equation} On the other hand, if $t\in J_{z}$, then it is clear from \eqref{e3.8} that $u_i(t)f_i(t,u(t))\geq 0$ for a.e. $t\in [0,T]$. It follows that \begin{equation} \int_{J_z}u_i(t)f_i(t,u(t))dt=\int_{J_z}|u_i(t)f_i(t,u(t))|dt \geq r\alpha_i\int_{J_{z}}|f_i(t,u(t))|dt. \label{e3.12} \end{equation} Let $z\in [0,T]$. We now multiply \eqref{e3.5lambda} by $f_i(t,u(t))$, then integrate from 0 to $z$, and use \eqref{e3.7} to obtain \begin{equation} \begin{aligned} & \int_0^z u_i(t)f_i(t,u(t))dt\\ &= \lambda\int_0^z h_i(t)f_i(t,u(t))dt + \lambda\int_0^z\Big[f_i(t,u(t))\int_0^tg_i(t,s)f_i(s,u(s))ds\Big]dt \\ &\leq H_i\int_0^z|f_i(t,u(t))|dt+B_i. \end{aligned}\label{e3.13} \end{equation} Splitting the integrals in \eqref{e3.13} using \eqref{e3.10}, and applying \eqref{e3.12}, we obtain \begin{align*} &\int_{I_z}u_i(t)f_i(t,u(t))dt + r\alpha_i\int_{J_{z}}|f_i(t,u(t))|dt\\ &\leq H_i\int_{I_z}|f_i(t,u(t))|dt + H_i\int_{J_z}|f_i(t,u(t))|dt +B_i \end{align*} or \begin{align*} (r\alpha_i-H_i)\int_{J_z} |f_i(t,u(t))|dt &\leq H_i\int_{I_z}|f_i(t,u(t))|dt +\int_{I_z}|u_i(t)f_i(t,u(t))|dt + B_i \\ &\leq (H_i+r)\|\mu_{r,i}\|_1 + B_i \end{align*} where we have used \eqref{e3.11} in the last inequality. It follows that \begin{equation} \int_{J_z}|f_i(t,u(t))|dt\leq \frac{(H_i+r)\|\mu_{r,i}\|_1+B_i}{r\alpha_i-H_i}\equiv c_i. \label{e3.14} \end{equation} Now, it is clear from \eqref{e3.5lambda} that for $t\in [0,T]$ and $1\leq i\leq n$, \begin{align*} |u_i(t)| &\leq H_i+\int_0^t|g_i(t,s)f_i(s,u(s))|ds\\ &= H_i+\Big(\int_{I_t}+\int_{J_{t}}\Big)|g_i(t,s)f_i(s,u(s))|ds\\ &\leq H_i+\big(\sup_{t\in [0,T]}\operatorname{ess\,sup}_{s\in [0,t]}|g_i(t,s)|\big)(\|\mu_{r,i}\|_1+c_i) \equiv\,d_i \end{align*} where we have applied \eqref{e3.11} and \eqref{e3.14} in the last inequality. Thus, $|u_i|_0\leq d_i$ for $1\leq i\leq n$ and $\|u\|\leq \max_{1\leq i\leq n}d_i\equiv D$. It follows from Theorem \ref{thm3.1} (with $M=D+1$) that \eqref{e1.1} has a solution $u^*\in(C[0,T])^n$. \end{proof} Our next result replaces condition \eqref{e3.7} with condition \eqref{e3.15} which involves the integral of $f_i$ in the right side. \begin{theorem} \label{thm3.3} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}, \eqref{e3.2}--\eqref{e3.4} with $p_i=\infty$ and $q_i=1$, there exist constants $a_i\geq 0$ and $b_i$ such that for any $z\in [0,T]$, \begin{equation} \int_0^z\Big[f_i(t,u(t))\int_0^tg_i(t,s)f_i(s,u(s))ds\Big]dt\leq a_i\int_0^z|f_i(t,u(t))|dt+b_i; \label{e3.15} \end{equation} and there exist $r>0$ and $\alpha_i>0$ with $r\alpha_i>H_i+a_i$ such that for any $u\in (C[0,T])^n$, \begin{equation} u_i(t)f_i(t,u(t))\geq r\alpha_i |f_i(t,u(t))|\quad \text{for a.e. $t\in[0,T]$ such that }\|u(t)\|>r. \label{e3.16} \end{equation} Then \eqref{e1.1} has at least one solution in $(C[0,T])^n$. \end{theorem} \begin{proof} The proof is the same as that of Theorem \ref{thm3.2} until \eqref{e3.12}. Let $z\in [0,T]$ and $1\leq i\leq n$. Multiplying \eqref{e3.5lambda} by $f_i(t,u(t))$ and then integrating from 0 to $z$, we use \eqref{e3.15} to get \begin{equation} \begin{split} &\int_0^z u_i(t)f_i(t,u(t))dt \\ &\leq \int_0^z |h_i(t)f_i(t,u(t))|dt + \lambda\int_0^z\Big[f_i(t,u(t))\int_0^tg_i(t,s)f_i(s,u(s))ds\Big]dt \\ &\leq (H_i+a_i)\int_0^z|f_i(t,u(t))|dt+|b_i|. \end{split}\label{e3.17} \end{equation} Splitting the integrals in \eqref{e3.17} and applying \eqref{e3.12}, we obtain \begin{align*} &(r\alpha_i-H_i-a_i)\int_{J_z} |f_i(t,u(t))|dt \\ &\leq (H_i+a_i)\int_{I_z}|f_i(t,u(t))|dt +\int_{I_z}|u_i(t)f_i(t,u(t))|dt + |b_i| \\ &\leq (H_i+a_i+r)\|\mu_{r,i}\|_1 + |b_i| \end{align*} where we have used \eqref{e3.11} in the last inequality. It follows that \begin{equation} \int_{J_z}|f_i(t,u(t))|dt\leq \frac{(H_i+a_i+r)\|\mu_{r,i}\|_1+ |b_i|}{r\alpha_i-H_i-a_i}\equiv c^*_i. \label{e3.18} \end{equation} The rest of the proof proceeds as in the proof of Theorem \ref{thm3.2}. \end{proof} The next result is for general $p_i$, $q_i$ (i.e., $1\leq p_i\leq \infty$ and $\frac{1}{p_i}+\frac{1}{q_i}=1$), it also replaces condition \eqref{e3.8} or \eqref{e3.16} with conditions \eqref{e3.19} and \eqref{e3.20}. Note that in Theorems \ref{thm3.2} and \ref{thm3.3} the conditions \eqref{e3.2}--\eqref{e3.4} hold for $p_i=\infty$, whereas in Theorem \ref{thm3.4} the conditions \eqref{e3.2}--\eqref{e3.4} hold for $1\leq p_i\leq \infty$. \begin{theorem} \label{thm3.4} Let the following conditions be satisfied: for each $1\leq i\leq n$: \eqref{e3.1}--\eqref{e3.4}, \eqref{e3.7}, there exist $r>0$ and $\beta_i>0$ such that for any $u\in (C[0,T])^n$, \begin{equation} \begin{gathered} u_i(t)f_i(t,u(t))\geq \beta_i|u_i|_0 \cdot |f_i(t,u(t))|\\ \text{for a.e. $t\in[0,T]$ such that }\|u(t)\|>r, \end{gathered} \label{e3.19} \end{equation} where we denote $|u_i|_0:=\max_{t\in [0,T]}|u_i(t)|$; and there exist $\eta_i>0$, $\gamma_i\geq q_i-1>0$ and $\phi_i\in L^{p_i}([0,T],\mathbb{R})$ such that for any $u\in (C[0,T])^n$, \begin{equation} |u_i|_0\geq \eta_i|f_i(t,u(t)|^{\gamma_i}+\phi_i(t)\quad \text{for a.e. $t\in[0,T]$ such that }\|u(t)\|>r. \label{e3.20} \end{equation} Then \eqref{e1.1} has at least one solution in $(C[0,T])^n$. \end{theorem} \begin{proof} As in the proof of Theorem \ref{thm3.2}, we consider the sets $I_z$ and $J_z$ where $z\in [0,T]$ (see \eqref{e3.9}). Let $1\leq i\leq n$. If $t\in I_z$, then by \eqref{e3.2} there exists $\mu_{r,i}\in L^{q_i}[0,T]$ such that $|f_i(t,u(t))|\leq \mu_{r,i}(t)$. Consequently, we have \begin{equation} \int_{I_z}|f_i(t,u(t))|dt\leq \int_{I_z}\mu_{r,i}(t)dt\leq \int_0^T\mu_{r,i}(t)dt\leq T^{1/p_i}\|\mu_{r,i}\|_{q_i}. \label{e3.21} \end{equation} On the other hand, if $t\in J_{z}$, then noting \eqref{e3.19} we have $u_i(t)f_i(t,u(t))\geq 0$ for a.e. $t\in [0,T]$, and so \begin{equation} \begin{split} \int_{J_z}u_i(t)f_i(t,u(t))dt &= \int_{J_z}|u_i(t)f_i(t,u(t))|dt \\ &\geq \beta_i\int_{J_{z}}|u_i|_0\cdot |f_i(t,u(t))|dt \\ &\geq \beta_i\eta_i\int_{J_{z}} |f_i(t,u(t))|^{\gamma_i+1}dt + \beta_i\int_{J_{z}} \phi_i(t)|f_i(t,u(t))|dt \end{split}\label{e3.22} \end{equation} where we have used \eqref{e3.20} in the last inequality. Let $z\in [0,T]$. Multiplying \eqref{e3.5lambda} by $f_i(t,u(t))$ and then integrating from 0 to $z$, we use \eqref{e3.7} to get \eqref{e3.13}. Splitting the integrals in \eqref{e3.13} and applying \eqref{e3.22}, we find \begin{align*} &\int_{I_z}u_i(t)f_i(t,u(t))dt+\beta_i\eta_i\int_{J_{z}} |f_i(t,u(t))|^{\gamma_i+1}dt + \beta_i\int_{J_{z}} \phi_i(t)|f_i(t,u(t))|dt \\ & \leq H_i\int_{I_z}|f_i(t,u(t))|dt + H_i\int_{J_z}|f_i(t,u(t))|dt + B_i \end{align*} or \begin{equation} \begin{aligned} &\beta_i\eta_i\int_{J_{z}} |f_i(t,u(t))|^{\gamma_i+1}dt \\ &\leq \beta_i\int_{J_{z}}|\phi_i(t)|\cdot|f_i(t,u(t))|dt + H_i\int_{J_z}|f_i(t,u(t))|dt + B_i \\ &\quad +\int_{I_z}(|u_i(t)|+H_i)|f_i(t,u(t))|dt \\ &\leq \beta_i\int_{J_{z}}|\phi_i(t)|\cdot|f_i(t,u(t))|dt + H_i\int_{J_z}|f_i(t,u(t))|dt + B_i \\ &\quad + (r+H_i)T^{1/p_i}\|\mu_{r,i}\|_{q_i} \\ &= \beta_i\int_{J_{z}}|\phi_i(t)|\cdot|f_i(t,u(t))|dt + H_i\int_{J_z}|f_i(t,u(t))|dt + B'_i \end{aligned}\label{e3.23} \end{equation} where \eqref{e3.21} has been used in the last inequality and $B'_i\equiv B_i+(r+H_i)T^{1/p_i}\|\mu_{r,i}\|_{q_i}$. Next, an application of H\"{o}lder's inequality gives \begin{equation} \begin{aligned} &\int_{J_{z}}|\phi_i(t)|\cdot|f_i(t,u(t))|dt\\ &\leq \Big[\int_0^T |\phi_i(t)|^{(\gamma_i+1)/\gamma_i}dt\Big] ^{\gamma_i/(\gamma_i+1)}\cdot \Big[\int_{J_z}|f_i(t,u(t))|^{\gamma_i+1}dt\Big] ^{1/\gamma_i+1}. \end{aligned} \label{e3.24} \end{equation} Another application of H\"{o}lder's inequality yields $$ \int_0^T|\phi_i(t)|^{\frac{\gamma_i+1}{\gamma_i}}dt\leq T^{\frac{\gamma_ip_i-\gamma_i-1}{p_i\gamma_i}}\Big[\int_0^T| \phi_i(t)|^{p_i}dt\Big]^{\frac{\gamma_i+1}{\gamma_ip_i}}, $$ which upon substituting into \eqref{e3.24} leads to \begin{equation} \int_{J_{z}}|\phi_i(t)|\cdot|f_i(t,u(t))|dt\leq T^{\frac{\gamma_ip_i-\gamma_i-1}{p_i(\gamma_i+1)}} \|\phi_i\|_{p_i}\Big[\int_{J_z}|f_i(t,u(t))|^{\gamma_i+1}dt\Big]^{1/(\gamma_i+1)}. \label{e3.25} \end{equation} Similarly, we have \begin{equation} \int_{J_{z}}|f_i(t,u(t))|dt\leq T^{\frac{\gamma_ip_i-\gamma_i-1}{p_i(\gamma_i+1)} +\frac{1}{p_i}}\Big[\int_{J_z}|f_i(t,u(t))|^{\gamma_i+1}dt\Big] ^{1/(\gamma_i+1)}. \label{e3.26} \end{equation} Substituting \eqref{e3.25} and \eqref{e3.26} into \eqref{e3.23}, we obtain \begin{equation} \beta_i\eta_i\int_{J_{z}} |f_i(t,u(t))|^{\gamma_i+1}dt \leq A_i\Big[\int_{J_z}|f_i(t,u(t))|^{\gamma_i+1}dt\Big]^{1/(\gamma_i+1)}+B'_i \label{e3.27} \end{equation} where $$ A_i=T^{\frac{\gamma_ip_i-\gamma_i-1}{p_i(\gamma_i+1)}} \big(\beta_i\|\phi_i\|_{p_i}+H_iT^{1/p_i}\big). $$ Since $\frac{1}{\gamma_i+1}<1$, from \eqref{e3.27} there exists a constant $c^{**}_i$ such that \begin{equation} \int_{J_{z}}|f_i(t,u(t))|^{\gamma_i+1}dt \leq c^{**}_i. \label{e3.28} \end{equation} Now, it is clear from \eqref{e3.5lambda} that for $t\in [0,T]$ and $1\leq i\leq n$, \begin{align*} |u_i(t)| &\leq H_i+\int_0^t|g_i(t,s)f_i(s,u(s))|ds\\ &= H_i+\int_{I_t}|g_i(t,s)f_i(s,u(s))|ds +\int_{J_{t}}|g_i(t,s)f_i(s,u(s))|ds\\ &\leq H_i+\big(\sup_{t\in[0,T]}\|g_i^t\|_{p_i}\big)\|\mu_{r,i}\|_{q_i}\\ &\quad +T^{\frac{\gamma_ip_i-\gamma_i-1}{p_i(\gamma_i+1)}} \big(\sup_{t\in[0,T]}\|g_i^t\|_{p_i}\big) \Big[\int_{J_t}|f_i(s,u(s))|^{\gamma_i+1}ds\Big]^{1/(\gamma_i+1)}\\ &\leq d^*_i \quad \text{(a constant)}, \end{align*} where in the second last inequality a similar argument as in \eqref{e3.25} is used and in the last inequality we have used \eqref{e3.28}. Thus, $|u_i|_0\leq d^*_i$ for $1\leq i\leq n$ and $\|u\|\leq \max_{1\leq i\leq n}d^*_i\equiv D^*$. It follows from Theorem \ref{thm3.1} (with $M=D^*+1$) that \eqref{e1.1} has a solution $u^*\in(C[0,T])^n$. \end{proof} The next result is also for general $p_i$, $q_i$, and here the condition \eqref{e3.7} is replaced by \eqref{e3.15}. \begin{theorem} \label{thm3.5} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}--\eqref{e3.4}, \eqref{e3.15}, \eqref{e3.19} and \eqref{e3.20}. Then \eqref{e1.1} has at least one solution in $(C[0,T])^n$. \end{theorem} \begin{proof} The proof is similar to that of Theorem \ref{thm3.4} until \eqref{e3.22}. Let $z\in [0,T]$ and $1\leq i\leq n$. Multiplying \eqref{e3.5lambda} by $f_i(t,u(t))$ and then integrating from 0 to $z$, we use \eqref{e3.15} to get \eqref{e3.17}. Splitting the integrals in \eqref{e3.17} and applying \eqref{e3.22}, we find \begin{equation} \begin{split} &\beta_i\eta_i\int_{J_{z}} |f_i(t,u(t))|^{\gamma_i+1}dt\\ &\leq \beta_i\int_{J_{z}}|\phi_i(t)|\cdot|f_i(t,u(t))|dt + (H_i+a_i)\int_{J_z}|f_i(t,u(t))|dt + |b_i| \\ &\quad +\int_{I_z}(|u_i(t)|+H_i+a_i)|f_i(t,u(t))|dt \\ &\leq \beta_i\int_{J_{z}}|\phi_i(t)|\cdot|f_i(t,u(t))|dt + (H_i+a_i)\int_{J_z}|f_i(t,u(t))|dt + |b_i| \\ &\quad + (r+H_i+a_i)T^{1/p_i}\|\mu_{r,i}\|_{q_i} \\ &= \beta_i\int_{J_{z}}|\phi_i(t)|\cdot|f_i(t,u(t))|dt + (H_i+a_i)\int_{J_z}|f_i(t,u(t))|dt + B''_i \end{split}\label{e3.29} \end{equation} where $B''_i\equiv |b_i|+(r+H_i+a_i)T^{1/p_i}\|\mu_{r,i} \|_{q_i}$. Substituting \eqref{e3.25} and \eqref{e3.26} into \eqref{e3.29} then leads to \begin{equation} \beta_i\eta_i\int_{J_{z}} |f_i(t,u(t))|^{\gamma_i+1}dt \leq A'_i\Big[\int_{J_z}|f_i(t,u(t))|^{\gamma_i+1}dt\Big] ^{1/(\gamma_i+1)}+B''_i \label{e3.30} \end{equation} where $$ A'_i=T^{\frac{\gamma_ip_i-\gamma_i-1}{p_i(\gamma_i+1)}} \big[\beta_i\|\phi_i\|_{p_i}+(H_i+a_i)T^{1/p_i}\big]. $$ Since $\frac{1}{\gamma_i+1}<1$, from \eqref{e3.30} we obtain \begin{equation} \int_{J_{z}}|f_i(t,u(t))|^{\gamma_i+1}dt \leq \bar c_i \label{e3.31} \end{equation} where $\bar c_i$ is a constant. The rest of the proof proceeds as in that of Theorem \ref{thm3.4}. \end{proof} We shall now tackle the system \eqref{e1.2}. Our next theorem is a variation of an existence principle of Lee and O'Regan \cite{lee}. \begin{theorem} \label{thm3.6} For each $1\leq i\leq n$, let $1 \leq p_i \leq \infty$ be an integer and $q_i$ be such that $\frac{1}{p_i}+\frac{1}{q_i}=1$. Assume the following conditions hold for each $1\leq i\leq n$: \eqref{e3.1}, \eqref{e3.3}, \eqref{e3.4} and \begin{equation} f_i:[0,T) \times \mathbb{R}^n \to \mathbb{R} \text{ is a locally } L^{q_i}\text{-Carath\'eodory function;} \label{e3.32} \end{equation} i.e., the conditions (i)--(iii) in \eqref{e2.3} hold when $f_i$ is restricted to $I\times \mathbb{R}^n$, where $I$ is any compact subinterval of $[0,T)$. Also let $\{t_k\}$ be a positive and increasing sequence such that $\lim_{k\to\infty}t_k=T$. For each $k=1,2,\dots$, suppose there exists $u^k=(u_1^k,u_2^k,\dots,u_n^k)\in (C[0,t_k])^n$ that satisfies \begin{equation} u_i^k(t)=h_i(t)+\int_{0}^{t}g_i(t,s)f_i(s,u_1^k(s),u_2^k(s),\dots, u_n^k(s))ds, \label{e3.33} \end{equation} for $t\in [0,t_k]$, $1\leq i\leq n$. Further, for $1\leq i\leq n$ and $\ell=1,2,\dots$, there are bounded sets $B_\ell\subseteq \mathbb{R}$ such that $k\geq \ell$ implies $u_i^k(t)\in B_\ell$ for each $t\in [0,t_\ell]$. Then \eqref{e1.2} has a solution $u^*\in (C[0,T))^n$ such that for $1\leq i\leq n$, $u_i^*(t)\in \overline B_\ell$ for each $t\in [0,t_\ell]$. \end{theorem} \begin{proof} First we shall show that for each $1\leq i\leq n$ and $\ell=1,2,\dots$, \begin{equation} \text{the sequence $\{u^k_i\}_{k\geq \ell}$ is uniformly bounded and equicontinuous on $[0,t_\ell]$}. \label{e3.34} \end{equation} The uniform boundedness of $\{u^k_i\}_{k\geq \ell}$ follows immediately from the hypotheses, therefore we only need to prove that $\{u^k_i\}_{k\geq \ell}$ is equicontinuous. Let $1\leq i\leq n$. Since for all $k\geq \ell$, $u_i^k(t)\in B_\ell$ for each $t\in [0,t_\ell]$, there exists $\mu_{B_\ell}\in L^{q_i}[0,t_\ell]$ such that $|f_i(s,u^k(s))|\leq \mu_{B_\ell}(s)$ for almost every $s\in [0,t_\ell]$. Fix $t,t'\in [0,t_\ell]$ with $t 0$ such that for any $u\in (C[0,w])^n$, \begin{equation} \int_0^w\Big[f_i(t,u(t))\int_0^tg_i(t,s)f_i(s,u(s))ds\Big]dt\leq B_i\,; \label{e3.38} \end{equation} and there exist $r>0$ and $\alpha_i>0$ with $r\alpha_i>H_i(w)\equiv \sup_{t\in [0,w]}|h_i(t)|$ such that for any $u\in (C[0,w])^n$, \begin{equation} u_i(t)f_i(t,u(t))\geq r\alpha_i |f_i(t,u(t))|\quad \text{for a.e. $t\in[0,w]$ such that }\|u(t)\|>r, \label{e3.39} \end{equation} where we denote $\|u(t)\|:=\max_{1\leq i\leq n}|u_i(t)|$. Then \eqref{e1.2} has at least one solution in $(C[0,T))^n$. \end{theorem} \begin{proof} We shall establish the existence of `local' solutions before we can apply Theorem \ref{thm3.6}. Indeed, we shall show that the system \begin{equation} u_i(t)=h_i(t)+\int_{0}^{t}g_i(t,s)f_i(s,u(s))ds, \quad t\in [0,w],\;1\leq i\leq n \label{e3.40} \end{equation} has a solution for any $w\in (0,T)$. Let $w\in (0,T)$ be fixed. From the hypotheses, we see that \eqref{e3.1}--\eqref{e3.4} are satisfied with $T$ replaced by $w$. We shall employ a similar technique as in the proof of Theorem \ref{thm3.2}, with $T$ replaced by $w$. Let $u=(u_1,u_2,\dots,u_n)\in (C[0,w])^n$ be any solution of \begin{equation} u_i(t)=\lambda\Big(h_i(t)+ \int^t_0 g_i(t,s)f_i(s,u(s))ds\Big),\quad t\in [0,w],\;1\leq i\leq n \label{e3.41lambda} \end{equation} where $\lambda\in (0,1)$. We define for each $z\in [0,w]$, $$ I_z=\{t\in[0,z]:\|u(t)\|\leq r\}, \quad J_{z}=\{t\in[0,z]:\|u(t)\|> r\}. $$ Following the proof of Theorem \ref{thm3.2}, we obtain, corresponding to \eqref{e3.14}, \begin{equation} \int_{J_z}|f_i(t,u(t))|dt\leq \frac{[H_i(w)+r]\int_0^w \mu_{r,i}(s)ds +B_i}{r\alpha_i-H_i(w)}\equiv c_i(w),\quad 1\leq i\leq n. \label{e3.42} \end{equation} Consequently, from \eqref{e3.41lambda} it follows that for $t\in [0,w]$ and $1\leq i\leq n$, \begin{equation} \begin{split} |u_i(t)|&\leq H_i(w)+[\sup_{t\in [0,w]}\operatorname{ess\,sup}_{s\in [0,t]}|g_i(t,s)|]\Big[\int_0^w\mu_{r,i}(s)ds+c_i(w)\Big]\\ & \equiv d_i(w). \end{split} \label{e3.43} \end{equation} Thus, $|u_i|_0=\sup_{t\in [0,w]}|u_i(t)|\leq d_i(w)$ for $1\leq i\leq n$ and $\|u\|=\max_{1\leq i\leq n}|u_i|_0 \leq \max_{1\leq i\leq n}d_i(w)$ $\equiv D(w)$. It follows from Theorem \ref{thm3.1} (with $M=D(w)+1$) that \eqref{e3.40} has a solution $u^*\in(C[0,w])^n$. Hence, we have shown that \eqref{e3.40} has a solution for any $w\in (0,T)$. Now, let $\{t_k\}$ be a positive and increasing sequence such that $\lim_{k\to\infty}t_k=T$. For each $k=1,2,\dots$, let $u^k=(u_1^k,u_2^k,\dots,u_n^k)\in (C[0,t_k])^n$ be a solution of \eqref{e3.33}. If we restrict $z\in [0,t_\ell]$ and $k\geq \ell$, then using the same arguments as before, we can obtain \eqref{e3.42} and \eqref{e3.43} with $w=t_\ell$ and $u=u^k$. So for $k\geq \ell$ we have $$ |u_i^k(t)|\leq d_i(t_\ell),\quad t\in [0,t_\ell],\;1\leq i\leq n. $$ All the conditions of Theorem \ref{thm3.6} are satisfied and hence it follows that \eqref{e1.2} has at least one solution in $(C[0,T))^n$. \end{proof} Our next result replaces condition \eqref{e3.38} with condition \eqref{e3.44} which involves the integral of $f_i$ in the right side. \begin{theorem} \label{thm3.8} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}, \eqref{e3.3}, \eqref{e3.4} and \eqref{e3.32} with $p_i=\infty$ and $q_i=1$. Moreover, suppose the following conditions hold for each $1\leq i\leq n$ and any $w\in (0,T)$: there exist constants $a_i\geq 0$ and $b_i$ such that for any $z\in [0,w]$, \begin{equation} \int_0^z\Big[f_i(t,u(t))\int_0^tg_i(t,s)f_i(s,u(s))ds\Big]dt\leq a_i\int_0^z|f_i(t,u(t))|dt+b_i; \label{e3.44} \end{equation} and there exist $r>0$ and $\alpha_i>0$ with $r\alpha_i>H_i(w)+a_i$ such that for any $u\in (C[0,w])^n$, \begin{equation} u_i(t)f_i(t,u(t))\geq r\alpha_i |f_i(t,u(t))|\quad \text{for a.e. $t\in[0,w]$ such that }\|u(t)\|>r. \label{e3.45} \end{equation} Then \eqref{e1.2} has at least one solution in $(C[0,T))^n$. \end{theorem} \begin{proof} As in the proof of Theorem \ref{thm3.7}, we shall first show that the system \eqref{e3.40} has a solution for any $w\in (0,T)$. Let $w\in (0,T)$ be fixed and let $u=(u_1,u_2,\dots,u_n)\in (C[0,w])^n$ be any solution of \eqref{e3.41lambda}. Using a similar argument as in the proof of Theorem \ref{thm3.3}, with $T$ replaced by $w$, we obtain, corresponding to \eqref{e3.18}, \begin{equation} \int_{J_z}|f_i(t,u(t))|dt\leq \frac{[H_i(w)+a_i+r]\int_0^w\mu_{r,i}(s)ds+ |b_i|}{r\alpha_i-H_i(w)-a_i}\equiv c^*_i(w), \label{e3.46} \end{equation} for $1\leq i\leq n$, and subsequently $\|u\|\leq D^*(w)$ (a constant). Then, it follows from Theorem \ref{thm3.1} that \eqref{e3.40} has a solution for any $w\in (0,T)$. The rest of the proof proceeds as in the proof of Theorem \ref{thm3.7}. \end{proof} The next result is for general $p_i$, $q_i$, it also replaces condition \eqref{e3.39} or \eqref{e3.45} with conditions \eqref{e3.47} and \eqref{e3.48}. \begin{theorem} \label{thm3.9} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}, \eqref{e3.3}, \eqref{e3.4} and \eqref{e3.32}. Moreover, suppose the following conditions hold for each $1\leq i\leq n$ and any $w\in (0,T)$: \eqref{e3.38}, there exist $r>0$ and $\beta_i>0$ such that for any $u\in (C[0,w])^n$, \begin{equation} u_i(t)f_i(t,u(t))\geq \beta_i|u_i|_0 \cdot |f_i(t,u(t))|\quad \text{for a.e. $t\in[0,w]$ such that }\|u(t)\|>r, \label{e3.47} \end{equation} where we denote $|u_i|_0:=\max_{t\in [0,w]}|u_i(t)$|; and there exist $\eta_i>0$, $\gamma_i\geq q_i-1>0$ and $\phi_i\in L^{p_i}([0,w],\mathbb{R})$ such that for any $u\in (C[0,w])^n$, \begin{equation} |u_i|_0\geq \eta_i|f_i(t,u(t)|^{\gamma_i}+\phi_i(t)\quad \text{for a.e. $t\in[0,w]$ such that }\|u(t)\|>r. \label{e3.48} \end{equation} Then \eqref{e1.2} has at least one solution in $(C[0,T))^n$. \end{theorem} \begin{proof} Once again we shall employ Theorem \ref{thm3.1} to show the existence of `local' solutions; i.e., the system \eqref{e3.40} has a solution for any $w\in (0,T)$. For this, we use a similar argument as in the proof of Theorem \ref{thm3.4}, with $T$ replaced by $w$, to get an analog of \eqref{e3.28}, viz., \begin{equation} \int_{J_{z}}|f_i(t,u(t))|^{\gamma_i+1}dt \leq c^{**}_i(w),\quad 1\leq i\leq n \label{e3.49} \end{equation} which leads to $\|u\|\leq D^*(w)$ (a constant). The rest of the proof follows as in the proof of Theorem \ref{thm3.7}. \end{proof} The next result is also for general $p_i$, $q_i$, and here the condition \eqref{e3.38} is replaced by \eqref{e3.44}. \begin{theorem} \label{thm3.10} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}, \eqref{e3.3}, \eqref{e3.4} and \eqref{e3.32}. Moreover, suppose the following conditions hold for each $1\leq i\leq n$ and any $w\in (0,T)$: \eqref{e3.44}, \eqref{e3.47} and \eqref{e3.48}. Then \eqref{e1.2} has at least one solution in $(C[0,T))^n$. \end{theorem} \begin{proof} To prove that the system \eqref{e3.40} has a solution for any $w\in (0,T)$, we use a similar argument as in the proof of Theorem \ref{thm3.5}, with $T$ replaced by $w$, to get an analog of \eqref{e3.31}, viz., \begin{equation} \int_{J_{z}}|f_i(t,u(t))|^{\gamma_i+1}dt \leq \bar c_i(w),\;1\leq i\leq n \label{e3.50} \end{equation} and subsequently $\|u\|\leq D^*(w)$ (a constant). The rest of the proof proceeds as in the proof of Theorem \ref{thm3.7}. \end{proof} \section{Existence of constant-sign solutions} In this section, we shall establish the existence of \emph{constant-sign} solutions of the systems \eqref{e1.1} and \eqref{e1.2}, in $(C[0,T])^n$ and $(C[0,T))^n$ respectively. Once again we shall employ an argument originated from Brezis and Browder \cite{BB}. Throughout, let $\theta_i\in\{-1,1\}, ~1\leq i\leq n$ be fixed. For each $1\leq j\leq n$, we define $$ [0,\infty)_j = \begin{cases} [0,\infty), & \theta_j=1\\ (-\infty,0], & \theta_j=-1. \end{cases} $$ Our first result is for the system \eqref{e1.1} and is `parallel' to Theorem \ref{thm3.2}. \begin{theorem} \label{thm4.1} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}, \eqref{e3.2}--\eqref{e3.4} with $p_i=\infty$ and $q_i=1$, \eqref{e3.7}, \eqref{e3.8}, \begin{gather} \theta_ih_i(t)\geq 0,\quad t\in [0,T]; \label{e4.1}\\ g_i(t,s)\geq 0, \quad 0\leq s\leq t\leq T ;\label{e4.2}\\ \theta_if_i(t,u)\geq 0,\quad (t,u)\in [0,T]\times \prod_{j=1}^n[0,\infty)_j. \label{e4.3} \end{gather} Then \eqref{e1.1} has at least one constant-sign solution in $(C[0,T])^n$. \end{theorem} \begin{proof} First, we shall show that the system \begin{equation} u_i(t)=h_i(t)+\int^t_0 g_i(t,s)f_i^*(s,u(s))ds,\quad t\in [0,T],\;1\leq i\leq n \label{e4.4} \end{equation} has a solution in $(C[0,T])^n$. Here, \begin{equation} f_i^*(t,u_1,\dots,u_n)=f_i(t,v_1,\dots,v_n),\quad t\in [0,T],\;1\leq i\leq n \label{e4.5} \end{equation} where $$ v_j=\begin{cases} u_j, & \theta_ju_j\geq 0\\ 0, & \theta_ju_j\leq 0 . \end{cases} $$ Clearly, $f_i^*(t,u):[0,T]\times \mathbb{R}^n \to \mathbb{R}$ and $f_i^*$ satisfies \eqref{e3.2}. We shall employ Theorem \ref{thm3.1}, so let $u=(u_1,u_2,\dots,u_n)\in (C[0,T])^n$ be any solution of \begin{equation} u_i(t)=\lambda\Big(h_i(t)+\int^t_0 g_i(t,s)f_i^*(s,u(s))ds\Big),\quad t\in [0,T],\;1\leq i\leq n \label{e4.6lambda} \end{equation} where $\lambda\in (0,1)$. Using \eqref{e4.1}--\eqref{e4.3}, we have for $t\in [0,T]$ and $1\leq i\leq n$, $$ \theta_iu_i(t)=\lambda\Big(\theta_ih_i(t)+\int^t_0 g_i(t,s)\theta_if_i^*(s,u(s))ds\Big)\geq 0. $$ Hence, $u$ is a \emph{constant-sign} solution of \eqref{e4.6lambda}, and it follows that \begin{equation} f_i^*(t,u(t))=f_i(t,u(t)),\quad t\in [0,T],\;1\leq i\leq n. \label{e4.7} \end{equation} For each $z\in [0,T]$, define $I_z$ and $J_{z}$ as in \eqref{e3.9}. Noting \eqref{e4.7}, we see that \eqref{e4.6lambda} is the same as \eqref{e3.5lambda}. Therefore, using a similar technique as in the proof of Theorem \ref{thm3.2}, we obtain \eqref{e3.11}--\eqref{e3.14} and subsequently $|u_i|_0\leq d_i$ for $1\leq i\leq n$. Thus, $\|u\|\leq \max_{1\leq i\leq n}d_i\equiv D$. It now follows from Theorem \ref{thm3.1} (with $M=D+1$) that \eqref{e4.4} has a solution $u^*\in(C[0,T])^n$. Noting \eqref{e4.1}--\eqref{e4.3}, we have for $t\in [0,T]$ and $1\leq i\leq n$, $$ \theta_iu_i^*(t)=\theta_ih_i(t)+\int^t_0 g_i(t,s)\theta_if_i^*(s,u^*(s))ds\geq 0. $$ So $u^*$ is of \emph{constant sign}. From \eqref{e4.5}, it is then clear that $$ f_i^*(t,u^*(t))=f_i(t,u^*(t)),\quad t\in [0,T],\;1\leq i\leq n. $$ Hence, the system \eqref{e4.4} is actually \eqref{e1.1}. This completes the proof. \end{proof} Based on the proof of Theorem \ref{thm4.1}, we can develop parallel results to Theorems \ref{thm3.3}--\ref{thm3.5} as follows. \begin{theorem} \label{thm4.2} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}, \eqref{e3.2}--\eqref{e3.4} with $p_i=\infty$ and $q_i=1$, \eqref{e3.15}, \eqref{e3.16} and \eqref{e4.1}--\eqref{e4.3}. Then \eqref{e1.1} has at least one constant-sign solution in $(C[0,T])^n$. \end{theorem} \begin{theorem} \label{thm4.3} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}--\eqref{e3.4}, \eqref{e3.7}, \eqref{e3.19}, \eqref{e3.20} and \eqref{e4.1}--\eqref{e4.3}. Then \eqref{e1.1} has at least one constant-sign solution in $(C[0,T])^n$. \end{theorem} \begin{theorem} \label{thm4.4} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}--\eqref{e3.4}, \eqref{e3.15}, \eqref{e3.19}, \eqref{e3.20} and \eqref{e4.1}--\eqref{e4.3}. Then \eqref{e1.1} has at least one constant-sign solution in $(C[0,T])^n$. \end{theorem} We shall now establish the existence of constant-sign solutions of the system \eqref{e1.2}. The next result is `parallel' to Theorem \ref{thm3.7}. \begin{theorem} \label{thm4.5} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}, \eqref{e3.3}, \eqref{e3.4} and \eqref{e3.32} with $p_i=\infty$ and $q_i=1$, and \eqref{e4.1}--\eqref{e4.3}. Moreover, suppose the following conditions hold for each $1\leq i\leq n$ and any $w\in (0,T)$: \eqref{e3.38} and \eqref{e3.39}. Then \eqref{e1.2} has at least one constant-sign solution in $(C[0,T))^n$. \end{theorem} \begin{proof} To apply Theorem \ref{thm3.6}, we should show the existence of `local' solutions by considering the following analog to \eqref{e3.40}, \begin{equation} u_i(t)=h_i(t)+\int^t_0 g_i(t,s)f_i^*(s,u(s))ds,\quad t\in [0,w],\;1\leq i\leq n \label{e4.8} \end{equation} where $w\in (0,T)$ and $f_i^*$ is given in \eqref{e4.5}. The rest of the proof models that of Theorems \ref{thm4.1} and \ref{thm3.7}. \end{proof} Based on the proof of Theorem \ref{thm4.5}, parallel results to Theorems \ref{thm3.8}--\ref{thm3.10} are established as follows. \begin{theorem} \label{thm4.6} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}, \eqref{e3.3}, \eqref{e3.4} and \eqref{e3.32} with $p_i=\infty$ and $q_i=1$, and \eqref{e4.1}--\eqref{e4.3}. Moreover, suppose the following conditions hold for each $1\leq i\leq n$ and any $w\in (0,T)$: \eqref{e3.44} and \eqref{e3.45}. Then \eqref{e1.2} has at least one constant-sign solution in $(C[0,T))^n$. \end{theorem} \begin{theorem} \label{thm4.7} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}, \eqref{e3.3}, \eqref{e3.4}, \eqref{e3.32} and \eqref{e4.1}--\eqref{e4.3}. Moreover, suppose the following conditions hold for each $1\leq i\leq n$ and any $w\in (0,T)$: \eqref{e3.38}, \eqref{e3.47} and \eqref{e3.48}. Then \eqref{e1.2} has at least one constant-sign solution in $(C[0,T))^n$. \end{theorem} \begin{theorem} \label{thm4.8.} Let the following conditions be satisfied for each $1\leq i\leq n$: \eqref{e3.1}, \eqref{e3.3}, \eqref{e3.4}, \eqref{e3.32} and \eqref{e4.1}--\eqref{e4.3}. Moreover, suppose the following conditions hold for each $1\leq i\leq n$ and any $w\in (0,T)$: \eqref{e3.44}, \eqref{e3.47} and \eqref{e3.48}. Then \eqref{e1.2} has at least one constant-sign solution in $(C[0,T))^n$. \end{theorem} \section{Examples} We shall now illustrate the results obtained through some examples. \begin{example} \label{examp5.1}\rm Consider system \eqref{e1.1} where for $1\leq i\leq n$, \begin{equation} \begin{split} &f_i(t,u_1(t),u_2(t),\dots,u_n(t))\\ &=\begin{cases} \rho_i(t,u_1(t),u_2(t),\dots,u_n(t)), & u_1(t),u_2(t),\dots,u_n(t)>\delta \\ 0, & \text{otherwise.} \end{cases} \end{split} \label{e5.1} \end{equation} Here, $\delta>0$ is a given constant, and $\rho_i$ is such that \begin{itemize} \item[(a)] the map $u \mapsto f_i(t,u)$ is continuous for almost all $t\in [0,T]$; \item[(b)] the map $t\mapsto f_i(t,u)$ is measurable for all $u\in \mathbb{R}^n$; \item[(c)] $\rho_i(t,u(t))\in L^1[0,T]$ and $u_i(t)\rho_i(t,u(t))\geq 0$ for any $u\in K$ where $$ K=\{u\in (C[0,T])^n: u_1(t), u_2(t),\dots,u_n(t)>\delta, \; t\in[0,T]\}. $$ \end{itemize} Moreover, suppose $h_i\in C[0,T],\;1\leq i\leq n$ fulfills \begin{equation} H_i\equiv \sup_{t\in [0,T]}|h_i(t)|<\delta. \label{e5.2} \end{equation} Clearly, conditions \eqref{e3.1} and \eqref{e3.2} with $q_i=1$ are fulfilled. We shall check that condition \eqref{e3.8} is satisfied. Pick $r>\delta$ and $\alpha_i=\frac{\delta}{r},\;1\leq i\leq n$. Then, from \eqref{e5.2}, we have $r\alpha_i=\delta>H_i$. Let $u\in K$. Then, from \eqref{e5.1}, we have $f_i(t,u)=\rho_i(t,u)$. Consider $\|u(t)\|>r$ where $t\in [0,T]$. If $\|u(t)\|=|u_i(t)|$, then \begin{equation} \begin{split} u_i(t)f_i(t,u(t)) =|u_i(t)|\cdot|f_i(t,u(t))| &=\|u(t)\|\cdot|f_i(t,u(t))|\\ &> r|f_i(t,u(t))|\\ &> r\cdot\frac{\delta}{r}\cdot|f_i(t,u(t))|\\ &= r\alpha_i |f_i(t,u(t))|. \end{split}\label{e5.3} \end{equation} If $\|u(t)\|=|u_k(t)|$ for some $k\neq i$, then \begin{equation} \begin{split} u_i(t)f_i(t,u(t))=|u_i(t)|\cdot|f_i(t,u(t))| &= r\cdot\frac{|u_i(t)|}{r}\cdot |f_i(t,u(t))|\\ &> r\cdot \frac{\delta}{r}\cdot|f_i(t,u(t))|\\ &= r\alpha_i |f_i(t,u(t))|. \end{split}\label{e5.4} \end{equation} Therefore, from \eqref{e5.3} and \eqref{e5.4} we see that condition \eqref{e3.8} holds for $u\in K$. For $u\in (C[0,T])^n\backslash K$, we have $f_i(t,u)=0$ and \eqref{e3.8} is trivially true. Hence, we have shown that condition \eqref{e3.8} is satisfied. \end{example} The next example considers an $g_i(t,s)$ of which the particular case when $n=1$ (see \eqref{e1.6}) has been investigated by Bushell and Okrasi\'nski \cite{B2}. \begin{example} \label{examp5.2}\rm Consider system \eqref{e1.1} with \eqref{e5.1}, \eqref{e5.2}, and for $1\leq i\leq n$, \begin{equation} g_i(t,s)=(t-s)^{\gamma_i-1} \label{e5.5} \end{equation} where $\gamma_i>1$. Clearly, $g_i$ satisfies \eqref{e3.3} and \eqref{e3.4} with $p_i=\infty$. Next, for $u\in K$ ($K$ is given in Example \ref{examp5.1}) we have \begin{equation} \begin{split} &\int_0^T\Big[f_i(t,u(t))\int_0^tg_i(t,s)f_i(s,u(s))ds\Big]dt\\ &=\int_0^T\Big[\rho_i(t,u(t))\int_0^t(t-s)^{\gamma_i-1} \rho_i(s,u(s))ds\Big]dt \\ &\leq T^{\gamma_i-1}\int_0^T\Big[\rho_i(t,u(t)) \int_0^t\rho_i(s,u(s))ds\Big]dt \leq B_i \end{split}\label{e5.6} \end{equation} since $\rho_i(t,u(t))\in L^1[0,T]$ for any $u\in K$. This shows that condition \eqref{e3.7} holds for $u\in K$. For $u\in (C[0,T])^n\backslash K$, we have $f_i(t,u)=0$ and \eqref{e3.7} is trivially true. Therefore, condition \eqref{e3.7} is satisfied. It now follows from Theorem \ref{thm3.2} that the system \eqref{e1.1} with \eqref{e5.1}, \eqref{e5.2} and \eqref{e5.5} has at least one solution in $(C[0,T])^n$. \end{example} The next example considers an $g_i(t,s)$ of which the particular case when $n=1$ comes from the Emden differential equation \eqref{e1.4}. \begin{example} \label{examp5.3}\rm Consider system \eqref{e1.1} with \eqref{e5.1}, \eqref{e5.2}, and for $1\leq i\leq n$, \begin{equation} g_i(t,s)=(t-s)s^{r_i} \label{e5.7} \end{equation} where $r_i\geq 0$. Clearly, $g_i$ satisfies \eqref{e3.3} and \eqref{e3.4} with $p_i=\infty$. Next, for $u\in K$ ($K$ is given in Example \ref{examp5.1}), corresponding to \eqref{e5.6} we have \begin{equation} \begin{split} &\int_0^[f_i(t,u(t))\int_0^tg_i(t,s)f_i(s,u(s))ds]dt\\ &= \int_0^T[\rho_i(t,u(t))\int_0^t(t-s)s^{r_i}\rho_i(s,u(s))ds]dt\\ &\leq T^{r_i+1}\int_0^T[\rho_i(t,u(t))\int_0^t\rho_i(s,u(s))ds]dt \leq B_i. \end{split}\label{e5.8} \end{equation} Hence, by Theorem \ref{thm3.2} the system \eqref{e1.1} with \eqref{e5.1}, \eqref{e5.2} and \eqref{e5.7} has at least one solution in $(C[0,T])^n$. \end{example} \begin{example} \label{examp5.4} \rm Let $\theta_i=1,\;1\leq i\leq n$. Consider system \eqref{e1.1} with \eqref{e5.1}, \eqref{e5.2}, and for $1\leq i\leq n$, \begin{equation} h_i(t)\geq 0,\quad t\in [0,T]. \label{e5.9} \end{equation} Clearly, conditions \eqref{e4.1} and \eqref{e4.3} are fulfilled. Moreover, both $g_i(t,s)$ in \eqref{e5.5} and \eqref{e5.7} satisfy condition \eqref{e4.2}. From Examples \ref{examp5.1}--\ref{examp5.3}, we see that all the conditions of Theorem \ref{thm4.1} are met. Hence, we conclude that system \eqref{e1.1} with \eqref{e5.1}, \eqref{e5.2}, \eqref{e5.5} and \eqref{e5.9} and system \eqref{e1.1} with \eqref{e5.1}, \eqref{e5.2}, \eqref{e5.7} and \eqref{e5.9} each has at least one \emph{positive} solution in $(C[0,T])^n$. \end{example} We remark that Examples \ref{examp5.1}--\ref{examp5.4} can easily be extended to the system \eqref{e1.2}. \subsection*{Acknowledgements} The authors would like to thank the anonymous referee for his/her comments which help us improve this article. \begin{thebibliography}{00} \bibitem{AOW} R. P. Agarwal, D. O'Regan and P. J. Y. Wong; \emph{Positive Solutions of Differential, Difference and Integral Equations}, Kluwer Academic Publishers, Dordrecht, 1999. \bibitem{sys14} R. P. Agarwal, D. O'Regan and P. J. Y. Wong; \emph{Constant-sign solutions of a system of Fredholm integral equations}, Acta Appl. Math. 80(2004), 57-94. \bibitem{sys16} R. P. Agarwal, D. O'Regan and P. J. Y. Wong; \emph{Eigenvalues of a system of Fredholm integral equations}, Math. Comput. Modelling 39(2004), 1113-1150. \bibitem{sys18} R. P. Agarwal, D. O'Regan and P. J. Y. Wong; \emph{Triple solutions of constant sign for a system of Fredholm integral equations}, Cubo 6(2004), 1-45. \bibitem{sys20} R. P. Agarwal, D. O'Regan and P. J. Y. Wong; \emph{Constant-sign solutions of a system of integral equations: The semipositone and singular case}, Asymptotic Analysis 43(2005), 47-74. \bibitem{sys27} R. P. Agarwal, D. O'Regan and P. J. Y. Wong; \emph{Constant-sign solutions of a system of integral equations with integrable singularities}, J. Integral Equations Appl. 19(2007), 117-142. \bibitem{sys30} R. P. Agarwal, D. O'Regan and P. J. Y. Wong; \emph{Constant-sign solutions of a system of Volterra integral equations}, Comput. Math. Appl. 54(2007), 58-75. \bibitem{BB} H. Brezis and F. E. Browder; \emph{Existence theorems for nonlinear integral equations of Hammerstein type}, Bull. Amer. Math. Soc. 81(1975), 73-78. \bibitem{B1} P. J. Bushell; \emph{On a class of Volterra and Fredholm non-linear integral equations}, Math. Proc. Cambridge Philos. Soc. 79(1976), 329-335. \bibitem{B2} P. J. Bushell and W. Okrasi\'nski; \emph{Uniqueness of solutions for a class of nonlinear Volterra integral equations with convolution kernel}, Math. Proc. Cambridge Philos. Soc. 106(1989), 547-552. \bibitem{B3} P. J. Bushell and W. Okrasi\'nski; \emph{Nonlinear Volterra integral equations with convolution kernel}, J. London Math. Soc. 41(1990), 503-510. \bibitem{C2} C. Corduneanu; \emph{Integral Equations and Applications}, Cambridge University Press, New York, 1990. \bibitem{D1} W. Dong; \emph{Uniqueness of solutions for a class of non-linear Volterra integral equations without continuity}, Appl. Math. Mech. (English Ed.) 18(1997), 1191-1196. \bibitem{G1} G. Gripenberg; \emph{Unique solutions of some Volterra integral equations}, Math. Scand. 48(1981), 59-67. \bibitem{G2} G. Gripenberg, S.-O. Londen and O. Staffans; \emph{Volterra Integral and Functional Equations}, Encyclopedia of Mathematics and its Applications 34, Cambridge University Press, Cambridge, 1990. \bibitem{lee} J. W. Lee and D. O'Regan; \emph{Existence principles for nonlinear integral equations on semi-infinite and half-open intervals, Advances in Nonlinear Dynamics}, (edited by S. Sivasundarem and A. A. Martynyuk), Gordon and Breach Science Publishers, Amsterdam, 1997, 355-364. \bibitem{6} M. Meehan and D. O'Regan; \emph{Existence theory for nonlinear Volterra integrodifferential and integral equations}, Nonlinear Anal. 31(1998), 317-341. \bibitem{7} M. Meehan and D. O'Regan; \emph{Existence theory for nonlinear Fredholm and Volterra integral equations on half-open intervals}, Nonlinear Anal. 35(1999), 355-387. \bibitem{paper15} M. Meehan and D. O'Regan; \emph{Positive solutions of Volterra integral equations using integral inequalities}, J. Inequal. Appl. 7(2002), 285-307. \bibitem{d90} D. O'Regan; \emph{Volterra and Urysohn integral equations in Banach spaces}, J. Appl. Math. Stochastic Anal. 11(1998), 449-464. \bibitem{D} D. O'Regan and M. Meehan; \emph{Existence Theory for Nonlinear Integral and Integrodifferential Equations}, Kluwer, Dordrecht, 1998. \end{thebibliography} \end{document}