\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 105, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/105\hfil Existence of solutions] {Existence of solutions for p-Kirchhoff type problems with critical exponent} \author[A. Hamydy, M. Massar, N. Tsouli\hfil EJDE-2011/105\hfilneg] {Ahmed Hamydy, Mohammed Massar, Najib Tsouli} % in alphabetical order \address{Ahmed Hamydy \newline University Mohamed I, Faculty of sciences, Department of Mathematics, Oujda, Morocco} \email{a.hamydy@yahoo.fr} \address{Mohammed Massar \newline University Mohamed I, Faculty of sciences, Department of Mathematics, Oujda, Morocco} \email{massarmed@hotmail.com} \address{Najib Tsouli \newline University Mohamed I, Faculty of sciences, Department of Mathematics, Oujda, Morocco} \email{tsouli@hotmail.com} \thanks{Submitted July 26, 2011. Published August 16, 2011.} \subjclass[2000]{35A15, 35B33, 35J62} \keywords{p-Kirchhoff; critical exponent; parameter; Lions principle} \begin{abstract} We study the existence of solutions for the p-Kirchhoff type problem involving the critical Sobolev exponent, \begin{gather*} -\Big[g\Big(\int_\Omega|\nabla u|^pdx\Big)\Big]\Delta_pu =\lambda f(x,u)+|u|^{p^\star-2}u\quad\text{in }\Omega,\\ u=0\quad\text{on }\partial\Omega, \end{gather*} where $\Omega$ is a bounded smooth domain of $\mathbb{R}^N$, $10$ such that $g(t)\geq\alpha_0$ for all $t\geq0$; \item[(G2)] There exists $\sigma>p/p^\star$ such that $G(t)\geq\sigma g(t)t$ for all $t\geq0$, where $G(t)=\int_0^tg(s)ds$; \end{itemize} Much interest has grown on problems involving critical exponents, starting from the celebrated paper by Brezis and Nirenberg \cite{BN}, where the case $p=2$ is considered. We refer the reader to \cite{AA,DH,FF} and reference therein for the study of problems with critical exponent. Problem \eqref{E11} is a general version of a model presented by Kirchhoff \cite{G}. More precisely, Kirchhoff introduced a model \begin{equation}\label{E12} \rho\frac{\partial^2u}{\partial t^2}-\Big(\frac{\rho_0}h+\frac{E}{2L}\int_0^L|\frac{\partial u}{\partial x}|^2dx\Big)\frac{\partial^2u}{\partial x^2}=0, \end{equation} where $\rho, \rho_0, h, E, L$ are constants, which extends the classical D'Alembert's wave equation by considering the effects of the changes in the length of the strings during the vibrations. The problem \begin{equation}\label{E13} \begin{gathered} -\Big(a+b\int_\Omega|\nabla u|^2dx\Big)\Delta u=f(x,u)\quad \text{in }\Omega\\ u=0\quad \text{on }\partial\Omega \end{gathered} \end{equation} received much attention, mainly after the article by Lions \cite{JL}. Problems like \eqref{E13} are also introduced as models for other physical phenomena as, for example, biological systems where $u$ describes a process which depends on the average of itself (for example, population density). See \cite{ACM} and its references therein. For a more detailed reference on this subject we refer the interested reader to \cite{AP,CCS,CF,CN,M,PZ}. Motivated by the ideas in \cite{ACF}, our approach for studying problem \eqref{E11} is variational and uses minimax critical point theorems. The difficulty is due to the lack of compactness of the imbedding $W_0^{1,p}(\Omega)\hookrightarrow L^{p^{\star}}(\Omega)$ and the Palais-Smale condition for the corresponding energy functional could not be checked directly. So the concentration-compact principle of Lions \cite{PL} is applied to deal with this difficulty. The main result of this paper is the following theorem. \begin{theorem}\label{theo11} Suppose that {\rm (G1)--(G2), (F1)--(F3)} hold. Then, there exists $\lambda_*>0$, such that \eqref{E11} has a nontrivial solution for all $\lambda\geq\lambda_*$. \end{theorem} \section{Preliminary results} We consider the energy functional $I: W_0^{1,p}(\Omega)\to\mathbb{R}$ defined by \begin{equation}\label{E21} I(u)=\frac1pG(\|u\|^p)-\lambda\int_\Omega F(x,u)dx-\frac1{p^\star}\int_\Omega |u|^{p^\star}dx, \end{equation} where $W_0^{1,p}(\Omega)$ is the Sobolev space endowed with the norm $\|u\|^p=\int_\Omega|\nabla u|^pdx$. It is well known that a critical point of $I$ is a weak solution of problem \eqref{E11}. To use variational methods, we give some results related to the Palais-Smale compactness condition. Recall that a sequence $(u_n)$ is a Palais-Smale sequence of $I$ at the level $c$, if $I(u_n)\to c$ and $I'(u_n)\to0$. In the sequel, we show that the functional $I$ has the mountain pass geometry. This purpose is proved in the next lemmas. \begin{lemma}\label{lem21} Suppose that {\rm (F1), (F2), (G1)} hold. Then, there exist $r,\rho>0$ such that $\inf_{\|u\|=r}I(u)\geq\rho>0$. \end{lemma} \begin{proof} It follows from (F1) and (F2) that for any $\varepsilon>0$, there exists $C(\varepsilon)>0$. \begin{equation}\label{E22} F(x,t)\leq\frac1p\varepsilon |t|^p+C(\varepsilon)|t|^q\quad \text{for all }t. \end{equation} By (G1) and the Sobolev embdding, we have \begin{equation} \label{E23} \begin{split} I(u)&\geq \frac{\alpha_0}{p}\|u\|^p-\lambda C_1\varepsilon\|u\|^p-\lambda C_2(\varepsilon)\|u\|^q-C_3\|u\|^{p^\star}\\ &=\|u\|\Big[\big(\frac{\alpha_0}{p}-\lambda C_1\varepsilon\big)\|u\|^{p-1}-\lambda C_2(\varepsilon)\|u\|^{q-1}-C_3\|u\|^{p^\star-1}\Big]. \end{split} \end{equation} Taking $\varepsilon=\alpha_0/(2p\lambda C_1)$ and setting $$ \xi(t)=\frac{\alpha_0}{2p}t^{p-1}-\lambda C_2t^{q-1}-C_3t^{p^\star-1}. $$ Since $p0$ such that $\underset{t\geq0}\max \xi(t)=\xi(r)$. Then, by \eqref{E23}, there exists $\rho>0$ such that $I(u)\geq\rho$ for all $\|u\|=r$. \end{proof} \begin{lemma}\label{lem22} Suppose that {\rm (G2), (F3)} hold. Then for all $\lambda>0$, there exists a nonnegative function $e\in W_0^{1,p}(\Omega)$ independent of $\lambda$, such that $\|e\|>r$ and $I(e)<0$. \end{lemma} \begin{proof} Choose a nonnegative function $\phi_0\in C_0^\infty(\Omega)$ with $\|\phi_0\|=1$. By integrating (G2), we obtain \begin{equation}\label{E24} G(t)\leq \frac{G(t_0)}{t_0^{1/\sigma}}t^{1/\sigma} =C_0t^{1/\sigma}\quad \text{for all }t\geq t_0>0. \end{equation} By (F3), $\int_\Omega F(x,t\phi_0)dx\geq0$. Hence $$ I(t\phi_0)\leq\frac{C_0}pt^{p/\sigma} -\frac{t^{p^\star}}{p^\star}\int_\Omega \phi_0^{p^\star}dx\quad \text{for all } t\geq t_0. $$ Since $p/\sigma0$ large enough. \end{proof} In view of Lemmas \ref{lem21} and \ref{lem22}, we may apply a version of the Mountain Pass theorem without Palais-Smale condition to obtain a sequence $(u_n)\subset W_0^{1,p}(\Omega)$ such that $$ I(u_n)\to c_*\quad\text{and}\quad I'(u_n)\to 0, $$ where \begin{equation}\label{E25} c_*=\inf_{\gamma\in\Gamma} \max_{t\in[0,1]} I(\gamma(t))>0, \end{equation} with $$ \Gamma=\big\{\gamma\in C([0,1],W_0^{1,p}(\Omega)): \gamma(0)=0,\,I(\gamma(1))<0\big\}. $$ Denoted by $S_*$ the best positive constant of the Sobolev embedding $W_0^{1,p}(\Omega)\hookrightarrow L^{p^\star}(\Omega)$ given by \begin{equation}\label{E26} S_*=\inf\big\{\int_\Omega|\nabla u|^pdx: u\in W_0^{1,p}(\Omega),\;\int_\Omega|u|^{p^\star}dx=1\big\}. \end{equation} \begin{lemma}\label{lem23} Suppose that {\rm (G1)--(G2), (F1)--(F3)} hold. Then there exists $\lambda_*>0$ such that $c_*\in \big(0,(\frac1\theta-\frac1{p^\star})(\alpha_0 S_*)^{\frac{N}{p}}\big)$ for all $\lambda\geq\lambda_*$, where $c_*$ is given by \eqref{E25}. \end{lemma} \begin{proof} For $e$ given by Lemma \ref{E22}, we have $\lim_{t\to+\infty} I(te)=-\infty$, then there exists $t_\lambda>0$ such that $I(t_\lambda e)=\underset{t\geq0}\max I(te)$. Therefore, $$ t_\lambda^{p-1}g(\|t_\lambda e\|^p)\|e\|^p =\lambda \int_\Omega f(x,t_\lambda e)e\,dx +t_\lambda^{p^\star-1}\int_\Omega e^{p^\star}dx; $$ thus \begin{equation}\label{E27} g(\|t_\lambda e\|^p)\|t_\lambda e\|^p =\lambda t_\lambda \int_\Omega f(x,t_\lambda e)e\,dx +t_\lambda^{p^\star}\int_\Omega e^{p^\star}dx. \end{equation} By \eqref{E24}, it follows that $$ \frac{C_0}\sigma\|e\|^{p/\sigma}t_\lambda^{p/\sigma} \geq t_\lambda^{p^\star}\int_\Omega e^{p^\star}dx, \quad \text{with } t_00$ such that $$ g(\|t_{\lambda_n}e\|^p)\|t_{\lambda_n}e\|^p\leq C\quad \text{for all }n; $$ that is, $$ \lambda_n t_{\lambda_n}\int_\Omega f(x,t_{\lambda_n} e)e\,dx +t_{\lambda_n}^{p^\star}\int_\Omega e^{p^\star}dx\leq C\quad \text{for all } n. $$ If $s_0>0$, the above inequality implies that $$ \lambda_n t_{\lambda_n}\int_\Omega f(x,t_{\lambda_n} e)e\,dx +t_{\lambda_n}^{p^\star}\int_\Omega e^{p^\star}dx\to+\infty \leq C,\quad \text{as } n\to\infty, $$ which is impossible, and consequently $s_0=0$. Let $\gamma_*(t)=te$. Clearly $\gamma_*\in\Gamma$, thus $$ 00$, for $\lambda>0$ sufficiently large, we have $$ \frac1pG(\|t_\lambda e\|^p)<\big(\frac1\theta-\frac1{p^\star}\big)(\alpha_0 S_*)^{N/p}, $$ and hence $$ 00$ such that $|I(u_n)|\leq C$, and by (F3) for $n$ large enough, it follows from (G1) and (G2) that \begin{equation} \label{E29} \begin{split} C+\|u_n\| &\geq I(u_n)-\frac1\theta\langle I'(u_n),u_n\rangle\\ &\geq \frac1pG(\|u\|^p)-\frac1\theta g(\|u_n\|^p)\|u_n\|^p\\ &\geq \big(\frac\sigma{p}-\frac1\theta\big)\alpha_0\|u_n\|^p. \end{split} \end{equation} Since $\theta>p/\sigma$, $(u_n)$ is bounded. Hence, up to a subsequence, we may assume that \begin{equation} \label{E210} \begin{gathered} u_n\rightharpoonup u \quad \text{weakly in } W_0^{1,p}(\Omega),\\ u_n\to u\quad \text{a.e. in }\Omega,\\ u_n\to u\quad \text{in }L^s(\Omega),\;1\leq s0,\\ \mu\geq|\nabla u|^p+\sum_{j\in J} \mu_j\delta_{x_j}\,,\quad \mu_j>0,\\ S_*\nu_j^{p/p^\star}\leq\mu_j, \end{gathered} \end{equation} where $\delta_{x_j}$ is the Dirac measure mass at $x_j\in\overline{\Omega}$. Let $\psi(x)\in C_0^\infty$ such that $0\leq\psi\leq1$, \begin{equation}\label{E212} \psi(x)=\begin{cases} 1&\text{if }|x|<1\\ 0&\text{if }|x|\geq2 \end{cases} \end{equation} and $|\nabla\psi|_\infty\leq 2$. For $\varepsilon>0$ and $j\in J$, denote $\psi_\varepsilon^j(x)=\psi((x-x_j)/\varepsilon)$. Since $I'(u_n)\to 0$ and $(\psi_\varepsilon^ju_n)$ is bounded, $\langle I'(u_n),\psi_\varepsilon^ju_n\rangle\to0$ as $n\to\infty$; that is, \begin{equation} \label{E213} \begin{split} &g(\|u_n\|^p)\int_\Omega|\nabla u_n|^p\psi_\varepsilon^jdx\\ &=-g(\|u_n\|^p)\int_\Omega u_n|\nabla u_n|^{p-2}\nabla u_n\nabla\psi_\varepsilon^jdx\\ &\quad +\lambda\int_\Omega f(x,u_n)u_n\psi_\varepsilon^jdx +\int_\Omega|u_n|^{p^\star}\psi_\varepsilon^jdx+o_n(1). \end{split} \end{equation} By \eqref{E210} and Vitali's theorem, we see that $$ \lim_{n\to\infty} \int_{\Omega}|u_n\nabla\psi_\varepsilon^j|^p dx =\int_{\Omega}|u\nabla\psi_\varepsilon^j|^p dx $$ Hence, by H\"{o}lder's inequality we obtain \begin{equation}\label{E214} \begin{split} &\limsup_{n\to\infty} \big|\int_\Omega u_n|\nabla u_n|^{p-2}\nabla u_n\nabla\psi_\varepsilon^jdx\big|\\ &\leq \limsup_{n\to\infty} \Big(\int_{\Omega}|\nabla u_n|^pdx\Big)^{(p-1)/p} \Big(\int_{\Omega}|u_n\nabla\psi_\varepsilon^j|^p dx\Big)^{1/p}\\ &\leq C_1\Big(\int_{B(x_j,2\varepsilon)}|u|^p|\nabla \psi_\varepsilon^j|^p dx\Big)^{1/p}\\ &\leq C_1\Big(\int_{B(x_j,2\varepsilon)}|\nabla \psi_\varepsilon^j|^Ndx\Big)^{1/N} \Big(\int_{B(x_j,2\varepsilon)}|u|^{p^\star} dx\Big)^{1/p^\star}\\ &\leq C_2\Big(\int_{B(x_j,2\varepsilon)}|u|^{p^\star} dx\Big)^{1/p^\star} \to 0\quad \text{as } \varepsilon\to0\,. \end{split} \end{equation} On the other hand, from \eqref{E210} we have $$ f(x,u_n)u_n\to f(x,u)u\quad \text{a.e. in }\Omega, $$ and $u_n\to u$ strongly in $L^p(\Omega)$ and in $L^q(\Omega)$. By (F1)--(F3), for any $\varepsilon>0$ there exists $C_\varepsilon>0$ such that \begin{equation}\label{E215} |f(x,t)|\leq\varepsilon|t|^{p-1}+C_\varepsilon|t|^{q-1}\quad \text{for all }(x,t)\in\Omega\times\mathbb{R}; \end{equation} thus $$ |f(x,u_n)u_n|\leq\varepsilon|u_n|^p+C_\varepsilon|u_n|^q. $$ This is what we need to apply Vitali's theorem, which yields $$ \lim_{n\to\infty} \int_\Omega f(x,u_n)u_ndx=\int_\Omega f(x,u)u\,dx. $$ Since $\psi_\varepsilon^j$ has compact support, letting $n\to\infty$ in \eqref{E213} we deduce from \eqref{E210} and \eqref{E214} that $$ \alpha_0\int_\Omega\psi_\varepsilon^jd\mu\leq C_2\Big(\int_{B(x_j,2\varepsilon)}|u|^{p^\star} dx\Big)^{1/ p^\star} +\lambda\int_{B(x_j,2\varepsilon)} f(x,u)udx+\int_\Omega\psi_\varepsilon^jd\nu. $$ Letting $\varepsilon\to0$, we obtain $\alpha_0\mu_j\leq\nu_j$. Therefore, \begin{equation}\label{E216} (\alpha_0 S_*)^{N/p}\leq\nu_j. \end{equation} We will prove that this inequality is not possible. Let us assume that $(\alpha_0 S_*)^{N/p}\leq\nu_{j_0}$ for some $j_0\in J$. From (G2) we see that $$ \frac1pG(\|u_n\|^p)-\frac1\theta g(\|u_n\|^p)\|u_n\|^p\geq0\quad \text{for all }n. $$ Since $$ c_*=I(u_n)-\frac1\theta \langle I'(u_n),u_n\rangle+o_n(1), $$ it follows that \begin{align*} c_*&\geq \big(\frac1\theta-\frac1{p^\star}\big) \int_\Omega|u_n|^{p^\star}dx+o_n(1)\\ &\geq \big(\frac1\theta-\frac1{p^\star}\big) \int_\Omega\psi_\varepsilon^{j_0}|u_n|^{p^\star}dx+o_n(1) \end{align*} Letting $n\to\infty$, we obtain \[ c_*\geq \big(\frac1\theta-\frac1{p^\star}\big)\sum_{j\in J}\psi_\varepsilon^{j_0}(x_j)\nu_j \geq \big(\frac1\theta-\frac1{p^\star}\big)(\alpha_0 S_*)^{N/p}. \] This contradicts Lemma \ref{lem23}. Then $J=\emptyset$, and hence $u_n\to u$ in $L^{p^\star}(\Omega)$. By \eqref{E215} we have \begin{align*} \int_\Omega|f(x,u_n)(u_n-u)|dx &\leq \int_\Omega\big(\varepsilon|u_n|^{p-1} +C_\varepsilon|u_n|^{q-1}\big)|u_n-u|dx\\ &\leq \varepsilon \Big(\int_\Omega|u_n|^pdx\Big)^{p-1)/p} \Big(\int_\Omega|u_n-u|^pdx\Big)^{1/p}\\ &\quad +C_\varepsilon\Big(\int_\Omega|u_n|^qdx\Big)^{(q-1)/q} \Big(\int_\Omega|u_n-u|^qdx\Big)^{1/q}. \end{align*} Then, using again \eqref{E210}, we obtain \begin{equation}\label{E217} \lim_{n\to\infty} \int_\Omega f(x,u_n)(u_n-u)dx=0. \end{equation} Since $u_n\to u$ in $L^{p^\star}(\Omega)$, we see that \begin{equation}\label{E218} \lim_{n\to\infty} \int_\Omega|u_n|^{p^\star-2}u_n(u_n-u)dx=0. \end{equation} From $\langle I'(u_n),u_n-u\rangle=o_n(1)$, we deduce that \begin{align*} \langle I'(u_n),u_n-u\rangle &= g(\|u_n\|^p)\int_\Omega|\nabla u_n|^{p-2}\nabla u_n\nabla(u_n-u)dx\\ &\quad -\lambda\int_\Omega f(x,u_n)(u_n-u)dx-\int_\Omega|u_n|^{p^\star-2}u_n(u_n-u)dx =o_n(1) \end{align*} This, \eqref{E217} and \eqref{E218} imply $$ \lim_{n\to\infty} g(\|u_n\|^p)\int_\Omega|\nabla u_n|^{p-2}\nabla u_n\nabla(u_n-u)dx=0. $$ Since $u_n$ is bounded and $g$ is continuous, up to subsequence, there is $t_0\geq0$ such that $$ g(\|u_n\|^p)\to g(t_0^p)\geq\alpha_0,\quad \text{as } n\to\infty, $$ and so $$ \underset{n\to\infty}\lim\int_\Omega|\nabla u_n|^{p-2}\nabla u_n\nabla(u_n-u)dx=0. $$ Thus by the $(S_+)$ property, $u_n\to u$ strongly in $W_0^{1,p}(\Omega)$, and hence $I'(u)=0$. The proof is complete. \end{proof} \section{A special case} We consider the problem \begin{equation}\label{E31} \begin{gathered} -\Big(\alpha+\beta\int_\Omega|\nabla u|^pdx\Big)\Delta_p u =\lambda f(x,u)+|u|^{p^\star-2}u\quad \text{in }\Omega\\ u=0\quad\text{on }\partial\Omega, \end{gathered} \end{equation} where $\Omega$ is a bounded smooth domain of $\mathbb{R}^N$, $10$, such that problem \eqref{E31} has a nontrivial solution for all $\lambda\geq\lambda_*$. \end{corollary} \begin{thebibliography}{99} \bibitem{AA} J. G. Azorero, I. P. Alonso; \emph{Multiplicity of solutions for elliptic problems with critical exponent or with a non symmetric term,} Trans. Amer. Math. Soc, 323, 2 (1991), 877-895. \bibitem{ACF} C. O. Alves, F. J. S. A. Corr\^{e}a, G. M. Figueiredo; \emph{On a class of nonlocal elliptic problems with critical growth,} Differential Equation and Applications, 2, 3 (2010), 409-417. \bibitem{ACM} C. O. Alves, F. J. S. A. Corr\^ea, T. F. Ma; \emph{Positive solutions for a quasilinear elliptic equation of Kirchhoff type,} Comput. Math. Appl, 49 (2005), no. 1, 85-93. \bibitem{AP} A. Arosio, S. Pannizi; \emph{On the well-posedness of the Kirchhoff string,} Trans. Amer. Math.Soc, 348 (1996) 305-330. \bibitem{BN} H. Brezis, L. Nirenberg; \emph{Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents}, Comm. Pure Appl. Math, 36 (1983) 437-477. \bibitem{CCS} M. M. Cavalcanti, V. N. Cavacanti, J. A. Soriano; \emph{Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation,} Adv. Differential Equations, 6 (2001), 701-730. \bibitem{CF} F. J. S. A. Corr\^{e}a, G. M. Figueiredo; \emph{On a elliptic equation of p-Kirchhoff type via variational methods,} Bull. Aust. Math. Soc, 74, 2 (2006), 263-277. \bibitem{CN} F. J. S. A. Corr\^{e}a, R. G. Nascimento; \emph{On a nonlocal elliptic system of p-Kirchhoff type under Neumann boundary condition,} Mathematical and Computer Modelling (2008), doi:10.1016/j.mcm.2008.03.013. \bibitem{DH} P. Dr\'{a}bek, Y. X. Huang; \emph{Multiplicity of positive solutions for some quasilinear elliptic equation in $\mathbb{R}^N$ with critical Sobolev exponent,} J. Differential Equations, 140 (1997), 106-132. \bibitem{FF} G. M. Figueiredo, M. F. Furtado; \emph{Positive solutions for some quasilinear equations with critical and supercritical growth} Nonlinear Anal, 66 (2007), 1600-1616. \bibitem{G} G. Kirchhoff; \emph{Mechanik, Teubner, Leipzig,} 1883. \bibitem{JL} J. L. Lions; \emph{On some questions in boundary value problems of mathematical physics,} International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, 1977, Mathematics Studies, vol. 30, North-Holland, Amsterdam, (1978), 284-346. \bibitem{PL} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations,} The limit case, part 1, Rev. Mat. Iberoamericana, 1 (1985), 145-201. \bibitem{M} T. F. Ma; \emph{Remarks on an elliptic equation of Kirchhoff type,} Nolinear Anal, 63, 5-7 (2005), 1967-1977. \bibitem{PZ} K. Perera, Z. Zhang; \emph{Nontrivial solutions of Kirchhoff type problems via the Yang index,} J. Differential Equations, 221 (2006), 246-255. \end{thebibliography} \end{document} \eqref{E11} \eqref{E11}