\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 118, pp. 1--5.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/118\hfil Existence and uniqueness of solutions] {Existence and uniqueness of solutions for a Neumann boundary-value problem} \author[S. Benmansour, M. Bouchekif\hfil EJDE-2011/118\hfilneg] {Safia Benmansour, Mohammed Bouchekif} % in alphabetical order \address{Safia Benmansour \newline Laboratoire Syst\`emes Dynamiques et Applications, Universit\'e Abou Bekr Belkaid, 13 000 Tlemcen, Alg\'erie} \email{safiabenmansour@hotmail.fr} \address{Mohammed Bouchekif \newline Laboratoire Syst\`emes Dynamiques et Applications, Universit\'e Abou Bekr Belkaid, 13 000 Tlemcen, Alg\'erie} \email{m\_bouchekif@yahoo.fr} \thanks{Submitted July 25, 2011. Published September 14, 2011.} \subjclass[2000]{34B15, 47N20} \keywords{Positive solution; existence and uniqueness; normal cone; \hfill\break\indent $\alpha$-concave operator; Green's function} \begin{abstract} In this article, we show the existence and uniqueness of positive solutions for perturbed Neumann boundary-value problems of second-order differential equations. We use a fixed point theorem for general $\alpha$-concave operators. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \section{Introduction} This article is devoted to the existence and uniqueness of positive solutions for the perturbed Neumann boundary-value problem \begin{equation} \begin{gathered} u''(t) +m^2u(t) =f\big(t,u(t)\big) +g(t), \quad 0\theta$. Chen \cite{c1} established fixed point theorems for $\alpha $-sublinear mapping where $\alpha \in (0,1)$. The problem \begin{equation} \begin{gathered} -u''(t) +m^2u(t) =f_1(t,u), \quad 01$, $m>0$ and $f$ a positive continuous and symmetric function, has been considered by Bensedik and Bouchekif in \cite{b1}. They established the existence, uniqueness and symmetry of positive solutions by using a fixed point theorem of Krasnoselskii in a cone (see \cite{g1,k1}). Mays and Norbury \cite{m1} studied problem \eqref{P-} with $f_1( t,u(t) ) =u^2(1+\sin t)$ by using analytical and numerical methods. To our knowledge, only a few results are known about problem \eqref{Pm}. Recently, Zhai and Cao \cite{z1} presented the concept of $\alpha $-$u_0$-concave operator which generalizes the previous concepts. More explicitly they gave some new existence and uniqueness theorems of fixed points for $\alpha $-$u_0$-concave increasing operators in ordered Banach spaces. Zhang and Zhai \cite{z3} proved the existence of a unique positive solution in a certain cone under sufficient conditions on $f$ and $g$, for $m\in ( 0,\pi/2) $. A natural and interesting question is whether results concerning the positive solutions of \eqref{Pm} with $m\in ( 0,\pi/2) $ remain valid for an arbitrary positive constant $m$. The response is affirmative. Before giving our main result, we state here some definitions, notation and known results. For more details, the reader can consult the books \cite{g1,k1}. Let $(E,\| \cdot\| )$ be a real Banach space and $K$ be a cone in $E$. The cone $K$ defines a partial ordering in $E$ through $x\leq y\Leftrightarrow y-x\in K$, $\forall x,y\in E$. $K$ is said to be normal if there exists a positive constant $N$ such that for any $x,y\in E$, $\theta \leq x\leq y$ implies $\| x\| \leq N\| y\| $, where $\theta $ denotes the zero element in $E$. Given $h>\theta $ (i.e. $h-\theta \in K$ and $h\neq \theta $), we denote by $K_h$ the set \[ \{ u\in K: \exists\lambda( u) ;\mu ( u) >0 ;\, u-\mu ( u) h\in K\text{ and }\lambda ( u) h-u\in K\} . \] We recall the fixed point theorem for general $\alpha $-concave operators which is the main tool for proving the existence and uniqueness of positive solutions in $K_h$ for the problem $u=Au+u_0$ where $u_0$ is given. We start by the following definition. \begin{definition} \label{def1} \rm The operator $A:K_h\to K_h$ is said to be a general $\alpha $-concave operator if: For any $u\in K_h$ and $t\in [ 0,1] $, there exists $\alpha (t)\in (0,1)$ such that $A(tu)\geq t^{\alpha (t)}A(u)$. \end{definition} \begin{theorem}[\cite{z2}] \label{thm1} Assume that the cone $K$ is normal and the operator $A$ satisfies the following conditions: \begin{itemize} \item[(A1)] $A:K_h\to K_h$ is increasing \item[(A2)] For any $u\in K_h$ and $t\in [ 0,1] $, there exists $\alpha (t)\in (0,1)$ such that $A(tu)\geq t^{\alpha (t)}A(u)$ \item[(A3)] There exists a constant $l\geq 0$ such that $u_0\in [\theta ,lh]$. \end{itemize} Then the operator equation $u=Au+u_0$ has a unique solution in $K_h$. \end{theorem} By a positive solution of \eqref{Pm}, we understand a function $u(t)\in C^2([ 0,1] )$, which is positive for $00 \text{ such that }\mu ( u) h\leq u\leq \lambda ( u) h\} \] where $h\in E$ is a given strictly positive function. Let $m$ be a positive number, and $m_1$ chosen arbitrarily in $( 0,\pi/2) $ such that $m^2=m_1^2+m_2^2$. Consider the following assumptions: \begin{itemize} \item[(F1)] $f( t,s) $ is increasing in $s\in (0,s_0)$ for fixed $t$ in $[ 0,1] $ and $ f_{s}' (t,0)=+\infty $; \item[(F2)] For any $\gamma \in ( 0,1) $, $s\in(0,s_0)$ there exists $\varphi ( \gamma ) \in (\gamma ,1]$ such that \[ f( t,\gamma s) \geq \varphi ( \gamma ) f(t,s) ,\quad \text{for }t\in [ 0,1] . \] \item[(G1)] There exists $s_1\in (0,s_0)$ such that \[ | g| _0\leq \big(m_1\sin m_1+m_2^2\big)s_1 -f(t,s_1) \quad \forall t\in [ 0,1] . \] \end{itemize} Note that for large $s$, there is no condition assumed on $f$. This is in contrast with most of the papers cited above, concerning similar problems. Now, we give our main result. \begin{theorem}\label{thm3} Assume that {\rm (F1), (F2), (G1)} hold. Then \eqref{Pm} with $m>0$ has a unique solution in $K_h$, where \begin{gather*} h(t) =\cos m_1t\cos m_1( 1-t) ,\quad t\in [ 0,1],\\ m_1\in ( 0,\pi/2)\quad \text{such that } m^2=m_1^2+m_2^2. \end{gather*} \end{theorem} This work is organized as follows. In Section 2, we introduce the modified problem, Section 3 is concerned with the existence and uniqueness result. \section{Modified problem} Let $G_m( t,s) $ be the Green's function for the boundary-value problem \begin{gather*} u''(t) +m^2u(t) =0,\quad 00$, for $m\in ( 0,\pi/2) $. \end{itemize} The following result is obtained in \cite{z3}. \begin{theorem}\label{thm2} Assume that {\rm (H1), (H2), (H3)} hold. Then, \eqref{tildePm} with $m\in ( 0,\pi/2) $ has a unique solution in $K_h$, where \[ h(t) =\cos mt\cos m( 1-t) ,\quad t\in [0,1] . \] \end{theorem} The solution in the above theorem is represented as \[ u(t)=\int_0^1 G_m(t,s)f(s,u(s))ds+\int_0^1 G_m(t,s) g(s)ds. \] Our idea is to use Theorem \ref{thm2} by introducing the modified problem below that reduces problem \eqref{Pm} to $m_1\in (0,\pi/2)$: \begin{equation} \begin{gathered} u''(t) +m_1^2u(t) =\tilde{f}( t,u(t) ) +g(t), \quad 00$ such that \begin{equation} \frac{f( t,r_2) -f( t,r_1) }{r_2-r_1}\geq m^2,\quad \text{for } 0\leq r_10$. Thus, we conclude that problem \eqref{tildePm1} admits a unique solution $\tilde{u}$ in $K_h$. \section{Existence and uniqueness results} To conclude that $\tilde{u}$ is also a solution of the problem \eqref{Pm}, it suffices to prove that $| \widetilde{u}| _0\leq s_2$. The solution $\widetilde{u}$ is given by \[ \widetilde{u}(t)=\int_0^1 G_{m_1}(t,s)[\widetilde{f} (s,\widetilde{u}(s))+g(s)]ds. \] Observe that $| G_{m_1}(t,r)| \leq (m_1\sin m_1)^{-1}$ for all $t,r \in [ 0,1]$. Therefore, we obtain the estimate \[ | \widetilde{u}| _0\leq \overline{\mu }( s_2) (m_1\sin m_1)^{-1}| \widetilde{u}| _0^{\alpha }+| g| _0(m_1\sin m_1)^{-1}, \] where $\overline{\mu }( s_2) :=\max_{t\in [ 0,1] } (f( t,s_2) -m_2^2s_2)s_2^{-\alpha }$. Let $\psi (s):=s-\overline{\mu }( s_2) (m_1\sin m_1)^{-1}s^{\alpha }-| g| _0(m_1\sin m_1)^{-1}$. We have $| \widetilde{u}| _0\leq s_2$ if $\psi (s_2)\geq 0$, which follows from conditions \eqref{eqC} and (G1). Thus $\tilde{u}$ is also the unique solution of the problem \eqref{Pm} in $K_h$ with $h(t) =\cos m_1t\cos m_1( 1-t) $, $t\in [ 0,1]$. \begin{thebibliography}{00} \bibitem{a1} H. Amann; \emph{Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces}, SIAM Rev. 18 (1976), 620-709. \bibitem{b1} A. Bensedik, M. Bouchekif; \emph{Symmetry and uniqueness of positive solutions for Neumann boundary value problem}, Appl. Math. Lett. 20 (2007), 419-426. \bibitem{c1} Y. Z. Chen; \emph{Continuation method for $\alpha $-sublinear mappings}, Proc. Am. Math. Soc. 129 (2001), 203-210. \bibitem{c2} R. Courant, D. Hilbert; \emph{Methods of mathematical physics}, Wiley (New York), 1983 \bibitem{g1} D. Guo and V. Laksmikantham; \emph{Nonlinear problems in abstract cone}, Academic Press Inc. Boston (USA), 1988. \bibitem{j1} D. Jiang, H. Lin, D. O'Regan, R. P. Agarwal; \emph{Positive solutions for second order Neumann boundary value problem}, J. Math. Res. Exposition 20 (2000), 360-364. \bibitem{k1} M. A. Krasnoselskii; \emph{Positive solutions of operators equations}, Noordhooff, Groningen, 1964. \bibitem{m1} L. Mays, J. Norbury; \emph{Bifurcation of positive solutions for Neumann boundary value problem}, Anziam J. 42 (2002), 324-340. \bibitem{s1} Y. P. Sun, Y. Sun; \emph{Positive solutions for singular semi positone Neumann boundary value problems}, Electron. J. Differential Equations, Vol. 2004 (2004), No. 133, 1-8. \bibitem{s2} J. Sun, W. Li, S. Cheng; \emph{Three positive solutions for second order Neumann boundary value problems}, Appl. Math. Lett. 17 (2004), 1079-1084. \bibitem{z1} C. B. Zhai, X. M. Cao; \emph{Fixed point theorems for $\tau$-$\varphi $-concave operators and applications}, Comput. Math. Appl., 59 (2010), 532-538. \bibitem{z2} C. B. Zhai, C. Yang, C. M. Guo; \emph{Positive solutions of operator equation on ordered Banach spaces and applications}, Comput. Math. Appl. 56 (2008), 3150-3156. \bibitem{z3} J. Zhang, C. B. Zhai; \emph{Existence and uniqueness results for perturbed Neumann boundary value problems}, Bound. Value Probl. (2010), doi: 10.1155/2010/494210. \end{thebibliography} \end{document}