\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 120, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2011/??\hfil Solvability of a second-order DE] {Solvability of a second-order multi-point boundary-value problems at resonance on a half-line with dim\,ker L=2 } \author[W. Jiang, B. Wang, Z. Wang\hfil EJDE-2011/??\hfilneg] {Weihua Jiang, Bin Wang, Zhenji Wang} % in alphabetical order \address{Weihua Jiang \newline College of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China} \email{weihuajiang@hebust.edu.cn} \address{Bin Wang \newline Department of Basic Courses, Hebei Professional and Technological College of Chemical and Pharmaceutical Engineering, Shijiazhuang, 050026, Hebei, China} \email{wb@hebcpc.cn} \address{Zhenji Wang \newline Department of Basic Courses, Hebei Professional and Technological College of Chemical and Pharmaceutical Engineering, Shijiazhuang, 050026, Hebei, China} \email{wzj@hebcpc.cn} \thanks{Submitted June 30, 2011. Published September 19, 2011.} \subjclass[2000]{34B10, 34B15} \keywords{Resonance; Fredholm operator; multi-point boundary-value problem; \hfill\break\indent coincidence degree theory} \begin{abstract} We show the existence of solutions for a second-order multi-point boundary-value problem at resonance on a half-line, where the dimension of the kernel of the differential operator is 2. Our main tools are the coincidence degree theory due to Mawhin, suitable operators, and algebraic methods. Our results are illustrated with an example. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we show the existence of solutions for the boundary-value problem \begin{gather} x''(t)=f(t,x(t),x'(t))+e(t),\quad t\in (0,+\infty),\label{e1.1}\\ x(0)=\sum_{i=1}^{m}\alpha_ix(\xi_i),\quad \lim_{t\to +\infty}x'(t)=\sum_{j=1}^{n}\beta_jx'(\eta_j),\label{e1.2} \end{gather} where $f:[0,+\infty)\times R^2\to R$, $e\in L^1[0,+\infty)$, $0<\xi_1<\xi_2<\dots<\xi_m<+\infty$, $0<\eta_1<\eta_2<\dots<\eta_n<+\infty$, $m\geq 2$, $n\geq 1$. Multi-point boundary value problems of ordinary differential equations arise in a variety of different areas of Applied Mathematics and Physics. For example, the vibrations of a guy wire of a uniform cross-section being composed of $N$ parts of different densities can be set up as a multi-point boundary-value problem (see \cite{m5}); many problems in the theory of elastic stability can be handled by the method of multi-point problems(see \cite{t1}). Bridges of small size are often designed with two supported points, which leads to a standard two-point boundary condition and bridges of large size are sometimes contrived with multi-point supports, which corresponds to a multi-point boundary condition (see \cite{z3}). Boundary-value problem \eqref{e1.1}-\eqref{e1.2} is called a problem at resonance if $Lx:=x''(t)=0$ has non-trivial solutions under the boundary condition \eqref{e1.2}; i.e., when $\dim\ker L\geq 1$. On the finite interval [0,1], the first-order, second-order and high-order multi-point boundary-value problems at resonance have been studied by many authors (see \cite{d1,f1,f2,g1,g2,g3,g4,k1,l3,l4,l5,l7,m1,m2,m3,n1,p1}), where $\dim\ker L=1$. In \cite{k2,z1,z2}, the second-order multi-point boundary-value problems at resonance have been discussed when $\dim \ker L=2$ on the finite interval [0,1]. Recently, the boundary-value problems at resonance on the infinite interval with $\dim \ker L=1$ has been investigated by many authors, see \cite{k3,l2,y1,l6}and references cited therein. Although the existing literature on solutions of multi-point boundary-value problems is quite wide, to the best of our knowledge, there is few paper to investigate the resonance case with $\dim \ker L =2$ on the infinite interval. Motivated by the above results, by constructing the suitable operators and getting help from the algebraic methods, we will show the existence of solutions for the second-order multi-point boundary-value problem at resonance on a half-line with $\dim \ker L= 2$, which brings many difficulties. And we give an example to illustrate our results. Some methods used in this paper are new and they can be used to solve the $nth$-order boundary-value problems at resonance with $1<\dim \ker L\leq n$. This paper is organized as follows. In Section 2, some necessary backgrounds will be stated and some lemmas be proved. In Section 3, the main results will be given and proved. In Section 4, an example is given to illustrate our results. In this article, we will assume the following conditions: \begin{itemize} \item[(C1)] $f:[0,+\infty)\times R^2\to R$ is a $S$-Carath\'eodory function; i.e., \begin{itemize} \item[(i)] $f(t,\cdot)$ is continuous on $R^2$ for a.e. $t\in[0,+\infty)$. \item[(ii)] $f(\cdot,x)$ is Lebesgue measurable on $[0,+\infty)$ for each $x\in\mathbb{R}^2$. \item[(iii)] For each $r>0$, there exists a function $\varphi_r\in L^1[0,+\infty)$, $\varphi_r(t)\geq 0$, $t\in[0,+\infty)$ satisfying $\int_0^{+\infty}s\varphi_r(s)ds<+\infty$ such that $$ |f(t,x)|\leq \varphi_r(t),\quad \text{a. e. }t\in [0,+\infty),\;||x||0$ such that $\|x\|\leq r$ for any $x\in \overline{\Omega}$. For $x\in \overline{\Omega}$, by (C1), we obtain \begin{align*} |Q_1Nx| &=|\sum_{i=1}^{m}\alpha_i\int_{0}^{\xi_i}(\xi_i-s)[f(s,x(s),x'(s)) +e(s)]ds|\\ &\leq\sum_{i=1}^{m}|\alpha_i\xi_i|\int_{0}^{+\infty}\varphi_r(s) +|e(s)|ds:=l_1 \end{align*} and \begin{align*} |Q_2Nx| &=|\sum_{j=1}^{n}\beta_j\int_{\eta_j}^{+\infty}f(s,x(s),x'(s)) +e(s)ds| \\ &\leq\sum_{j=1}^{n}|\beta_j|\cdot\int_{0}^{+\infty}\varphi_r(s) +|e(s)|ds:=l_2. \end{align*} Thus, \begin{equation} \begin{split} \|QNx\|_1 &=\int_{0}^{+\infty}|QNx(s)|ds\\ &\leq\int_{0}^{+\infty}|T_1Nx(s)|ds+\int_{0}^{+\infty}|T_2Nx(s)|sds\\ &\leq \frac{1}{|\Delta|}[|\Delta_{11}|\cdot|Q_1Nx| +|\Delta_{12}|\cdot|Q_2Nx|]\\ &\quad +\frac{1}{|\Delta|}[|\Delta_{21}|\cdot|Q_1Nx| +|\Delta_{22}|\cdot|Q_2Nx|]\\ &\leq\frac{1}{|\Delta|}[(|\Delta_{11}|+|\Delta_{21}|)l_1 +(|\Delta_{12}| +|\Delta_{22}|)l_2]. \end{split} \label{e2.2} \end{equation} So, $QN(\overline{\Omega})$ is bounded. Now, we will prove that $K_P(I-Q)N(\overline{\Omega})$ is compact. (a). Obviously, $K_P(I-Q)N:\overline{\Omega}\to Y$ is continuous. For $x\in\overline{\Omega}$, since \begin{equation} \|Nx\|_1=\int_{0}^{+\infty}|f(s,x(s),x'(s)) +e(s)|ds\leq\int_{0}^{+\infty}\varphi_r(s) +|e(s)|ds:=l_3, \label{e2.3} \end{equation} \begin{align*} \frac{|K_P(I-Q)N x(t)|}{1+t} &=\frac{1}{1+t}|\int_0^t(t-s)(I-Q)Nx(s)ds|\\ &\leq\int_{0}^{+\infty}|Nx(s)|+|QNx(s)|ds\\ &=\|Nx\|_1+\|QNx\|_1, \end{align*} and \begin{align*} |[K_P(I-Q)N x]'(t)| &=|\int_0^t(I-Q)Nx(s)ds|\\ &\leq\int_{0}^{+\infty}|Nx(s)|+|QNx(s)|ds\\ &=\|Nx\|_1+\|QNx\|_1, \end{align*} by \eqref{e2.2} and \eqref{e2.3}, we obtain that $K_P(I-Q)N(\overline{\Omega})$ is bounded. (b). For any $T\in[0,+\infty)$, we will prove that functions belonging to $K_P(I-Q)N(\overline{\Omega})$ are equi-continuous on $[0,T]$. In fact, for $x\in\overline{\Omega}$, we have \begin{gather} |Nx(s)|\leq\varphi_r(s)+|e(s)|.\quad s\in[0,\infty),\label{e2.4}\\ |QNx(s)|\leq\frac{1}{|\Delta|}[(|\Delta_{11}|l_1+|\Delta_{12}|l_2) +(|\Delta_{21}|l_1+|\Delta_{22}|l_2)s]e^{-s}. \label{e2.5} \end{gather} For any $t_1,t_2\in[0,T]$, $t_10,~B>0$ such that, if $|x(t)|>A$ for every $t\in[0,B]$ or $|x'(t)|>A$ for every $t\in[0,+\infty)$, then either $Q_1Nx\neq0$ or $Q_2Nx\neq0$, where $\|\beta\|_1+\|\gamma\|_1<\frac{1}{2+B}$; \item[(H3)] There exists a constant $C>0$ such that, if $|a|>C$ or $|b|>C$, then either \begin{itemize} \item[(1)] $ aQ_1N(a+bt)+bQ_2N(a+bt)<0$, or \item[(2)] $aQ_1N(a+bt)+bQ_2N(a+bt)>0$. \end{itemize} \end{itemize} Then the boundary-value problem \eqref{e1.1}--\eqref{e1.2} has at least one solution in $X$. \end{theorem} \begin{proof} We divide the proof into four steps. \textbf{Step1.} Let $$ \Omega_1=\{x\in \operatorname{dom}L\setminus \ker L:Lx=\lambda Nx, \text{ for some }\lambda\in[0,1]\}. $$ We will prove that $\Omega_1$ is bounded. In fact, $x\in \Omega_1$ means $\lambda\neq 0$ and $Nx\in \operatorname{Im}L$. Thus $$ Q_1Nx=Q_2Nx=0. $$ By (H2), there exist $t_0\in[0,B]$, $t_1\in[0,+\infty)$ such that $$ |x(t_0)|\leq A,\quad |x'(t_1)|\leq A. $$ So, $$ |x'(t)|=|x'(t_1)-\int_{t}^{t_1}x''(s)ds| \leq A+\int_{t}^{t_1}|Nx(s)|ds\leq A+\|Nx\|_1; $$ i.e., $\|x'\|_{\infty}\leq A+\|Nx\|_1$. Considering \begin{align*} |x(0)| &=|x(t_0)-\int_{0}^{t_0}x'(s)ds| \leq A+|\int_{0}^{t_0}x'(s)ds|\\ &\leq A+\|x'\|_{\infty}\cdot B \leq A(1+B)+B\cdot\|Nx\|_1, \end{align*} we have $$ \|Px\|\leq |x(0)|+|x'(0)|\leq A(2+B)+(1+B)\|Nx\|_1. $$ By $LPx=0$, \eqref{e2.1} and (H1), we obtain \begin{align*} \|x\| &=\|Px+(I-P)x\|\leq \|Px\|+\|K_PL(I-P)x\|\\ &\leq\|Px\|+\|Lx\|_1\leq \|Px\|+\|Nx\|_1\\ &\leq(2+B)(A+\|Nx\|_1)\\ &\leq(2+B)(A+\|\alpha\|_1+\|\beta\|_1\cdot\|x\| +\|\gamma\|_1\cdot\|x\|+\|\delta\|_1\cdot\|x\|^{\theta}+\|e\|_1). \end{align*} So, $$ \|x\|\leq\frac{2+B}{1-(2+B)(\|\beta\|_1+\|\gamma\|_1)} (A+\|\alpha\|_1+\|e\|_1+\|\delta\|_1\cdot\|x\|^{\theta}). $$ It follows from $\theta\in[0,1)$ that $\Omega_1$ is bounded. \textbf{Step2.} Set $\Omega_2=\{x\in \ker L:Nx\in \operatorname{Im}L\}$. Then $\Omega_2$ is bounded. In fact, $x\in\Omega_2$ implies $x=a+bt$ and $Q_1N(a+bt)=Q_2N(a+bt)=0$. By $(H_3)$, we obtain $|a|\leq C,~|b|\leq C$. So, $\Omega_2$ is bounded. \textbf{Step3.} Define the isomorphism $J:\ker L\to \operatorname{Im}Q$ by $$ J(a+bt)=\frac{1}{\Delta}[\Delta_{11}a+\Delta_{12}b+(\Delta_{21}a +\Delta_{22}b)t]e^{-t}. $$ Assume (H3)(1) holds. Let $$ \Omega_3=\{x\in \ker L:-\lambda Jx+(1-\lambda)QNx=0, \text{ for some }\lambda\in[0,1]\}. $$ Then $\Omega_3$ is bounded. In fact, $x\in \Omega_3$ means that there exist constants $a,b\in\mathbb{R}$, $\lambda\in[0,1]$ such that $x=a+bt$ and $\lambda Jx=(1-\lambda)QNx$. If $\lambda=0$, then $QNx=0$. So, \begin{gather*} \Delta_{11}Q_1Nx+\Delta_{12}Q_2Nx=0,\\ \Delta_{21}Q_1Nx+\Delta_{22}Q_2Nx=0. \end{gather*} It follows from $\Delta\neq0$ that $Q_1Nx=Q_2Nx=0$. By (H3), we obtain $|a|\leq C$, $|b|\leq C$. If $\lambda=1$, we can similarly get $a=b=0$. For $\lambda\in(0,1)$, by $\lambda Jx=(1-\lambda)QNx$, we obtain \begin{gather*} \lambda\Delta_{11}a+\lambda\Delta_{12}b =(1-\lambda)\Delta_{11}Q_1N(a+bt)+(1-\lambda)\Delta_{12}Q_2N(a+bt),\\ \lambda\Delta_{21}a+\lambda\Delta_{22}b =(1-\lambda)\Delta_{21}Q_1N(a+bt)+(1-\lambda)\Delta_{22}Q_2N(a+bt). \end{gather*} It follows from $\Delta\neq 0$ that \begin{gather*} \lambda a=(1-\lambda)Q_1N(a+bt),\\ \lambda b=(1-\lambda)Q_2N(a+bt). \end{gather*} If $|a|>C$, $|b|>C$, by (H3)(1), we obtain $$ \lambda(a^2+b^2)=(1-\lambda)[aQ_1N(a+bt)+bQ_2N(a+bt)]<0, $$ a contradiction. So, $\Omega_3$ is bounded. \begin{remark} \label{rmk3.1} \rm If (H3)(2) holds, take $$ \Omega_3=\{x\in \ker L:\lambda Jx+(1-\lambda)QNx=0, \text{ for some }\lambda\in[0,1]\}. $$ We can similarly prove that $\Omega_3$ is bounded. \end{remark} \textbf{Step4.} Take an open bounded set $\Omega\supset\bigcup_{i=1}^{3}\overline{\Omega_i}\bigcup\{0\}$. We will prove that \eqref{e1.1}--\eqref{e1.2} has at least one solution in $\operatorname{dom}L\cap\overline{\Omega}$. By Step1 and Step2, we obtain \begin{itemize} \item[(1)] $Lx\neq \lambda Nx,$ for every $(x,\lambda)\in[(\operatorname{dom}L\setminus \ker L) \cap\partial\Omega]\times(0,1)$; \item[(2)] $Nx\not\in \operatorname{Im}L$, for every $x\in \ker L\cap\partial\Omega$. \end{itemize} Now we will show that \begin{itemize} \item[(3)] $\deg(QN|_{\ker L}, \Omega\cap \ker L,~0)\neq0$. \end{itemize} Let $H(x,\lambda)=\pm\lambda Jx+(1-\lambda)QNx$. By step 3, we know that $H(x,\lambda)\neq 0$, for every $(x,\lambda)\in (\ker L\cap\partial\Omega)\times[0,1]$. Thus, by the homotopy property of degree, we obtain \begin{align*} \deg(QN|_{\ker L},\Omega\cap \ker L,0) &=\deg(H(\cdot,0),\Omega\cap \ker L,0) \\ &=\deg(H(\cdot,1),\Omega\cap \ker L,0)\\ & =\deg(\pm J,~\Omega\cap \ker L,0) =\pm 1\neq 0. \end{align*} By Theorem \ref{thm2.1}, we can get that $Lx=Nx$ has at least one solution in $\operatorname{dom}L\cap\overline{\Omega}$; i.e. , \eqref{e1.1}--\eqref{e1.2} has at least one solution in $X$. The prove is completed. \end{proof} \section{Example} Let's consider the boundary-value problem \begin{gather} x''(t)=f(t,x(t),x'(t))+e(t),\quad t\in[0,\infty),\label{e4.1} \\ x(0)=2x(1)-x(2),\quad x'(\infty)=x'(2),\label{e4.2} \end{gather} where \begin{gather*} f(t,x(t),x'(t))=\begin{cases} -e^{-10t}x(0),& 0\leq t\leq 2,\\ e^{-10t}sinx'(t)+e^{-t}\sqrt[3]{x'(t)},& t>2. \end{cases} \\ e(t)=\begin{cases} 0, & 0\leq t\leq 2,\\ te^{-t}, & t>2. \end{cases} \end{gather*} Corresponding to problem \eqref{e1.1}-\eqref{e1.2}, we have that $m=2$, $n=1$, $\alpha_1=2$, $\alpha_2=-1$, $\xi_1=1$, $\xi_2=2$, $\beta_1=1$, $\eta_1=2$. Obviously, (C1) and (C2) are satisfied. By simple calculation, we obtain $a_{11}=-(1-e^{-1})^2$, $a_{21}=6e^{-1}-2-4e^{-2}$, $a_{12}=e^{-2}$, $a_{22}=3e^{-2}$. $$ \Delta= \left|\begin{matrix} a_{11} & a_{12} \\ a_{21}& a_{22} \end{matrix}\right| =e^{-4}-e^{-2}\neq 0\,. $$ So, (C3) is satisfied. Take $\alpha(t)=0$, $\theta=\frac{1}{3}$, \begin{gather*} \beta(t)=\begin{cases} (1+t)e^{-10t}, &0\leq t\leq 2,\\ 0, & t>2, \end{cases} \quad \gamma(t)=\begin{cases} 0, &0\leq t\leq 2,\\ e^{-10t},& t>2, \end{cases}\\ \delta(t)=\begin{cases} 0, & 0\leq t\leq 2,\\ e^{-t},& t>2. \end{cases} \end{gather*} Then $f$ satisfies (H1). We can easily get that $\|\beta\|_1=\frac{1}{10}[\frac{11}{10}-\frac{31}{10}e^{-20}]$, $\|\gamma\|_1=\frac{1}{10}e^{-20}$. So, we have $\|\beta\|_1+\|\gamma\|_1<1/5$. Let $B=2$, $A=e^{-54}/1000$. We get that $Q_1Nx\neq 0$ if $|x(t)|>A$, for any $t\in[0,2]$ and $Q_2Nx\neq 0$ if $|x'(t)|>A,$ for any $t\in[0,\infty)$. This means that (H2) is satisfied. Set $C=100$. We can easily get that $$ aQ_1N(a+bt)+bQ_2N(a+bt)>0 $$ if $|a|>C$ or $|b|>C$. So, (H3) is satisfied. By theorem \ref{thm3.1}, we obtain that problem \eqref{e4.1}--\eqref{e4.2} has at least one solution. \subsection*{Acknowledgments} This work is supported by grants 10875094 and 60874003 from the Natural Science Foundation of China; 08M007, 11171088 and A2009000664 from the Natural Science Foundation of Hebei Province; (2008153) from the Foundation of Hebei Education Department; XL200814 from the Foundation of Hebei University of Science and Technology. \begin{thebibliography}{00} \bibitem{a1} R. P. Agarwal, D. O'Regan; \emph{Infinite Interval Problems for Differential, Difference and Integral Equations}, Kluwer Academic, 2001. \bibitem{d1} Z. Du, X. Lin, W. Ge; \emph{Some higher-order multi-point boundary value problem at resonance}, J. Comput. Appl. Math. 177(2005), 55-65. \bibitem{d2} B. Du, X. Hu; \emph{A new continuation theorem for the existence of solutions to $P$-Lpalacian BVP at resonance}, Appl. Math. Comput. 208(2009), 172-176. \bibitem{f1} W. Feng, J. R. L. Webb; \emph{Solvability of $m$-point boundary value problems with nonlinear growth}, J. Math. Anal. Appl. 212(1997), 467-480. \bibitem{f2} W. Feng, J. R. L. Webb; \emph{Solvability of three-point boundary value problems at resonance}, Nonlinear Anal. Theory Meth. Appl. 30(1997), 3227-3238. \bibitem{g1} C. P. Gupta; \emph{Solvability of multi-point boundary value problem at resonance}, Results Math. 28(1995), 270-276. \bibitem{g2} C. P. Gupta; \emph{A second order $m$-point boundary value problem at resonance}, Nonlinear Anal. Theory Meth. Appl.24(1995), 1483-1489. \bibitem{g3} C. P. Gupta; \emph{Existence theorems for a second order $m$-point boundary value problem at resonance}, Int. J. Math. Sci. 18(1995), 705-710. \bibitem{g4} C. P. Gupta; \emph{On a third-order boundary value problem at resonance}, Diff, Integral Equat, 2(1989), 1-12. \bibitem{k1} G. L. Karakostas, P. Ch. Tsamatos; \emph{On a Nonlocal Boundary Value Problem at Resonance}, J. Math. Anal. Appl. 259(2001), 209-218. \bibitem{k2} N. Kosmatov; \emph{A multi-point boundary value problem with two critical conditions}, Nonlinear Anal., 65(2006), 622-633. \bibitem{k3} N. Kosmatov; \emph{Multi-point boundary value problems on an unbounded domain at resonance}, Nonlinear Anal., 68(2008), 2158-2171. \bibitem{l2} H. Lian, H. Pang, W. Ge; \emph{Solvability for second-order three-point boundary value problems at resonance on a half-line}, J. Math. Anal. Appl. 337(2008), 1171-1181. \bibitem{l3} B. Liu; \emph{Solvability of multi-point boundary value problem at resonance (II)}, Appl. Math. Comput. 136(2003) 353-377. \bibitem{l4} B. Liu; \emph{Solvability of multi-point boundary value problem at resonance-Part }, Appl. Math. Comput. 143(2003) 275-299. \bibitem{l5} Y. Liu, W. Ge; \emph{Solvability of nonlocal boundary value problems for ordinary differential equations of higher order}, Nonlinear Anal., 57(2004), 435-458. \bibitem{l6} Liu, Yang; Li, Dong; Fang, Ming; \emph{Solvability for second-order m-point boundary value problems at resonance on the half-line}. Electron. J. Differential Equations 2009, No. 13, 11 pp. \bibitem{l7} S. Lu, W. Ge; \emph{On the existence of $m$-point boundary value problem at resonance for higher order differential equation}, J. Math. Anal. Appl. 287(2003), 522-539. \bibitem{m5} M. Moshinsky; \emph{Sobre los problems de condiciones a la frontiera en una dimension de caracteristicas discontinuas}, Bol. Soc. Mat. Mexicana, 7 (1950) 1-25. \bibitem{m1} R. Ma; \emph{Multiplicity results for a third order boundary value problem at resonance}, Nonlinear Anal. TMA 32(1998), 493-499. \bibitem{m2} R. Ma; \emph{Multiplicity results for a three-point boundary value problem at resonance}, Nonlinear Anal. TMA 53(2003), 777-789. \bibitem{m3} R. Ma; \emph{Existence results of a $m$-point boundary value problem at resonance}, J. Math. Anal. Appl. 294(2004), 147-157. \bibitem{m4} J. Mawhin; \emph{Topological degree methods in nonlinear boundary value problems}, in:NSFCBMS Regional Conference Series in Mathematics,American Mathematical Society, Providence, RI, 1979. \bibitem{n1} R. K. Nagle, K. L. Pothoven; \emph{On a third-order nonlinear boundary value problem at resonance}, J. Math. Anal. Appl. 195(1995), 148-159. \bibitem{p1} B. Prezeradzki, R. Stanczy; \emph{Solvability of a multi-point boundary value problem at resonance}, J. Math. Anal. Appl. 264(2001), 253-261. \bibitem{t1} S. Timoshenko; \emph{Theory of Elastic Stability, McGraw-Hill}, New York, 1961. \bibitem{y1} Yang, Aijun; Ge, Weigao; \emph{Positive solutions for second-order boundary value problem with integral boundary conditions at resonance on a half-line}. JIPAM. J. Inequal. Pure Appl. Math. 10 (2009), Article 9, 10 pp. \bibitem{z1} Du Zengji, Meng Fanchao; \emph{Solutions to a second-order multi-point boundary value problem at resonance}, Acta Math. Scientia, 30B(5)(2010), 1567-1576. \bibitem{z2} X. Zhang, M. Feng, W. Ge; \emph{Existence result of second-order differential equations with integral boundary conditions at resonance}, J. Math. Anal. Appl., 353(2009), 311-319. \bibitem{z3} Y. Zou, Q. Hu, R. Zhang; \emph{On numerical studies of multi-point boundary value problem and its fold bifurcation}, Appl. Math. Comput. 185 (2007) 527-537. \end{thebibliography} \end{document}