\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{graphicx} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 136, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/136\hfil Centers on center manifolds] {Centers on center manifolds in a quadratic system obtained from a scalar third-order differential equation} \author[W. F. da Cunha, F. S. Dias, L. F. Mello \hfil EJDE-2011/136\hfilneg] {Warley Ferreira da Cunha, Fabio Scalco Dias, Luis Fernando Mello} % in alphabetical order \address{Warley Ferreira da Cunha \newline Instituto de Ci\^encias Exatas, Universidade Federal de Itajub\'a\\ Avenida BPS 1303, Pinheirinho, CEP 37.500-903, Itajub\'a, MG, Brazil} \email{warleycunha@unifei.edu.br} \address{Fabio Scalco Dias \newline Instituto de Ci\^encias Exatas, Universidade Federal de Itajub\'a\\ Avenida BPS 1303, Pinheirinho, CEP 37.500-903, Itajub\'a, MG, Brazil} \email{scalco@unifei.edu.br} \address{Luis Fernando Mello \newline Instituto de Ci\^encias Exatas, Universidade Federal de Itajub\'a\\ Avenida BPS 1303, Pinheirinho, CEP 37.500-903, Itajub\'a, MG, Brazil\newline Tel: 00-55-35-36291217, Fax: 00--55-35-36291140} \email{lfmelo@unifei.edu.br} \thanks{Submitted September 29, 2011. Published October 19, 2011.} \subjclass[2000]{34C40, 34C15, 34C60, 34C25} \keywords{Center; center manifold; invariant algebraic surface; quadratic system} \begin{abstract} We give affirmative answers to two questions concerning the existence of centers on local center manifolds at equilibria of a quadratic system in the three dimensional space. These questions were posed by Dias and Mello \cite{DM} when studying a scalar third-order differential equation. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{question}[theorem]{Question} \section{Introduction}\label{S:1} Dias and Mello \cite{DM} studied the stability and bifurcations in the dynamics of the third-order differential equation \begin{equation}\label{eq:01} x''' + f(x) \: x'' + g(x) x' + h(x) = 0, \end{equation} where $f, g, h : \mathbb{R} \to \mathbb{R}$ are \begin{equation}\label{eq:02} f(x) = a_1 x + a_0, \quad g(x) = b_1 x + b_0, \quad h(x) = c_2 x^2 + c_1 x + c_0, \end{equation} with $a_1, a_0, b_1, b_0, c_2, c_1, c_0 \in \mathbb{R}$, $c_2 \neq 0$. From the natural definition of the variables $y = x'$ and $z = x''$, differential equation \eqref{eq:01} can be written as the system of nonlinear differential equations \begin{equation}\label{eq:03} \begin{gathered} x' = P(x,y,z) = y,\\ y' = Q(x,y,z) = z,\\ z' = R(x,y,z) = - \big( (a_1 x + a_0) z + (b_1 x + b_0) y + c_2 x^2 + c_1 x + c_0 \big), \end{gathered} \end{equation} where $(x,y,z) \in \mathbb{R}^3$ are the state variables and $(a_0, a_1, b_0, b_1, c_0, c_1, c_2) \in \mathbb{R}^7$, $c_2 \neq 0$, are real parameters. The choice of real affine functions $f$ and $g$ and a quadratic function $h$ implies that the vector field that defines \eqref{eq:03}, \begin{equation}\label{eq:04} \mathcal{X} (x,y,z) = \left( P(x,y,z), Q(x,y,z), R(x,y,z) \right), \end{equation} is a quadratic vector field. So, system \eqref{eq:03} is a quadratic system of differential equations in $\mathbb{R}^3$. Despite its simplicity, \eqref{eq:03} has a rich local dynamical behavior presenting several degenerate bifurcations. See \cite{DM} for more details. Define the following two curves in the space of parameters of system \eqref{eq:03} (see \cite[figures 1 and 2]{DM}) \begin{gather*} \mathcal{L}_2 = \{ a_0 = 1/b_0, a_1 = 0, b_0 > 0, b_1 = 2 b_0, c_0 =0, c_1 = c_2 =1 \}, \\ \mathcal{L}_3 = \{ a_0 = 0, a_1 > 0, b_0 = 1/a_1, b_1 = 0, c_0 =0, c_1 = c_2 =1 \}. \end{gather*} It was shown in \cite{DM} that for parameters in $\mathcal{L}_2$ the Jacobian matrix of $\mathcal{X}$ at the equilibrium point $E_0 = (0,0,0)$ presents one negative real eigenvalue and a pair of purely imaginary eigenvalues, \[ \lambda_1 = - \frac{1}{b_0}, \quad \lambda_{2,3}= \pm i \sqrt{b_0}, \] and the first four Lyapunov coefficients vanish. Analogously, for parameters in $\mathcal{L}_3$ the Jacobian matrix of $\mathcal{X}$ at the equilibrium point $E_1 = (-1, 0, 0)$ presents one positive real eigenvalue and a pair of purely imaginary eigenvalues, \[ \theta_1 = a_1, \quad \theta_{2,3}= \pm i /\sqrt{a_1}, \] and the first four Lyapunov coefficients vanish too. In the study of local and global bifurcations of system \eqref{eq:03} in \cite{DM}, the following two questions were posed. \begin{question}\label{q:01} \rm Consider system \eqref{eq:03} with parameters in $\mathcal{L}_2$. Is the equilibrium point $E_0$ a center for the flow of system \eqref{eq:03} restricted to the center manifold? \end{question} \begin{question}\label{q:02} \rm Consider system \eqref{eq:03} with parameters in $\mathcal{L}_3$. Is the equilibrium point $E_1$ a center for the flow of system \eqref{eq:03} restricted to the center manifold? \end{question} The study of stability of equilibrium points is an interesting subject of research; for recent developments see \cite{MPS,MC}. However, the stability of degenerate equilibrium points is very difficult. The present article may contribute to the understanding of degenerate equilibrium points of system \eqref{eq:03}, by giving affirmative answers the two questions above. \section{Answers to Questions \ref{q:01} and \ref{q:02}}\label{S:2} For parameters in $\mathcal{L}_2$ ($\mathcal{L}_3$, respectively) system \eqref{eq:03} has a nonhyperbolic equilibrium point at $E_0$ ($E_1$, respec.). By the Center Manifold Theorem, see \cite{kuznet}, there is a two dimensional invariant manifold $W_0^{c}$ ($W_1^{c}$, respec.) in a neighborhood of $E_0$ ($E_1$, respec.) that is tangent to the center eigenspace $E_0^c$ at $E_0$ ($E_1^c$ at $E_1$, respec.) and contains all the local recurrent behavior of the system. The center manifold $W_0^{c}$ ($W_1^{c}$, respec.) is attracting (repelling, respec.) since $\lambda_1 < 0$ ($\theta_1 >0$, respec.). Our answers to Questions \ref{q:01} and \ref{q:02} are based on the existence of invariant algebraic surfaces for system \eqref{eq:03}: a polynomial $F(x,y,z)$ defines an invariant algebraic surface $\mathcal{A} = F^{-1}(0)$ for system \eqref{eq:03} if and only if there exists a polynomial $K(x,y,z)$, called the cofactor of $F$, such that $\mathcal{X} F = K F$. See \cite{llibre} and the references therein. \begin{theorem}\label{thm:01} For parameters in $\mathcal{L}_2$ system \eqref{eq:03} has an invariant algebraic surface $\mathcal{A}_{b_0} = F_{b_0}^{-1}(0)$, $b_0 > 0$, where \begin{equation}\label{eq:05} F_{b_0} (x,y,z) = b_0 x + z + b_0 x^2. \end{equation} Furthermore, $W_0^{c} \subset \mathcal{A}_{b_0}$ and the flow of system \eqref{eq:03} restrict to $\mathcal{A}_{b_0}$ has a center at $E_0$. \end{theorem} \begin{proof} For parameters in $\mathcal{L}_2$ we have \begin{equation}\label{eq:051} \mathcal{X}_{b_0} = \Big( y, z, - \big( x + b_0 y + \frac{1}{b_0} z + x^2 + 2 b_0 xy \big) \Big). \end{equation} It is simple to see that $\mathcal{X}_{b_0} F_{b_0} = K F_{b_0}$ for $F_{b_0}$ in \eqref{eq:05} and the cofactor $K(x,y,z) = - 1/b_0$. Therefore, $\mathcal{A}_{b_0} = F_{b_0}^{-1}(0)$ is an invariant algebraic surface of the system defined by \eqref{eq:051} for each $b_0> 0$. It is immediate that $E_0 \in \mathcal{A}_{b_0}$. The center eigenspace $E_0^c$ at $E_0$ is spanned by the vectors \[ V_{b_0}^{1} = \big( - 1/b_0, 0, 1 \big), \quad V_{b_0}^{2} = \big( 0, - 1/\sqrt{b_0}, 0 \big). \] The gradient of $F_{b_0}$ at $E_0$ is given by $\nabla F_{b_0}(E_0) = (b_0, 0, 1)$. Hence $\nabla F_{b_0}(E_0)$ is orthogonal to $V_{b_0}^{1}$ and $V_{b_0}^{2}$. This implies that $W_0^{c} \subset \mathcal{A}_{b_0}$. \begin{figure}[htb] \begin{center} \includegraphics[width=0.7\textwidth]{fig1} \end{center} \caption{Phase portrait of system \eqref{eq:06}. The equilibrium $E_0$ is a center while the equilibrium $E_1$ is a saddle. Note a homoclinic loop at $E_1$ bounding the center region} \label{fig1} \end{figure} Solving $F_{b_0} = 0$ for the variable $z$ in terms of $x$ and substituting into the first and second equations of the system defined by \eqref{eq:051} we have the differential equations \begin{equation}\label{eq:06} x' = y, \quad y' = -b_0 x - b_0 x^2, \end{equation} which is a Hamiltonian system with Hamiltonian function \[ H(x, y) = \frac{b_0}{2} x^2 + \frac{1}{2} y^2 + \frac{b_0}{3} x^3. \] The phase portrait of this system is illustrated in Figure \ref{fig1} which can be viewed as the projection in the plane $xy$ of the phase portrait of the system defined by \eqref{eq:051} on the invariant algebraic surface $\mathcal{A}_{b_0}$ for each $b_0 > 0$. The phase portrait of the system defined by \eqref{eq:051} on $\mathcal{A}_{b_0}$ is depicted in Figure \ref{fig2}. The proof is complete. \end{proof} The affirmative answer to Question \ref{q:01} follows from Theorem \ref{thm:01}. \begin{figure}[htb] \begin{center} \includegraphics[width=0.7\textwidth]{fig2} \end{center} \caption{Phase portrait of the system defined by \eqref{eq:051} on $\mathcal{A}_{b_0}$ in a neighborhood of the equilibrium $E_0$} \label{fig2} \end{figure} To give an affirmative answer to Question \ref{q:02} we make the change of variables $(\bar{x}, \bar{y}, \bar{z}) = (x,y,z) - (-1, 0, 0)$; that is, we translate the equilibrium $E_1 = (-1, 0,0)$ to $\bar{E}_1 = (0,0,0)$. \begin{theorem}\label{thm:02} For parameters in $\mathcal{L}_3$ system \eqref{eq:03} with the above change of variables has an invariant algebraic surface $\mathcal{A}_{a_1} = F_{a_1}^{-1}(0)$, $a_1 > 0$, where \begin{equation}\label{eq:07} F_{a_1} (x,y,z) = x + a_1 z. \end{equation} Furthermore, $W_1^{c} \subset \mathcal{A}_{a_1}$ and the flow of system \eqref{eq:03}, with the above change of variables, restrict to $\mathcal{A}_{a_1}$ has a center at $\bar{E}_1$. \end{theorem} \begin{proof} For parameters in $\mathcal{L}_3$, with the change of variables $(\bar{x}, \bar{y}, \bar{z}) = (x,y,z) - (-1, 0, 0)$ and dropping the bars we have \begin{equation}\label{eq:08} \mathcal{X}_{a_1} = \Big( y, z, - \big( -x + \frac{1}{a_1} y - a_1 z + x^2 + a_1 xz \big) \Big). \end{equation} It is simple to see that $\mathcal{X}_{a_1} F_{a_1} = K F_{a_1}$ for $F_{a_1}$ in \eqref{eq:07} and the cofactor $K(x,y,z) = a_1 - a_1 x$. Therefore, $\mathcal{A}_{a_1} = F_{a_1}^{-1}(0)$ is an invariant algebraic surface of the system defined by \eqref{eq:08} for each $a_1 > 0$. It is immediate that $\bar{E}_1 \in \mathcal{A}_{a_1}$. The center eigenspace $E_1^c$ at $\bar{E}_1$ is spanned by the vectors \[ V_{a_1}^{1} = ( - a_1, 0, 1 ), \quad V_{a_1}^{2} = ( 0, - \sqrt{a_1}, 0 ). \] The gradient of $F_{a_1}$ at $\bar{E}_1$ is given by $\nabla F_{a_1}(\bar{E}_1) = (1, 0, a_1)$. Hence $\nabla F_{a_1}(\bar{E}_1)$ is orthogonal to $V_{a_1}^{1}$ and $V_{a_1}^{2}$. This implies that $W_1^{c} \subset \mathcal{A}_{a_1}$. Solving $F_{a_1} = 0$ for the variable $z$ in terms of $x$ and substituting into the first and second equations of the system defined by \eqref{eq:08} we have the differential equations \begin{equation}\label{eq:09} x' = y, \quad y' = -\frac{1}{a_1} x, \end{equation} which is a Hamiltonian linear system with Hamiltonian function \[ H(x, y) = \frac{1}{2 a_1} x^2 + \frac{1}{2} y^2. \] The phase portrait of the system defined by \eqref{eq:08} on $\mathcal{A}_{a_1}$ is depicted in Figure \ref{fig3}. The proof is complete. \end{proof} \begin{figure}[htb] \begin{center} \includegraphics[width=0.7\textwidth]{fig3} \end{center} \caption{Phase portrait of the system defined by \eqref{eq:08} on $\mathcal{A}_{a_1}$ in a neighborhood of the equilibrium $\bar{E}_1$} \label{fig3} \end{figure} The affirmative answer to Question \ref{q:02} follows from Theorem \ref{thm:02}. \subsection*{Concluding remarks}\label{S:5} This paper provides a stability analysis that accounts for the characterization, in the space of parameters, of the structural as well as Lyapunov stability of the equilibria of system \eqref{eq:03}. Concerning the vanishing of the Lyapunov coefficients in a quadratic system two questions about the stability of the equilibria $E_0$ and $E_1$ are answered. See Questions \ref{q:01} and \ref{q:02} and Theorems \ref{thm:01} and \ref{thm:02}. Our proofs of Theorems \ref{thm:01} and \ref{thm:02} show that the local center manifolds of equilibria $E_0$ and $E_1$ are algebraic ruled surfaces. In particular, the local center manifolds of equilibrium $E_1$ are planes coincident with the center eigenspaces $E_1^{c}$ for each parameter $a_1 > 0$. These are unexpected results. \subsection*{Acknowledgements} W. F. da Cunha is partially supported by CAPES. L. F. Mello is partially supported by grants 304926/2009-4 from CNPq, and PPM-00204-11 from FAPEMIG. F. S. Dias and L. F. Mello are partially supported by project APQ-01511-09 from FAPEMIG. \begin{thebibliography}{0} \bibitem{DM} {F. S. Dias and L. F. Mello}; \emph{Analysis of a quadratic system obtained from a scalar third order differential equation}, Electron. J. Differential Equations, vol. 2010 (2010), No. 161, 1--25. \bibitem{kuznet} Y. A. Kuznetsov; \emph{Elements of Applied Bifurcation Theory}, second edition, Springer-Verlag, New York, 1998. \bibitem{llibre} J. Llibre; \emph{On the integrability of the differential systems in dimension two and of the polynomial differential systems in arbitrary dimension}, Journal of Applied Analysis and Computation, {\bf 1} (2011), 33--52. \bibitem{MPS} A. Mahdi, C. Pessoa, D. S. Shafer; \emph{Centers on center manifolds in the L\"u system}, Phys. Lett. A, {\bf 375} (2011), 3509--3511. \bibitem{MC} L. F. Mello, S. F. Coelho; \emph{Degenerate Hopf bifurcations in the L\"u system}, Phys. Lett. A, {\bf 373} (2009), 1116-1120. \end{thebibliography} \end{document}