\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 14, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/14\hfil Positive solutions] {Positive solutions to generalized second-order three-point integral boundary-value problems} \author[S. Chasreechai, J. Tariboon\hfil EJDE-2011/14\hfilneg] {Saowaluk Chasreechai, Jessada Tariboon} % in alphabetical order \address{Saowaluk Chasreechai \newline Department of Mathematics, Faculty of Applied Science \\ King Mongkut's University of Technology North Bangkok \\ Bangkok 10800, Thailand} \email{slc@kmutnb.ac.th} \address{Jessada Tariboon \newline Department of Mathematics, Faculty of Applied Science \\ King Mongkut's University of Technology North Bangkok \\ Bangkok 10800, Thailand. \newline Centre of Excellence in Mathematics, CHE, Sri Ayutthaya Road, Bangkok 10400, Thailand} \email{jessadat@kmutnb.ac.th} \thanks{Submitted October 22, 2010. Published January 26, 2011.} \subjclass[2000]{34B15, 34K10} \keywords{Positive solution; three-point boundary value problem; \hfill\break\indent fixed point theorem; cone} \begin{abstract} In this article, by using Krasnoselskii's fixed point theorem, we obtain single and multiple positive solutions to the nonlinear second-order three-point integral boundary value problem \begin{gather*} u''(t)+a(t)f(u(t))=0,\quad 00$. Set \[ f_0=\lim_{u\to 0+}\frac{f(u)}{u},\quad f_{\infty}=\lim_{u\to\infty}\frac{f(u)}{u}. \] The study of the existence of solutions of multi-point boundary-value problems for linear second-order ordinary differential equations was initiated by Il'in and Moiseev \cite{i1}. Then Gupta \cite{g2} studied three-point boundary value problems for nonlinear second-order ordinary differential equations. Since then, the existence of positive solutions for nonlinear second order three-point boundary-value problems has been studied by many authors by using a nonlinear alternative of the Leray-Schauder approach, coincidence degree theory, the fixed point theorem for cones and so on. We refer the reader to \cite{c1,g1,h1,l1,l2,l3,l4,l5,l6,l7,m1,m2,m3,p1,s1,s2,x1} and the references therein. However, all of these papers are concerned with problems with three-point boundary conditions consisting of restrictions on the slope of the solutions and the solutions themselves, for example: \begin{gather*} u(0)=0,\quad \alpha u(\eta)=u(1); \\ u(0)=\beta u(\eta),\quad \alpha u(\eta)=u(T); \\ u'(0)=0,\quad \alpha u(\eta)=u(1); \\ u(0)-\beta u'(0)=0,\quad \alpha u(\eta)=u(1); \\ \alpha u(0)-\beta u'(0)=0,\quad u'(\eta)+u'(1)=0;\;\text{etc.} \end{gather*} Recently, Tariboon \cite{t1} and the author proved the existence of positive solutions for the three-point boundary-value problem with integral condition \begin{gather} u''(t)+a(t)f(u(t))=0,\quad t\in(0,1), \label{I1-3}\\ u(0)=0,\quad \alpha\int_0^{\eta}u(s)ds=u(1),\label{I1-4} \end{gather} where $0<\eta<1$ and $0<\alpha<2/\eta^2$. We note that the three-point integral boundary conditions \eqref{I1-2} and \eqref{I1-4} are related to the area under the curve of solutions $u(t)$ from $t=0$ to $t=\eta$. The aim of this article is to establish some simple criteria for the existence of single positive solution for \eqref{I1-1}, \eqref{I1-2} under $f_0=0$, $f_{\infty}=\infty$ ($f$ is superlinear) or $f_0=\infty$, $f_{\infty}=0$ ($f$ is sublinear). Moreover, we establish the existence conditions of two positive solutions for \eqref{I1-1}, \eqref{I1-2} under $f_0=f_{\infty}=\infty$ or $f_0=f_{\infty}=0$. Finally, we give some examples to illustrate our results. The key tool in our approach is the Krasnoselskii's fixed point theorem in a cone. \begin{theorem}[\cite{k1}]\label{Thm1-1} Let $E$ be a Banach space, and let $K\subset E$ be a cone. Assume $\Omega_1$, $\Omega_2$ are open subsets of $E$ with $0\in \Omega_1$, $\overline{\Omega}_1\subset\Omega_2$, and let $$ A:K\cap(\overline{\Omega}_1\setminus\Omega_2)\to K $$ be a completely continuous operator such that \begin{itemize} \item[(i)] $\|Au\|\leqslant\|u\|$, $u\in K\cap\partial\Omega_1$, and $\|Au\|\geqslant\|u\|$, $u\in K\cap\partial\Omega_2$; or \item[(ii)] $\|Au\|\geqslant\|u\|$, $u\in K\cap\partial\Omega_1$, and $\|Au\|\geqslant\|u\|$, $u\in K\cap\partial\Omega_2$. \end{itemize} Then $A$ has a fixed point in $K\cap(\overline{\Omega}_2\setminus\Omega_1)$. \end{theorem} \section{Preliminaries} We now state and prove several lemmas before stating our main results. \begin{lemma}\label{Lem-1} Let $\beta\neq\frac{2T-\alpha\eta^2}{\eta(2T-\eta)}$. Then for $y\in C[0,T]$, the problem \begin{gather}\label{P2-1} u''+y(t)=0,\quad t\in(0,T), \\ \label{P2-2} u(0)=\beta\int_0^{\eta}u(s)ds,\quad \alpha\int_0^{\eta}u(s)ds=u(T), \end{gather} has a unique solution \begin{align*} u(t) &= \frac{(\beta-\alpha)t-\beta T}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^{\eta}(\eta-s)^2y(s)ds \\ &\quad +\frac{2(1-\beta\eta)t+\beta\eta^2}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^T (T-s)y(s)ds-\int_0^t(t-s)y(s)ds. \end{align*} \end{lemma} \begin{proof} From \eqref{P2-1}, we have $u''(t) =-y(t)$. For $t\in[0,T)$, integrating from $0$ to $t$, we obtain \[ u'(t)=u'(0)-\int_0^ty(s)ds. \] For $t\in[0,T]$, integrating from $0$ to $t$, we obtain \[ u(t)=u(0)+u'(0)t-\int_0^t\Big(\int_0^xy(s)ds\Big)dx; \] i.e., \begin{equation}\label{P2-3} u(t)=u(0)+u'(0)t-\int_0^t(t-s)y(s)ds:=A+Bt-\int_0^t(t-s)y(s)ds. \end{equation} Integrating \eqref{P2-3} from $0$ to $\eta$, where $\eta\in (0,T)$, we have \begin{align*} \int_0^{\eta}u(s)ds &= \eta A+\frac{\eta^2}{2}B-\int_0^{\eta} \Big(\int_0^x(x-s)y(s)ds\Big)dx \\ &= \eta A+\frac{\eta^2}{2}B-\frac{1}{2}\int_0^{\eta}(\eta-s)^2y(s)ds. \end{align*} Since $u(0)=A$, \[ u(T)= A+BT-\int_0^T(T-s)y(s)ds. \] By \eqref{P2-2}, from $u(0)=\beta\int_0^{\eta}u(s)ds$ we have \[ (1-\beta\eta)A-\frac{\beta\eta^2}{2}B=-\frac{\beta}{2} \int_0^{\eta}(\eta-s)^2y(s)ds, \] and from $u(T)=\alpha\int_0^{\eta}u(s)ds$ we have \[ (1-\alpha\eta)A+\big(T-\frac{\alpha\eta^2}{2}\big)B =\int_0^T(T-s)y(s)ds -\frac{\alpha}{2}\int_0^{\eta}(\eta-s)^2y(s)ds. \] Therefore, \begin{align*} A&=\frac{\beta\eta^2}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^T(T-s) y(s)ds \\ &\quad -\frac{\beta T}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{\eta}(\eta-s)^2y(s)ds \end{align*} \begin{align*} B&=\frac{2(1-\beta\eta)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^T(T-s)y(s)ds \\ &\quad +\frac{(\beta-\alpha)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{\eta}(\eta-s)^2y(s)ds. \end{align*} Hence, \eqref{P2-1}-\eqref{P2-2} has a unique solution \begin{align*} u(t) &= \frac{(\beta-\alpha)t-\beta T}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^{\eta}(\eta-s)^2y(s)ds \\ &\quad +\frac{2(1-\beta\eta)t+\beta\eta^2}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^T (T-s)y(s)ds-\int_0^t(t-s)y(s)ds. \end{align*} \end{proof} \begin{lemma}\label{Lem-2} Let $0<\alpha<\frac{2T}{\eta^2}$, $0<\beta<\frac{2T-\alpha\eta^2}{\eta(2T-\eta)}$. If $y\in C(0,T)$ and $y(t)\geqslant 0$ on $(0,T)$, then the unique solution $u$ of \eqref{P2-1}-\eqref{P2-2} satisfies $u(t)\geqslant 0$ for $t\in[0,T]$. \end{lemma} \begin{proof} It is known that the graph of $u$ is concave down on $[0, T]$ from $u''(t)=-y(t)\leqslant 0$, we obtain \begin{equation}\label{P2-4} \int_0^{\eta}u(s)ds\geqslant \frac{1}{2}\eta \big(u(0)+u(\eta)\big), \end{equation} where $\frac{1}{2}\eta \big(u(0)+u(\eta)\big)$ is the area of the trapezoid under the curve $u(t)$ from $t=0$ to $t=\eta$ for $\eta\in (0, T)$. Combining \eqref{P2-4} with \eqref{P2-2}, we can get \begin{gather}\label{P2-5} u(0)\geqslant \frac{\beta\eta}{2-\beta\eta}u(\eta), \\ \label{P2-6} u(T)\geqslant \frac{\alpha\eta}{2-\beta\eta}u(\eta), \end{gather} such that \begin{equation}\label{P2-7} 2-\beta\eta>2-\frac{2T-\alpha\eta^2}{2T-\eta} =\frac{2(T-\eta)+2\eta^2}{2T-\eta}>0. \end{equation} From the graph of $u$ being concave down on $[0, T]$ again, we obtain \begin{equation}\label{P2-8} \frac{u(\eta)-u(0)}{\eta}\geqslant \frac{u(T)-u(0)}{T}. \end{equation} Using \eqref{P2-5}, \eqref{P2-6} and \eqref{P2-8}, we obtain \[ \frac{2-2\beta\eta}{\eta}u(\eta)\geqslant \frac{(\alpha-\beta)\eta}{T}u(\eta). \] If $u(0)< 0$, then $u(\eta)<0$. It implies $\frac{2T-\alpha\eta^2}{\eta(2T-\eta)}\leqslant\beta$, a contradiction to $\beta<\frac{2T-\alpha\eta^2}{\eta(2T-\eta)}$. If $u(T)<0$, then $u(\eta)<0$, and the same contradiction emerges. Thus, it is true that $u(0)\geqslant 0$, $u(T)\geqslant 0$, together with the concavity of $u$, we have $u(t)\geqslant 0$ for $t\in[0, T]$. This proof is complete. \end{proof} \begin{lemma}\label{Lem-3} Let $\alpha\eta^2\neq 2T$, $\beta>\max\big\{\frac{2T-\alpha\eta^2}{\eta(2T-\eta)}, 0\big\}$. If $y\in C(0,T)$ and $y(t)\geqslant 0$ for $t\in[0,T]$, then problem \eqref{P2-1}-\eqref{P2-2} has no positive solutions. \end{lemma} \begin{proof} Suppose that \eqref{P2-1}-\eqref{P2-2} has a positive solution $u$ satisfying $u(t)\geqslant 0$, $t\in[0,T]$ and there is a $\tau_0\in(0,T)$ such that $u(\tau_0)>0$. If $u(T)>0$, then $\int_{0}^{\eta}u(s)ds>0$. It implies \begin{equation} u(0)=\beta\int_0^{\eta}u(s)ds>\frac{2T-\alpha\eta^2} {\eta(2T-\eta)}\int_0^{\eta}u(s)ds\geqslant\frac{\eta T (u(0)+u(\eta))-\eta^2u(T)} {\eta(2T-\eta)}; \end{equation} that is \begin{equation} \frac{u(T)-u(0)}{T}>\frac{u(\eta)-u(0)}{\eta}, \end{equation} which is a contradiction to the concavity of $u$. If $u(T)=0$, then $\int_0^{\eta}u(s)ds=0$. When $\tau_0\in(0,\eta)$, we obtain $u(\tau_0)>u(T)=0>u(\eta)$, which contradicts the concavity of $u$. When $\tau_0\in(\eta, T)$, we obtain $u(\eta)\leqslant 0=u(0)< u(\tau_0)$, which contradicts the concavity of $u$ again. Therefore, no positive solutions exist. \end{proof} Let $E=C[0, T]$, then $E$ is a Banach space with respect to the norm \[ \|u\|=\sup_{t\in[0, T]}|u(t)|. \] \begin{lemma}\label{Lem-4} Let $0<\alpha<\frac{2T}{\eta^2}$, $0< \beta<\frac{2T-\alpha\eta^2}{\eta(2T-\eta)}$. If $y\in C(0,T)$ and $y(t)\geqslant 0$ for $t\in[0,T]$, then the unique solution to problem \eqref{P2-1}-\eqref{P2-2} satisfies \begin{equation}\label{P2-9} \min_{t\in[0, T]}u(t)\geqslant\gamma\|u\|, \end{equation} where \begin{equation}\label{P2-10} \gamma:=\min\Big\{\frac{\alpha\eta(T-\eta)} {T(2-\beta\eta)-\alpha\eta^2},\frac{\alpha\eta^2} {(2-\beta\eta)T},\frac{\beta\eta(T-\eta)}{(2-\beta\eta)T}, \frac{\beta\eta^2}{(2-\beta\eta)T}\Big\}. \end{equation} \end{lemma} \begin{proof} From the fact that $u''(t)=-y(t)\leqslant 0$, we know that the graph of $u(t)$ is concave down on $[0,T]$. If $u(t)$ is maximum at $t=\tau_1$, then $\|u\|=u(\tau_1)$. We divide the proof into two cases. Case (i) If $u(0)\geqslant u(T)$ and $\min_{t\in[0,T]}u(t)=u(T)$, then either $0\leqslant \tau_1\leqslant \eta\rho_*$ such that \begin{equation}\label{M3-3} f(u)\geqslant M^*u\quad \text{for }u\geqslant\gamma\rho^*. \end{equation} Set $\Omega_{\rho^*}=\{u\in E:\|u\|<\rho^*\}$ for $u\in K\cap\partial\Omega_{\rho^*}$. Since $u\in K$, $\min_{t\in[0,T]}u(t)\geqslant\gamma\|u\|=\gamma\rho^*$. Hence, for any $u\in K\cap\Omega_{\rho^*}$, from \eqref{M3-3} and \eqref{P2-7}, we obtain \begin{align*} Au(\eta) &= \frac{(\beta-\alpha)\eta-\beta T}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^{\eta}(\eta-s)^2a(s)f(u(s))ds \\ &\quad +\frac{(2-\beta\eta)\eta}{(2T-\alpha\eta^2) -\beta\eta(2T-\eta)}\int_0^T (T-s)a(s)f(u(s))ds\\ &\quad -\int_0^{\eta}(\eta-s)a(s)f(u(s))ds \\ &=\frac{(2-\beta\eta)\eta}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^T (T-s)a(s)f(u(s))ds \\ &\quad +\frac{1}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\\ &\quad\times \int_0^{\eta} (\eta-s)\Big[-(2-\beta\eta)T+\big(\beta(T-\eta)+\alpha\eta\big)s\Big]a(s)f(u(s))ds \\ &\geqslant \frac{(2-\beta\eta)\eta}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^T (T-s)a(s)f(u(s))ds \\ &\quad +\frac{-T}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^{\eta} (\eta-s)(2-\beta\eta)a(s)f(u(s))ds \\ &\geqslant \frac{(2-\beta\eta)\eta}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^T (T-s)a(s)f(u(s))ds \\ &\quad +\frac{-T}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^{T} (\eta-s)(2-\beta\eta)a(s)f(u(s))ds \\ &=\frac{(2-\beta\eta)(T-\eta)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T} sa(s)f(u(s))ds \\ &\geqslant \gamma\rho^*M^*\frac{(2-\beta\eta)(T-\eta)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^{T} sa(s)ds\\ &=M^*\Lambda_2\rho^*\geqslant\rho^*=\|u\|, \end{align*} which implies \begin{equation}\label{M3-4} \|Au\|\geqslant\|u\|\quad \text{for }u\in K\cap\partial\Omega_{\rho^*}. \end{equation} Therefore, from \eqref{M3-2}$, \eqref{M3-4}$ and Theorem \ref{Thm1-1}, it follows that $A$ has a fixed point in $K\cap(\overline{\Omega}_{\rho^*}\setminus\Omega_{\rho_*})$ such that $\rho_*\leqslant\|u\|\leqslant\rho^*$. Next, let (H2) hold. In view of $f_0=\lim_{u\to 0^+}(f(u)/u)=\infty$ for any $M_*\in[\Lambda_2^{-1}, \infty)$, there exists $r_*>0$ such that \begin{equation}\label{M3-5} f(u)\geqslant M_*u\quad \text{for }0\leqslant u\leqslant r_*. \end{equation} Set $\Omega_{r_*}=\{u\in E:\|u\|r_*$ such that \begin{equation}\label{M3-7} f(u)\leqslant \varepsilon_1u\quad \text{for } u\in[r_0,\infty). \end{equation} We have the next two cases: Case (i): Suppose that $f(u)$ is unbounded, then from $f\in C([0,\infty),[0,\infty))$, we know that there is $r^*>r_0$ such that \begin{equation}\label{M3-8} f(u)\leqslant f(r^*)\quad \text{for } u\in[0,r^*]. \end{equation} Since $r^*>r_0$, from \eqref{M3-7} and \eqref{M3-8}, one has \begin{equation}\label{M3-9} f(u)\leqslant f(r^*)\leqslant \varepsilon_1r^*\quad \text{for }u\in[0,r^*]. \end{equation} For $u\in K$, $\|u\|=r^*$, from \eqref{M3-9}, we obtain \begin{align*} Au(t) &\leqslant \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2) -\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)f(u(s))ds \\ &\leqslant \varepsilon_1r^* \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)ds \\ &= \varepsilon_1\Lambda_1r^*\leqslant r^*=\|u\|. \end{align*} Case (ii) Suppose that $f(u)$ is bounded, say $f(u)\leqslant N$ for all $u\in [0, \infty)$. Taking $r^*\geqslant\max\{N/\varepsilon_1, r_*\}$, for $u\in K$, $\|u\|=r^*$, we have \begin{align*} Au(t) &\leqslant \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2) -\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)f(u(s))ds \\ &\leqslant N \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)ds \\ &\leqslant \varepsilon_1r^* \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)ds \\ &=\varepsilon_1\Lambda_1r^*\leqslant r^*=\|u\|. \end{align*} Hence, in either case, we always may set $\Omega_{r^*}=\{u\in E:\|u\|0$, such that $f(u)\leqslant\Lambda_1^{-1}\rho_1$ for $u\in[0,\rho_1]$. \end{itemize} Then \eqref{I1-1}, \eqref{I1-2} has at least two positive solutions $u_1$ and $u_2$ such that \[ 0<\|u_1\|<\rho_1<\|u_2\|. \] \end{theorem} \begin{proof} At first, in view of $f_0=\lim_{u\to0^+}(f(u)/u)=\infty$, for any $M_*\in[\Lambda_2^{-1},\infty)$, there exists $\rho_*\in(0,\rho_1)$ such that \begin{equation}\label{M3-11} f(u)\geqslant M_*u,\quad \text{for }0\leqslant u\leqslant\rho_*. \end{equation} Set $\Omega_{\rho_*}=\{u\in E:\|u\|<\rho_*\}$ for $u\in K\cap\partial\Omega_{\rho_*}$. Since $u\in K$, then $\min_{t\in[0,T]}u(t)\geqslant\gamma\|u\|=\gamma\rho_*$. Thus from \eqref{M3-11}, for any $u\in K\cap\partial\Omega_{\rho_*}$, we obtain \begin{align*} Au(\eta) &= \frac{(\beta-\alpha)\eta-\beta T}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^{\eta}(\eta-s)^2a(s)f(u(s))ds \\ &\quad +\frac{(2-\beta\eta)\eta}{(2T-\alpha\eta^2) -\beta\eta(2T-\eta)}\int_0^T (T-s)a(s)f(u(s))ds\\ &\quad -\int_0^{\eta}(\eta-s)a(s)f(u(s))ds \\ &\geqslant \gamma \rho_*M_*\frac{(2-\beta\eta)(T-\eta)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^{T} sa(s)ds\\ &=M_*\Lambda_2\rho_*\geqslant \rho_*=\|u\|, \end{align*} which implies \begin{equation}\label{M3-12} \|Au\|\geqslant\|u\|\quad \text{for }u\in K\cap\partial\Omega_{\rho_*}. \end{equation} Next, since $f_{\infty}=\lim_{u\to\infty}(f(u)/u)=\infty$, then for any $M^*\in[\Lambda_2^{-1},\infty)$, there exists $\rho^*>\rho_1$ such that \begin{equation}\label{M3-13} f(u)\geqslant M^*u,\quad \text{for }u\geqslant\gamma\rho^*. \end{equation} Set $\Omega_{\rho^*}=\{u\in E:\|u\|<\rho^*\}$ for $u\in K\cap\partial\Omega_{\rho^*}$. Since $u\in K$, then $\min_{t\in[0,T]}u(t)\geqslant\gamma\|u\|=\gamma \rho^*$. Thus from \eqref{M3-13} for any $u\in K\cap\partial\Omega_{\rho^*}$, we have \begin{align*} Au(\eta) &= \frac{(\beta-\alpha)\eta-\beta T}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{\eta}(\eta-s)^2a(s)f(u(s))ds \\ &\quad +\frac{(2-\beta\eta)\eta}{(2T-\alpha\eta^2) -\beta\eta(2T-\eta)}\int_0^T (T-s)a(s)f(u(s))ds\\ &\quad -\int_0^{\eta}(\eta-s)a(s)f(u(s))ds \\ &\geqslant \gamma \rho^*M^*\frac{(2-\beta\eta)(T-\eta)}{(2T-\alpha\eta^2) -\beta\eta(2T-\eta)}\int_0^{T} sa(s)ds\\ &=M^*\Lambda_2\rho^*\geqslant \rho^*=\|u\|, \end{align*} which implies \begin{equation}\label{M3-14} \|Au\|\geqslant\|u\|\quad \text{for }u\in K\cap\partial\Omega_{\rho^*}. \end{equation} Finally, let $\Omega_{\rho_1}=\{u\in E:\|u\|<\rho_1\}$ for any $u\in K\cap\partial\Omega_{\rho_1}$. Then from (H4) we obtain \begin{align*} Au(t)&\leqslant \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)f(u(s))ds \\ &\leqslant \Lambda_1^{-1}\rho_1 \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)ds \\ &\leqslant \rho_1=\|u\|, \end{align*} which yields \begin{equation}\label{M3-15} \|Au\|\leqslant\|u\|\quad \text{for }u\in K\cap\partial\Omega_{\rho_*}. \end{equation} Thus, from \eqref{M3-12}, \eqref{M3-14} and \eqref{M3-15}, it follows from Theorem \ref{Thm1-1} that $A$ has a fixed point $u_1$ in $K\cap(\overline{\Omega}_{\rho_1}\setminus\Omega_{\rho_*})$, and a fixed point $u_2$ in $K\cap(\overline{\Omega}_{\rho^*}\setminus\Omega_{\rho_1})$. Both are positive solutions of \eqref{I1-1}, \eqref{I1-2} and $0<\|u_1\|<\rho_1<\|u_2\|$. The proof is complete. \end{proof} \begin{theorem} \label{Thm3-3} Suppose that the following assumptions are satisfied: \begin{itemize} \item[(H5)] $f_0=f_{\infty}=0$, \item[(H6)] There exists a constant $\rho_2>0$, such that \[ f(u)\geqslant\Lambda_2^{-1}\rho_2\quad \text{for }u\in[\gamma\rho_2,\rho_2]. \] \end{itemize} Then \eqref{I1-1}, \eqref{I1-2} has at least two positive solutions $u_1$ and $u_2$ such that \[ 0<\|u_1\|<\rho_2<\|u_2\|. \] \end{theorem} \begin{proof} Firstly, since $f_0=\lim_{u\to 0^+}(f(u)/u)=0$, for any $\varepsilon\in (0,\Lambda_1^{-1}]$, there exists $\rho_*\in(0,\rho_2)$ such that \begin{equation}\label{M3-16} f(u)\leqslant\varepsilon u,\quad \text{for }u\in[0,\rho_*]. \end{equation} Let $\Omega_{\rho_*}=\{u\in E:\|u\|<\rho_*\}$ for any $u\in K\cap\partial\Omega_{\rho_*}$. Then from \eqref{M3-16}, we obtain \begin{align*} Au(t)&\leqslant \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)f(u(s))ds \\ &\leqslant \varepsilon\rho_* \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)ds \\ &\leqslant \varepsilon\Lambda_1\rho_*\leqslant\rho_*=\|u\|, \end{align*} which implies \begin{equation}\label{M3-17} \|Au\|\leqslant\|u\|\quad \text{for }u\in K\cap\partial\Omega_{\rho_*}. \end{equation} Secondly, in view of $f_{\infty}=\lim_{u\to \infty}(f(u)/u)=0$, for any $\varepsilon_1\in(0, \Lambda_1^{-1}]$ there exists $\rho_0>\rho_2$, such that \begin{equation}\label{M3-18} f(u)\leqslant \varepsilon_1u,\quad \text{for }u\in[\rho_0,\infty). \end{equation} We consider the next two cases. Case (i): Suppose that $f(u)$ is unbounded. Then from $f\in C([0,\infty),[0,\infty))$, there exists $\rho^*>\rho_0$ such that \begin{equation}\label{M3-19} f(u)\leqslant f(\rho^*),\quad \text{for }u\in[0, \rho^*]. \end{equation} Since $\rho^*>\rho_0$, from \eqref{M3-18} and \eqref{M3-18} one has \begin{equation}\label{M3-20} f(u)\leqslant f(\rho^*)\leqslant \varepsilon_1\rho^*,\quad \text{for }u\in [0,\rho^*]. \end{equation} For $u\in K$, and $\|u\|=\rho^*$, from \eqref{M3-20}, we obtain \begin{align*} Au(t)&\leqslant \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)f(u(s))ds \\ &\leqslant \varepsilon_1\rho^* \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)ds \\ &\leqslant \varepsilon_1\Lambda_1\rho^*\leqslant \rho^*=\|u\|. \end{align*} Case (ii): Suppose that $f(u)$ is bounded, say $f(u)\leqslant L$ for all $u\in[0,\infty)$. Taking $\rho^*\geqslant\max\{L/\varepsilon_1, \rho_0\}$, for $u\in K$ with $\|u\|=\rho^*$, we have \begin{align*} Au(t)&\leqslant \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)f(u(s))ds \\ &\leqslant L \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)ds \\ &\leqslant \varepsilon_1\rho^* \frac{2T+\beta(T+\eta^2)}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)} \int_0^{T}T(T-s)a(s)ds \\ &\leqslant \varepsilon_1\Lambda_1\rho^*\leqslant \rho^*=\|u\|. \end{align*} Hence, in either case, we always may set $\Omega_{\rho^*}=\{u\in E:\|u\|<\rho^*\}$ such that \begin{equation}\label{M3-21} \|Au\|\leqslant\|u\|\quad \text{for }u\in K\cap\partial\Omega_{\rho^*}. \end{equation} Finally, set $\Omega_{\rho_2}=\{u\in E:\|u\|<\rho_2\}$ for $u\in K\cap\partial\Omega_{\rho_2}$. Since $u\in K$, $\min_{t\in[0, T]}u(t)\geqslant\gamma\|u\|=\gamma\rho_2$. Hence, for any $u\in K\cap\partial\Omega_{\rho_2}$, and (H6), we have \begin{align*} Au(\eta) &= \frac{(\beta-\alpha)\eta-\beta T}{(2T-\alpha\eta^2)-\beta\eta(2T-\eta)}\int_0^{\eta}(\eta-s)^2a(s)f(u(s))ds \\ &\quad +\frac{(2-\beta\eta)\eta}{(2T-\alpha\eta^2) -\beta\eta(2T-\eta)}\int_0^T (T-s)a(s)f(u(s))ds\\ &\quad -\int_0^{\eta}(\eta-s)a(s)f(u(s))ds \\ &\geqslant \gamma \rho_2\Lambda_2^{-1} \frac{(2-\beta\eta)(T-\eta)}{(2T-\alpha\eta^2) -\beta\eta(2T-\eta)}\int_0^{T} sa(s)ds\geqslant\rho_2=\|u\|, \end{align*} which yields \begin{equation}\label{M3-22} \|Au\|\geqslant\|u\|\quad \text{for }u\in K\cap\partial\Omega_{\rho_2}. \end{equation} Thus, since $\rho_*<\rho<\rho^*$ and from \eqref{M3-17}, \eqref{M3-21} and \eqref{M3-22}, it follows from Theorem \ref{Thm1-1} that $A$ has a fixed point $u_1$ in $K\cap(\overline{\Omega}_{\rho_2}\setminus\Omega_{\rho_*})$, and a fixed point $u_2$ in $K\cap(\overline{\Omega}_{\rho^*}\setminus\Omega_{\rho_2})$. Both are positive solutions of \eqref{I1-1}, \eqref{I1-2} and $0<\|u_1\|<\rho_2<\|u_2\|$. The proof is complete. \end{proof} \section{Some examples} In this section, to illustrate our results, we consider some examples. \begin{example}\rm Consider the boundary-value problem \begin{gather} u''(t)+t^2u^p=0,\quad 0400e^{-32}=\Lambda_2^{-1}\rho_2, \] which implies (H6) holds. Hence, by Theorem \ref{Thm3-3}, BVP \eqref{E4-5}, \eqref{E4-6} has at least two positive solutions $u_1$ and $u_2$ such that $0<\|u_1\|<32<\|u_2\|$. \end{example} \subsection*{Acknowledgements} The authors would like to thank Dr. Elvin James Moore for his valuable advice. This research is supported by the Centre of Excellence in Mathematics, Thailand. \begin{thebibliography}{00} \bibitem{c1} Z. Chengbo; \emph{Positive solutions for semi-positone three-point boundary value problems}, J. Comput. Appl. Math. \textbf{228} (2009), 279-286. \bibitem{g1} Y. Guo, W. Ge; \emph{Positive solutions for three-point boundary value problems with dependence on the first order derivative}, J. Math. Anal. Appl. \textbf{290} (2004,) 291-301. \bibitem{g2} C. P. Gupta; \emph{Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equations}, J. Math. Anal. Appl. \textbf{168} (1998), 540-551. \bibitem{h1} X. Han, Positive solutions for a three-point boundary value problem, Nonlinear Anal. \textbf{66}(2007), 679-688. \bibitem{i1} V. A. Il'in, E. I. Moiseev; \emph{Nonlocal boundary-value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects}, Differ. Equ. \textbf{23} (1987), 803-810. \bibitem{k1} M. A. Krasnoselskii; \emph{Positive Solutions of Operator Equations}, Noordhoof, Gronignen, 1964. \bibitem{l1} J. Li, J. Shen; \emph{Multiple positive solutions for a second-order three-point boundary value problem}, Appl. Math. Compt. \textbf{182} (2006), 258-268. \bibitem{l2} S. Liang, L. Mu; \emph{Multiplicity of positive solutions for singular three-point boundary value problems at resonance}, Nonlinear Anal. \textbf{71} (2009), 2497-2505. \bibitem{l3} R. Liang, J. Peng, J. Shen; \emph{Positive solutions to a generalized second order three-point boundary value problem}, Appl. Math. Compt. \textbf{196} (2008), 931-940. \bibitem{l4} B. Liu; \emph{Positive solutions of a nonlinear three-point boundary value problem}, Appl. Math. Comput. \textbf{132} (2002), 11-28. \bibitem{l5} B. Liu; \emph{Positive solutions of a nonlinear three-point boundary value problem}, Comput. Math. Appl. \textbf{44} (2002), 201-211. \bibitem{l6} B. Liu, L. Liu, Y. Wu; \emph{Positive solutions for singular second order three-point boundary value problems}, Nonlinear Anal. \textbf{66} (2007), 2756-2766. \bibitem{l7} H. Luo, Q. Ma; \emph{Positive solutions to a generalized second-order three-point boundary-value problem on time scales}, Electron. J. Differen. Equat. \textbf{2005}(2005), No. 17, 1-14. \bibitem{m1} R. Ma; \emph{Multiplicity of positive solutions for second-order three-point boundary value problems}, Comput. Math. Appl. \textbf{40} (2000), 193-204. \bibitem{m2} R. Ma; \emph{Positive solutions for second-order three-point boundary value problems}, Appl. Math. Lett. \textbf{14} (2001), 1-5. \bibitem{m3} R. Ma; \emph{Positive solutions of a nonlinear three-point boundary-value problem}, Electron. J. Differen. Equat. \textbf{1999}(1999), No. 34, 1-8. \bibitem{p1} H. Pang, M. Feng, W. Ge; \emph{Existence and monotone iteration of positive solutions for a three-point boundary value problem}, Appl. Math. Lett \textbf{21} (2008), 656-661. \bibitem{s1} H. Sun, W. Li; \emph{Positive solutions for nonlinear three-point boundary value problems on time scales}, J. Math. Anal. Appl. \textbf{ 299} (2004), 508-524. \bibitem{s2} Y. Sun, L. Liu, J. Zhang, R. P. Agarwal; \emph{Positive solutions of singular three-point boundary value problems for second-order differential equations}, J. Comput. Appl. Math. \textbf{230} (2009), 738-750. \bibitem{t1} J. Tariboon, T. Sitthiwirattham; \emph{Positive solutions of a nonlinear three-point integral boundary value problem}, Bound. Val. Prob. \textbf{2010} (2010), ID 519210, 11 pages, doi:10.1155/2010/519210. \bibitem{x1} X. Xu; \emph{Multiplicity results for positive solutions of some semi-positone three-point boundary value problems}, J. Math. Anal. Appl. \textbf{291} (2004), 673-689. \end{thebibliography} \end{document}