\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 143, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/143\hfil Oscillation results?] {Oscillation results for even-order quasilinear neutral functional differential equations} \author[B. Bacul\'ikov\'a, J. D\v{z}urina, T. Li \hfil EJDE-2011/143\hfilneg] {Blanka Bacul\'ikov\'a, Jozef D\v{z}urina, Tongxing Li} % in alphabetical order \address{Blanka Bacul\'ikov\'a \newline Department of Mathematics, Faculty of Electrical Engineering and Informatics, Technical University of Ko\v{s}ice, Letn\'a 9, 042\,00~Ko\v{s}ice, Slovakia} \email{blanka.baculikova@tuke.sk} \address{Jozef D\v{z}urina \newline Department of Mathematics, Faculty of Electrical Engineering and Informatics, Technical University of Ko\v{s}ice, Letn\'a 9, 042\,00~Ko\v{s}ice, Slovakia} \email{jozef.dzurina@tuke.sk} \address{Tongxing Li \newline School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China} \email{litongx2007@163.com} \thanks{Submitted April 28, 2011. Published November 1, 2011.} \subjclass[2000]{34K11, 34C10} \keywords{Oscillation; Neutral differential equation; even-order} \begin{abstract} In this article, we use the Riccati transformation technique and some inequalities, to establish oscillation theorems for all solutions to even-order quasilinear neutral differential equation $$ \Big(\big[\big(x(t)+p(t)x(\tau(t))\big)^{(n-1)}\big]^\gamma\Big)' +q(t)x^\gamma\big(\sigma(t)\big)=0,\quad t\geq t_0. $$ Our main results are illustrated with examples. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} Neutral differential equations find numerous applications in natural science and technology; see Hale \cite{hale}. Recently, there has been much research activity concerning the oscillation and non-oscillation of solutions of various types of neutral functional differential equations; see for example \cite{rmw,gsl,erbz,dzurina,baculikova,han,han1,hasanbulli} and the references cited therein. In this article, we consider the oscillatory behavior of solutions to the even-order neutral differential equation \begin{equation}\label{lh1.1} \Big(\big[\big(x(t)+p(t)x(\tau(t))\big)^{(n-1)}\big]^\gamma\Big)' +q(t)x^\gamma\big(\sigma(t)\big)=0,\quad t\geq t_0. \end{equation} We will use the following assumptions: \begin{itemize} \item[(A1)] $n\geq2$ is even and $\gamma\geq1$ is the ratio of odd positive integers; \item[(A2)] $p\in C([t_0,\infty),[0,a])$, where $a$ is a constant; \item[(A3)] $q\in C([t_0,\infty),[0,\infty))$, and $q$ is not eventually zero on any half line $[t_*,\infty)$; \item[(A4)] $\tau, \sigma\in C([t_0,\infty),\mathbb{R})$, $\lim_{t\to \infty}\tau(t)=\lim_{t\to\infty}\sigma(t)=\infty$, $\sigma^{-1}$ exists and $\sigma^{-1}$ is continuously differentiable. \end{itemize} We consider only those solutions $x$ of \eqref{lh1.1} for which $\sup\{|x(t)|:t\geq T\}>0$ for all $T\geq t_0$. We assume that \eqref{lh1.1} possesses such a solution. As usual, a solution of \eqref{lh1.1} is called oscillatory if it has arbitrarily large zeros on $[t_0,\infty)$; otherwise, it is called non-oscillatory. Equation \eqref{lh1.1} is said to be oscillatory if all its solutions are oscillatory. For the oscillation of even-order neutral differential equations, Zafer \cite{zafer}, Karpuz et al. \cite{bk}, Zhang et al. \cite{zhang} and Li et al. \cite{li} considered the oscillation of even-order neutral equation \begin{equation}\label{ghj} \big(x(t)+p(t)x(\tau(t))\big)^{(n)}+q(t)x(\sigma(t))=0,\quad t\geq t_0 \end{equation} by using the results given in \cite{chg}. Meng and Xu \cite{meng} studied the oscillation property of the even-order quasi-linear neutral equation $$ \big[r(t)|(z(t))^{(n-1)}|^{\alpha-1}(z(t))^{(n-1)}\big]'+ q(t)|x(\sigma(t))|^{\alpha-1}x(\sigma(t))=0,\quad t\geq t_0, $$ with $z(t)=x(t)+p(t)x(\tau(t))$. To the best of our knowledge, there are no results on the oscillation of \eqref{lh1.1} when $p(t)>1$ and $\gamma>1$. The purpose of this paper is to establish some oscillation results for \eqref{lh1.1}. The organization of this article is as follows: In Section 2, we give some oscillation criteria for \eqref{lh1.1}. In Section 3, we give several examples to illustrate our main results. Below, when we write a functional inequality without specifying its domain of validity we assume that it holds for all sufficiently large $t$. \section{Main results} In this section, we establish some oscillation criteria for \eqref{lh1.1}. Let $f^{-1}$ denote the inverse function of $f$, and for the sake of convenience, we let \begin{gather*} z(t):=x(t)+p(t)x(\tau(t)), \quad Q(t):=\min\{q(\sigma^{-1}(t)),q(\sigma^{-1}(\tau(t)))\},\\ (\rho'(t))_+:=\max\{0,\rho'(t)\}. \end{gather*} To prove our main results, we use the following lemmas. \begin{lemma}[{\cite[Lemma 2.2.1]{rmw}}] \label{le1} Let $u(t)$ be a positive and $n$-times differentiable function on an interval $[T,\infty)$ with its $n$-th derivative $u^{(n)}(t)$ non-positive on $[T,\infty)$ and not identically zero on any interval $[T_1,\infty)$, $T_1\geq T$. Then there exists an integer $l$, $0\leq l\leq n-1$, with $n+l$ odd, such that, for some large $T_2\geq T_1$, \begin{gather*} (-1)^{l+j}u^{(j)}(t)>0\quad \text{on } [T_2,\infty)\; (j=l, l+1,\dots,n-1) \\ u^{(i)}(t)>0\quad \text{on } [T_2,\infty)\; (i=1, 2,\dots,l-1)\ \text{when}\ l>1. \end{gather*} \end{lemma} \begin{lemma}[{\cite[P. 169]{rmw}}] \label{le2} Let $u$ be as in Lemma \ref{le1}. If $\lim_{t\to\infty}u(t)\neq0$, then, for every $\lambda$, $0<\lambda<1$, there is $T_\lambda\geq t_0$ such that, for all $t\geq T_\lambda$, $$ u(t)\geq\frac{\lambda}{(n-1)!}t^{n-1}u^{(n-1)}(t). $$ \end{lemma} \begin{lemma}[\cite{chg}] \label{le12} Let $u$ be as in Lemma \ref{le1} and $u^{(n-1)}(t)u^{(n)}(t)\leq 0$ for $t\geq t_*$. Then for every constant $\theta$, $0<\theta<1$, there exists a constant $M_\theta>0$ such that $$ u'(\theta t)\geq M_\theta t^{n-2}u^{(n-1)}(t). $$ \end{lemma} \begin{lemma}\label{le3} Assume that $x$ is an eventually positive solution of \eqref{lh1.1}, and $n$ is even. Then there exists $t_1\geq t_0$ such that, for $t\geq t_1$, $$ z(t)>0,\quad z'(t)>0,\quad z^{(n-1)}(t)>0,\quad z^{(n)}(t)\leq 0, $$ and $z^{(n)}$ is not identically zero on any interval $[a,\infty)$. \end{lemma} The proof of the above lemma is similar to that of \cite[Lemma 2.3]{meng}, with $\gamma$ being the ratio of odd integers. We omit it. \begin{lemma}\label{lle2.1} Assume that $\gamma\geq1$, $x_1$, $x_2\in \mathbb{R}$. If $x_1\geq0$ and $x_2\geq0$, then \begin{equation}\label{lh2.1} {x_1}^\gamma+{x_2}^\gamma\geq\frac{1}{2^{\gamma-1}}(x_1+x_2)^\gamma. \end{equation} \end{lemma} \begin{proof} (i) Suppose that $x_1=0$ or $x_2=0$. Then we have \eqref{lh2.1}. (ii) Suppose that $x_1>0$ and $x_2>0$. Define $f$ by $f(x)=x^\gamma$, $x\in (0,\infty)$. Clearly, $f''(x)=\gamma(\gamma-1)x^{\gamma-2}\geq0$ for $x>0$. Thus, $f$ is a convex function. By the definition of convex function, for $x_1$, $x_2\in(0,\infty)$, we have $$ f\big(\frac{x_1+x_2}{2}\big)\leq\frac{f(x_1)+f(x_2)}{2}. $$ That is, $$ {x_1}^\gamma+{x_2}^\gamma\geq\frac{1}{2^{\gamma-1}}(x_1+x_2)^\gamma. $$ This completes the proof. \end{proof} First, we establish the following comparison theorems. \begin{theorem}\label{lth3.1} Assume that $(\sigma^{-1}(t))'\geq\sigma_0>0$ and $\tau'(t)\geq\tau_0>0$. Further, assume that there exists a constant $\lambda$, $0<\lambda<1$, such that \begin{equation}\label{mh1} \big[\frac{y(\sigma^{-1}(t))}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0} y(\sigma^{-1}(\tau(t)))\big]' +\frac{1}{2^{\gamma-1}}\Big(\frac{\lambda}{(n-1)!}t^{n-1}\Big)^\gamma Q(t)y(t)\leq 0 \end{equation} has no eventually positive solution. Then \eqref{lh1.1} is oscillatory. \end{theorem} \begin{proof} Let $x$ be a non-oscillatory solution of \eqref{lh1.1}. Without loss of generality, we assume that there exists $t_1\geq t_0$ such that $x(t)>0$, $x(\tau(t))>0$ and $x(\sigma(t))>0$ for all $t\geq t_1$. Then $z(t)>0$ for $t\geq t_1$. From \eqref{lh1.1}, we obtain $$ \big((z^{(n-1)}(t))^\gamma\big)'=-q(t)x^\gamma(\sigma(t))\leq0,\quad t\geq t_1. $$ By Lemma \ref{le3} with $n$ even, there exists $t_2\geq t_1$ such that $z^{(n)}(t)\leq 0$ for $t\geq t_2$. Thus, from Lemma \ref{le1}, there exist $t_3\geq t_2$ and an odd integer $l\leq n-1$ such that, for some large $t_4\geq t_3$, \begin{equation}\label{01} (-1)^{l+j}z^{(j)}(t)>0, \quad j=l, l+1,\dots,n-1,\; t\geq t_4 \end{equation} and \begin{equation}\label{02} z^{(i)}(t)>0, \quad i=1, 2,\dots,l-1, \; t\geq t_4. \end{equation} Hence, in view of \eqref{01} and \eqref{02}, we obtain $z'(t)>0$ and $z^{(n-1)}(t)>0$. Therefore, $\lim_{t\to\infty}z(t)\neq 0$. Then, by Lemma \ref{le2}, for every $\lambda$, $0<\lambda<1$, there exists $T_\lambda$ such that, for all $t\geq T_\lambda$, \begin{equation}\label{10.10} z(t)\geq\frac{\lambda}{(n-1)!}t^{n-1}z^{(n-1)}(t). \end{equation} It follows from \eqref{lh1.1} that \begin{equation}\label{d1} \frac{((z^{(n-1)}(\sigma^{-1}(t)))^\gamma)'}{(\sigma^{-1}(t))'} +q(\sigma^{-1}(t))x^\gamma(t)=0. \end{equation} The above inequality at times $\sigma^{-1}(t)$ and $\sigma^{-1}(\tau(t))$, yields \begin{equation} \begin{split} &\frac{((z^{(n-1)}(\sigma^{-1}(t)))^\gamma)'}{(\sigma^{-1}(t))'} +a^\gamma\frac{((z^{(n-1)} (\sigma^{-1}(\tau(t))))^\gamma)'}{(\sigma^{-1}(\tau(t)))'} \\ &+q(\sigma^{-1}(t))x^\gamma(t)+a^\gamma q(\sigma^{-1}(\tau(t)))x^\gamma(\tau(t))=0. \end{split} \label{d11} \end{equation} By \eqref{lh2.1} and the definition of $z$, \begin{equation} \begin{aligned} q(\sigma^{-1}(t))x^\gamma(t)+a^\gamma q(\sigma^{-1}(\tau(t)))x^\gamma(\tau(t)) &\geq Q(t)[x^\gamma(t)+a^\gamma x^\gamma(\tau(t))] \\ &\geq \frac{1}{2^{\gamma-1}}Q(t)[x(t)+ax(\tau(t))]^\gamma\\ &\geq \frac{1}{2^{\gamma-1}}Q(t)z^\gamma(t) \end{aligned} \label{d111} \end{equation} It follows from \eqref{d11} and \eqref{d111} that \begin{equation}\label{xjl2} \frac{((z^{(n-1)}(\sigma^{-1}(t)))^\gamma)'}{(\sigma^{-1}(t))'}+a^\gamma\frac{((z^{(n-1)} (\sigma^{-1}(\tau(t))))^\gamma)'}{(\sigma^{-1}(\tau(t)))'}+\frac{1}{2^{\gamma-1}}Q(t)z^\gamma(t) \leq0. \end{equation} From this inequality, $(\sigma^{-1}(t))'\geq\sigma_0>0$ and $\tau'(t)\geq\tau_0>0$, we obtain \begin{equation}\label{xxjl2} \frac{((z^{(n-1)}(\sigma^{-1}(t)))^\gamma)'}{\sigma_0} +a^\gamma\frac{((z^{(n-1)} (\sigma^{-1}(\tau(t))))^\gamma)'}{\sigma_0\tau_0} +\frac{1}{2^{\gamma-1}}Q(t)z^\gamma(t) \leq 0. \end{equation} Set $y(t)=(z^{(n-1)}(t))^\gamma>0$. From \eqref{10.10} and \eqref{xjl2}, we see that $y$ is an eventually positive solution of $$ \big[\frac{y(\sigma^{-1}(t))}{\sigma_0} +\frac{a^\gamma}{\sigma_0\tau_0} y(\sigma^{-1}(\tau(t)))\big]' +\frac{1}{2^{\gamma-1}}\Big(\frac{\lambda}{(n-1)!}t^{n-1}\Big)^\gamma Q(t)y(t)\leq 0. $$ The proof is complete. \end{proof} \begin{theorem}\label{lth3.2} Let $\tau^{-1}$ exist. Assume that $\tau(t)\leq t$, $(\sigma^{-1}(t))'\geq\sigma_0>0$ and $\tau'(t)\geq\tau_0>0$. Moreover, assume that there exists a constant $\lambda$, $0<\lambda<1$, such that \begin{equation}\label{ssmh1} u'(t)+\frac{1}{2^{\gamma-1} \big(\frac{1}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}\big)} \Big(\frac{\lambda}{(n-1)!}t^{n-1}\Big)^\gamma Q(t)u(\tau^{-1}(\sigma(t)))\leq 0 \end{equation} has no eventually positive solution. Then \eqref{lh1.1} is oscillatory. \end{theorem} \begin{proof} Let $x$ be a non-oscillatory solution of \eqref{lh1.1}. Without loss of generality, we assume that there exists $t_1\geq t_0$ such that $x(t)>0$, $x(\tau(t))>0$ and $x(\sigma(t))>0$ for all $t\geq t_1$. Then $z(t)>0$ for $t\geq t_1$. Proceeding as in the proof of Theorem \ref{lth3.1}, we obtain that $y(t)=(z^{(n-1)}(t))^\gamma>0$ is non-increasing and satisfies inequality \eqref{mh1}. Define $$ u(t)=\frac{y(\sigma^{-1}(t))}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0} y(\sigma^{-1}(\tau(t))). $$ Then, from $\tau(t)\leq t$, and $\sigma^{-1}$ begin increasing, we have $$ u(t)\leq \big(\frac{1}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}\big) y(\sigma^{-1}(\tau(t))). $$ Substituting the above formulas into \eqref{mh1}, we find $u$ is an eventually positive solution of \begin{equation} \label{eu1} u'(t)+\frac{1}{2^{\gamma-1}\big(\frac{1}{\sigma_0} +\frac{a^\gamma}{\sigma_0\tau_0}\big)} \Big(\frac{\lambda}{(n-1)!}t^{n-1}\Big)^\gamma Q(t)u(\tau^{-1}(\sigma(t)))\leq 0. \end{equation} The proof is complete. \end{proof} From Theorem \ref{lth3.2} and \cite[Theorem 2.1.1]{gsl}, we establish the following corollary. \begin{corollary}\label{xlth3.2} Let $\tau^{-1}$ exist. Assume that $\tau(t)\leq t$, $(\sigma^{-1}(t))'\geq\sigma_0>0$, $\tau'(t)\geq\tau_0>0$, $\tau^{-1}(\sigma(t))\frac{2^{\gamma-1} \big(\frac{1}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}\big)}{e} \big((n-1)!\big)^\gamma. \end{equation} Then \eqref{lh1.1} is oscillatory. \end{corollary} \begin{proof} From \eqref{81mh1}, one can choose a positive constant $0<\lambda<1$ such that $$ \liminf_{t\to\infty}\lambda ^\gamma\int_{\tau^{-1}(\sigma(t))}^tQ(s) (s^{n-1})^\gamma{\rm d}s>\frac{2^{\gamma-1}\big(\frac{1}{\sigma_0} +\frac{a^\gamma}{\sigma_0\tau_0}\big)}{e}((n-1)!)^\gamma. $$ Applying \cite[Theorem 2.1.1]{gsl} to \eqref{eu1}, with $\tau^{-1}(\sigma(t))0$, $\tau'(t)\geq\tau_0>0$ and $\tau(t)\geq t$. Furthermore, assume that there exists a constant $\lambda$, $0<\lambda<1$, such that \begin{equation}\label{jssmh1} u'(t)+\frac{1}{2^{\gamma-1} \big(\frac{1}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}\big)} \Big(\frac{\lambda}{(n-1)!}t^{n-1}\Big)^\gamma Q(t)u(\sigma(t))\leq 0 \end{equation} has no eventually positive solution. Then \eqref{lh1.1} is oscillatory. \end{theorem} \begin{proof} Let $x$ be a non-oscillatory solution of \eqref{lh1.1}. Without loss of generality, we assume that there exists $t_1\geq t_0$ such that $x(t)>0$, $x(\tau(t))>0$ and $x(\sigma(t))>0$ for all $t\geq t_1$. Then $z(t)>0$ for $t\geq t_1$. Proceeding as in the proof of Theorem \ref{lth3.1}, we obtain that $y(t)=(z^{(n-1)}(t))^\gamma>0$ is nonincreasing and satisfies inequality \eqref{mh1}. Define $$ u(t)=\frac{1}{\sigma_0}y(\sigma^{-1}(t))+\frac{a^\gamma}{\sigma_0\tau_0} y(\sigma^{-1}(\tau(t))). $$ Then, from $\tau(t)\geq t$, we have $$ u(t)\leq \Big(\frac{1}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}\Big) y(\sigma^{-1}(t)). $$ Substituting the above formulas into \eqref{mh1}, we find $u$ is an eventually positive solution of \begin{equation} \label{eu2} u'(t)+\frac{1}{2^{\gamma-1} \big(\frac{1}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}\big)} \Big(\frac{\lambda}{(n-1)!}t^{n-1}\Big)^\gamma Q(t)u(\sigma(t))\leq 0. \end{equation} The proof is complete. \end{proof} From Theorem \ref{jlth3.2} and \cite[Theorem 2.1.1]{gsl}, we establish the following corollary. \begin{corollary}\label{jxlth3.2} Assume that $(\sigma^{-1}(t))'\geq\sigma_0>0$, $\tau'(t)\geq\tau_0>0$, $\tau(t)\geq t$, $\sigma(t)\frac{2^{\gamma-1}\big(\frac{1}{\sigma_0} +\frac{a^\gamma}{\sigma_0\tau_0}\big)}{e}\big((n-1)!\big)^\gamma. \end{equation} Then \eqref{lh1.1} is oscillatory. \end{corollary} \begin{proof} From \eqref{j81mh1}, one can choose a positive constant $0<\lambda<1$ such that $$ \liminf_{t\to\infty}\lambda ^\gamma\int_{\sigma(t)}^tQ(s) (s^{n-1})^\gamma{\rm d}s>\frac{2^{\gamma-1}\big(\frac{1}{\sigma_0} +\frac{a^\gamma}{\sigma_0\tau_0}\big)}{e}((n-1)!)^\gamma. $$ Applying \cite[Theorem 2.1.1]{gsl} to \eqref{eu2}, with $\sigma(t)0$, $\sigma^{-1}(t)\geq t$, $\sigma^{-1}(\tau(t))\geq t$ and $\tau'(t)\geq\tau_0>0$. Assume that there exists $\rho\in C^1([t_0,\infty),(0,\infty))$ such that \begin{equation}\label{gxq} \limsup_{t\to\infty}\int_{t_0}^t \Big[\frac{1}{2^{\gamma-1}}\rho(s)Q(s) -\frac{\frac{1}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}} {(\gamma+1)^{\gamma+1}}\frac{((\rho'(s))_+)^{\gamma+1}}{(\theta M s^{n-2})^\gamma\rho^\gamma(s)}\Big]{\rm d}s=\infty \end{equation} holds for some constant $\theta$, $0<\theta<1$ and for all constants $M>0$. Then \eqref{lh1.1} is oscillatory. \end{theorem} \begin{proof} Let $x$ be a non-oscillatory solution of \eqref{lh1.1}. Without loss of generality, we assume that there exists $t_1\geq t_0$ such that $x(t)>0$, $x(\tau(t))>0$ and $x(\sigma(t))>0$ for all $t\geq t_1$. Then $z(t)>0$ for $t\geq t_1$. Proceeding as in the proof of Theorem \ref{lth3.1}, there exists $t_2\geq t_1$ such that \eqref{01}, \eqref{02} and \eqref{xxjl2} hold for $t\geq t_2$. Using the Riccati transformation \begin{equation}\label{8.191} \omega(t)=\rho(t)\frac{(z^{(n-1)}(\sigma^{-1}(t)))^\gamma} {z^\gamma(\theta t)},\quad t\geq t_2. \end{equation} Then $\omega(t)>0$ for $t\geq t_2$. Differentiating \eqref{8.191}, we obtain \begin{equation}\label{lq1} \begin{split} \omega'(t)&=\rho'(t)\frac{(z^{(n-1)}(\sigma^{-1}(t)))^\gamma} {z^\gamma(\theta t)} +\rho(t)\frac{((z^{(n-1)}(\sigma^{-1}(t)))^\gamma)'}{z^\gamma(\theta t)}\\ &\quad -\gamma\theta\rho(t)\frac{(z^{(n-1)}(\sigma^{-1}(t)))^\gamma z'(\theta t)}{z^{\gamma+1}(\theta t)}. \end{split} \end{equation} By Lemma \ref{le12} and Lemma \ref{le3}, we have $$ z'(\theta t)\geq M t^{n-2}z^{(n-1)}(t) \geq M t^{n-2}z^{(n-1)}(\sigma^{-1}(t)), $$ for every $\theta$, $0<\theta<1$ and for some $M>0$. Thus, from \eqref{8.191} and \eqref{lq1}, we obtain \begin{equation}\label{litong1} \omega'(t)\leq\frac{(\rho'(t))_+}{\rho(t)}\omega(t) +\rho(t)\frac{((z^{(n-1)}(\sigma^{-1}(t)))^\gamma)'}{z^\gamma(\theta t)} -\gamma\theta M t^{n-2}\frac{(\omega(t))^{(\gamma+1)/\gamma}} {\rho^{1/\gamma}(t)}. \end{equation} Next, define function \begin{equation}\label{8.192} \psi(t)=\rho(t)\frac{(z^{(n-1)} (\sigma^{-1}(\tau(t))))^\gamma}{z^\gamma(\theta t)},\quad t\geq t_2. \end{equation} Then $\psi(t)>0$ for $t\geq t_2$. Differentiating \eqref{8.192}, we see that \begin{equation}\label{lq2} \begin{split} \psi'(t)&=\rho'(t)\frac{(z^{(n-1)} (\sigma^{-1}(\tau(t))))^\gamma}{z^\gamma(\theta t)} +\rho(t)\frac{((z^{(n-1)} (\sigma^{-1}(\tau(t))))^\gamma)'}{z^\gamma(\theta t)} \\ &\quad -\gamma\theta\rho(t)\frac{(z^{(n-1)} (\sigma^{-1}(\tau(t))))^\gamma z'(\theta t)}{z^{\gamma+1}(\theta t)}. \end{split} \end{equation} In view of Lemmas \ref{le12} and \ref{le3}, we have \[ z'(\theta t)\geq M t^{n-2}z^{(n-1)}(t)\geq M t^{n-2}z^{(n-1)}(\sigma^{-1}(\tau(t))), \] for every $\theta$, $0<\theta<1$ and for some $M>0$. Hence, by \eqref{8.192} and \eqref{lq2}, we obtain \begin{equation}\label{litong2} \begin{split} \psi'(t) &\leq\frac{(\rho'(t))_+}{\rho(t)}\psi(t)+\rho(t)\frac{((z^{(n-1)} (\sigma^{-1}(\tau(t))))^\gamma)'}{z^\gamma(\theta t)} \\ &\quad -\gamma\theta M t^{n-2}\frac{(\psi(t))^{(\gamma+1)/\gamma}}{\rho^{1/\gamma}(t)}. \end{split} \end{equation} Therefore, from \eqref{litong1} and \eqref{litong2} it follows that \begin{equation} \begin{split} &\frac{\omega'(t)}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}\psi'(t)\\ &\leq \rho(t) \big[\frac{\frac{((z^{(n-1)}(\sigma^{-1}(t)))^\gamma)'}{\sigma_0} +\frac{a^\gamma}{\sigma_0\tau_0}((z^{(n-1)} (\sigma^{-1}(\tau(t))))^\gamma)'} {z^\gamma(\theta t)}\big] \\ &\quad+ \frac{1}{\sigma_0}\big[\frac{(\rho'(t))_+}{\rho(t)}\omega(t) -\gamma\theta M t^{n-2}\frac{(\omega(t))^{(\gamma+1)/\gamma}}{\rho^{1/\gamma}(t)}\big] \\ &\quad +\frac{a^\gamma}{\sigma_0\tau_0} \big[\frac{(\rho'(t))_+}{\rho(t)}\psi(t) -\gamma\theta M t^{n-2}\frac{(\psi(t))^{(\gamma+1) /\gamma}}{\rho^{1/\gamma}(t)}\big]. \end{split}\label{tongxing4} \end{equation} Thus, from the above inequality and \eqref{xxjl2}, we have \begin{equation} \begin{split} &\frac{\omega'(t)}{\sigma_0} +\frac{a^\gamma}{\sigma_0\tau_0}\psi'(t)\\ &\leq-\frac{1}{2^{\gamma-1}}\rho(t) Q(t) +\frac{1}{\sigma_0}\big[\frac{(\rho'(t))_+}{\rho(t)}\omega(t) -\gamma\theta M t^{n-2}\frac{(\omega(t))^{(\gamma+1)/\gamma}}{\rho^{1/\gamma}(t)}\big] \\ &\quad +\frac{a^\gamma}{\sigma_0\tau_0} \big[\frac{(\rho'(t))_+}{\rho(t)}\psi(t) -\gamma\theta M t^{n-2}\frac{(\psi(t))^{(\gamma+1) /\gamma}}{\rho^{1/\gamma}(t)}\big]. \end{split}\label{tongxing5} \end{equation} Set $$ A:=\frac{(\rho'(t))_+}{\rho(t)},\quad B:=\frac{\gamma\theta M t^{n-2}}{\rho^{1/\gamma}(t)},\quad v:=\omega(t), \psi(t). $$ Then, using \eqref{tongxing5} and the inequality \begin{equation}\label{sz1} Av-Bv^{(\gamma+1)/\gamma}\leq\frac{\gamma^\gamma} {(\gamma+1)^{\gamma+1}}\frac{A^{\gamma+1}}{B^\gamma},\quad B>0, \end{equation} we have $$ \frac{\omega'(t)}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}\psi'(t) \leq-\frac{1}{2^{\gamma-1}}\rho(t)Q(t) +\frac{\frac{1}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}} {(\gamma+1)^{\gamma+1}}\frac{((\rho'(t))_+)^{\gamma+1}}{(\theta M t^{n-2})^\gamma\rho^\gamma(t)}. $$ Integrating the above inequality from $t_2$ to $t$, we obtain \[ \int_{t_2}^t\Big[\frac{1}{2^{\gamma-1}}\rho(s)Q(s) -\frac{\frac{1}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}} {(\gamma+1)^{\gamma+1}}\frac{((\rho'(s))_+)^{\gamma+1}}{(\theta M s^{n-2})^\gamma\rho^\gamma(s)}\Big]{\rm d}s \leq \frac{\omega(t_2)}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}\psi(t_2), \] which contradicts \eqref{gxq}. The proof is complete. \end{proof} \begin{remark} \label{rmk2.1} \rm From \eqref{tongxing5}, define a Philos-type function $H(t,s)$, and obtain some oscillation criteria for \eqref{lh1.1}, the details are left to the reader. \end{remark} \begin{theorem}\label{jklth3.3} Let $n=2$, $(\sigma^{-1}(t))'\geq\sigma_0>0$, $\sigma^{-1}(t)\geq t$, $\sigma^{-1}(\tau(t))\geq t$ and $\tau'(t)\geq\tau_0>0$. Assume that there exists $\rho\in C^1([t_0,\infty),(0,\infty))$ such that \begin{equation}\label{jkgxq} \limsup_{t\to\infty}\int_{t_0}^t \Big[\frac{1}{2^{\gamma-1}}\rho(s)Q(s) -\frac{\frac{1}{\sigma_0}+\frac{a^\gamma}{\sigma_0\tau_0}} {(\gamma+1)^{\gamma+1}}\frac{((\rho'(s))_+)^{\gamma+1}}{\rho^\gamma(s)} \Big]{\rm d}s=\infty. \end{equation} Then \eqref{lh1.1} is oscillatory. \end{theorem} \begin{proof} Define $$ \omega(t)=\rho(t)\frac{(z'(\sigma^{-1}(t)))^\gamma}{z^\gamma(t)}, \quad \psi(t)=\rho(t)\frac{(z' (\sigma^{-1}(\tau(t))))^\gamma}{z^\gamma(t)}. $$ The remainder of the proof is similar to that of Theorem \ref{lth3.3}. \end{proof} \section{Applications} Han et al. \cite{han, han1} considered the oscillation of solutions to the second-order neutral equation $$ (x(t)+p(t)x(\tau(t)))''+q(t)x(\sigma(t))=0,\quad t\geq t_0, $$ where \begin{equation}\label{adx} 0\leq p(t)\leq p_0<\infty,\quad \tau'(t)\geq\tau_0>0, \quad \tau\circ\sigma=\sigma\circ\tau. \end{equation} Li et al. \cite{li} investigated the oscillation of \eqref{ghj} when \eqref{adx} holds. It is easy to see that our results weaken the restrictions in \cite{han, han1,li}, since we do not assume $\tau\circ\sigma=\sigma\circ\tau$; instead we assume $\tau^{-1}(\sigma(t))1$ is the quotient of odd positive integers, $a>0$ and $\beta>0$ are constants. Let $\tau(t)=t-3$, $p(t)=a$, $q(t)=\beta/(t^{n-1})^\gamma$ and $\sigma(t)=t-6$. Then $\tau^{-1}(t)=t+3$, $\tau^{-1}(\sigma(t))=t-3$, $\sigma^{-1}(t)=t+6$, $\sigma^{-1}(\tau(t))=t+3$ and $Q(t)=\beta/((t+6)^{n-1})^\gamma$. Since $$ \liminf_{t\to\infty}\int_{\tau^{-1}(\sigma(t))}^tQ(s) (s^{n-1})^\gamma{\rm d}s>\frac{\beta}{2^{\gamma(n-1)}}\liminf_{t\to\infty}\int_{t-3}^t{\rm d}s=\frac{3\beta}{2^{\gamma(n-1)}}, $$ by applying Corollary \ref{xlth3.2}, Equation \eqref{66} is oscillatory when $$ \frac{3\beta}{2^{\gamma(n-1)}} \geq\frac{2^{\gamma-1}(1+a^\gamma)((n-1)!)!}{e}. $$ \end{example} \begin{example} \label{examp3.2} \rm Consider the even-order equation \begin{equation}\label{x66} \Big(\big[\big(x(t)+ax(t+3)\big)^{(n-1)}\big]^\gamma\Big)' +\frac{\beta}{(t^{n-1})^\gamma} x^\gamma\big(\frac{t}{2}\big)=0,\quad t\geq 1, \end{equation} where $\gamma>1$ is the quotient of odd positive integers, $a>0$ and $\beta>0$ are constants. Let $\tau(t)=t+3$, $p(t)=a$, $q(t)=\beta/(t^{n-1})^\gamma$ and $\sigma(t)=t/2$. Then $\sigma^{-1}(t)=2t$, $\sigma^{-1}(\tau(t))=2(t+3)$ and $Q(t)=\beta/((2t+6)^{n-1})^\gamma$. Since $$ \liminf_{t\to\infty}\int_{\sigma(t)}^tQ(s) (s^{n-1})^\gamma{\rm d}s=\infty, $$ by applying Corollary \ref{jxlth3.2}, Equation \eqref{x66} is oscillatory. \end{example} \begin{example} \label{examp3.3}\rm Consider the even-order equation \begin{equation}\label{96} \Big(\big[\big(x(t)+ax\left(2t\right)\big)^{(n-1)}\big]^\gamma\Big)' +\frac{\beta}{t}x^\gamma\big(\frac{t}{3}+1\big)=0,\quad t\geq1, \end{equation} where $\gamma>1$ is the quotient of odd positive integers, $a>0$ and $\beta>0$ are constants. Let $\tau(t)=2t$, $p(t)=a$, $q(t)=\beta/t$ and $\sigma(t)=(t/3)+1$. Then $\sigma^{-1}(t)=3(t-1)$, $\sigma^{-1}(\tau(t))=3(2t-1)$ and $Q(t)=\beta/(6t-3)$. Set $\rho(t)=1$. Then, by Theorem \ref{lth3.3}, every solution of \eqref{96} is oscillatory. \end{example} Note that the known results in the literature are not applicable to Equations \eqref{66}, \eqref{x66} and \eqref{96}. \subsection*{Acknowledgments} This work is the result of the project implementation: Development of the Center of Information and Communication Technologies for Knowledge Systems (ITMS project code: 26220120030) supported by the Research \& Development Operational Program funded by the ERDF. \begin{thebibliography}{99} \bibitem{hale} J. K. Hale; \emph{Theory of Functional Differential Equations}, Spring-Verlag, New York, 1977. \bibitem{rmw} R. P. Agarwal, S. R. Grace, D. O'Regan; \emph{Oscillation Theory for Difference and Functional Differential Equations}, Marcel Dekker, Kluwer Academic, Dordrecht, 2000. \bibitem{gsl} G. S. Ladde, V. Lakshmikantham, B. G. Zhang; \emph{Oscillation Theory of Differential Equations with Deviating Arguments}, Marcel Dekker, New York, 1987. \bibitem{erbz} L. Erbe, Q. Kong, B. G. Zhang; \emph{Oscillation Theory for Functional Differential Eqautions}, Marcel Dekker, New York, 1995. \bibitem{zafer} A. Zafer; \emph{Oscillation criteria for even order neutral differential equations}, Appl. Math. Lett. 11 (1998) 21--25. \bibitem{dzurina} J. D\v{z}urina, D. Hud\'{a}kov\'{a}; \emph{Oscillation of second order neutral delay differential equations}, Math. Bohem. 134 (2009) 31--38. \bibitem{baculikova} B. Bacul\'{i}kov\'{a}, J. D\v{z}urina; \emph{Oscillation of third-order neutral differential equations}, Math. Comput. Modelling 52 (2010) 215--226. \bibitem{bk} B. Karpuz, \"{O}. Ocalan, S. \"{O}zt\"{u}rk; \emph{Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equations}, Glasg. Math. J. 52 (2010) 107--114. \bibitem{meng} F. W. Meng, R. Xu; \emph{Oscillation criteria for certain even order quasi-linear neutral differential equations with deviating arguments}, Appl. Math. Comput. 190 (2007) 458--464. \bibitem{zhang} Q. X. Zhang, J. R. Yan, L. Gao; \emph{Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients}, Comput. Math. Appl. 59 (2010) 426--430. \bibitem{han} Z. Han, T. Li, S. Sun, W. Chen; \emph{On the oscillation of second-order neutral delay differential equations}, Adv. Differ. Equ. 2010 (2010) 1--8. \bibitem{han1} Z. Han, T. Li, S. Sun, W. Chen; \emph{Oscillation criteria for second-order nonlinear neutral delay differential equations}, Adv. Differ. Equ. 2010 (2010) 1--23. \bibitem{li} T. Li, Z. Han, P. Zhao, S. Sun; \emph{Oscillation of even-order neutral delay differential equations}, Adv. Differ. Equ. 2010 (2010) 1--9. \bibitem{hasanbulli} M. Hasanbulli, Yu. V. Rogovchenko; \emph{Oscillation criteria for second order nonlinear neutral differential equations}, Appl. Math. Comput. 215 (2010) 4392--4399. \bibitem{chg} Ch. G. Philos; \emph{A new criterion for the oscillatory and asymptotic behavior of delay differential equations}, Bull. Acad. Pol. Sci., Ser. Sci. Math. 39 (1981) 61--64. \end{thebibliography} \end{document}