\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 154, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/154\hfil Existence of positive solutions] {Existence of positive solutions for nonlinear systems of second-order differential equations with integral boundary conditions on an infinite interval in Banach spaces} \author[X. Chen, X. Zhang \hfil EJDE-2011/154\hfilneg] {Xu Chen, Xingqiu Zhang} % in alphabetical order \address{Xu Chen \newline School of Mathematics, Liaocheng University, Liaocheng, Shandong, China} \email{woshchxu@163.com} \address{Xingqiu Zhang \newline School of Mathematics, Liaocheng University, Liaocheng, Shandong, China} \email{zhxq197508@163.com} \thanks{Submitted August 22, 2011. Published November 10, 2011.} \subjclass[2000]{34B15, 34B16, 34B40} \keywords{Singular differential equations; integral boundary; cone; ordering; \hfill\break\indent positive solution; M\"onch fixed point theorem} \begin{abstract} The article shows the existence of positive solutions for systems of nonlinear singular differential equations with integral boundary conditions on an infinite interval in Banach spaces. Our main tool is the M\"onch fixed point theorem combined with a monotone iterative technique. In addition, an explicit iterative approximation of the solution is provided. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} The theory of boundary-value problems with integral boundary conditions for ordinary differential equations arises in different areas of applied mathematics and physics. For example, heat conduction, chemical engineering,underground water flow, thermo-elasticity, and plasma physics can be reduced to the nonlocal problems with integral boundary conditions. There are many excellent results about the existence of positive solutions for integral boundary value problems in scalar case (see, for instance, \cite{l2,y1,y2,z1} and references therein). Very recently, by using Schauder fixed point theorem, Guo \cite{g1} obtained the existence of positive solutions for a class of nth-order nonlinear impulsive singular integro-differential equations in a Banach space. Recently, Zhang et al \cite{z2}, using the cone theory and monotone iterative technique, investigated the existence of minimal nonnegative solution of the following nonlocal boundary value problems for second-order nonlinear impulsive differential equations on an infinite interval with an infinite number of impulsive times \begin{gather*} -x''(t)=f(t,x(t),x'(t)),\quad t\in J,t\neq t_k,\\ \Delta x|_{t=t_k}=I_{k}(x(t_k)),\quad k=1,2,\dots,\\ \Delta x'|_{t=t_k}=\overline{I}_{k}(x(t_k)),\quad k=1,2,\dots,\\ x(0)=\int_0^\infty g(t)x(t)\,\mathrm{d}t,\quad x'(\infty)=0, \end{gather*} where $J=[0,+\infty)$, $f\in C(J\times \mathbb{R}^+\times \mathbb{R}^+,\mathbb{R}^+)$, $\mathbb{R}^+=[0,+\infty]$, $0\theta$. For details on cone theory, see \cite{g3}. In what follows, we always assume that $x_{\infty}\geq x_0^*$, $y_{\infty}\geq y_0^*$, $x_0^*, y_0^*\in P_+$. Let $P_{0\lambda}=\{x\in P:x\geq \lambda x_0^*\}$, $P_{1\lambda}=\{y\in P:y\geq \lambda y_0^*\}(\lambda>0)$. Obviously, $P_{0\lambda},P_{1\lambda}\subset P_+$ for any $\lambda>0$. When $\lambda=1$, we write $P_0=P_{01},P_1=P_{11}$; i.e., $P_0=\{x\in P:x\geq x_0^*\}$, $P_1=\{y\in P:y\geq y_0^*\}$. Let $P(F)=\{x\in FC[J,E]:x(t)\geq\theta, \forall\ t\in J\}$, and $P(D)=\{x\in DC^1[J,E]:x(t)\geq\theta, x'(t)\geq\theta, \forall\ t\in J\}$. It is clear, $P(F)$ and $P(D)$ are cones in $FC[J,E]$ and $DC^1[J,E]$, respectively. A map $(x,y) \in DC^1[J, E]\cap C^2[J_+,E]$ is called a positive solution of \eqref{e1} if $(x,y)\in P(D)\times P(D)$ and $(x(t),y(t))$ satisfies \eqref{e1}. Let $\alpha, \alpha_F, \alpha_D,\alpha_X$ denote the Kuratowski measure of non-compactness in the sets $E, FC[J,E],DC^1[J, E]$ and $X$, respectively. For details on the definition and properties of the measure of non-compactness, the reader is referred to references \cite{d1,g2,g3,l1}. Let \begin{equation} D_0=\Big(1+\frac{\int_0^\infty q(t)\,\mathrm{d}t} {1-\int_0^\infty q(t)\,\mathrm{d}t}\Big),\quad D_1=\Big(1+\frac{\int_0^\infty h(t)\,\mathrm{d}t} {1-\int_0^\infty h(t)\,\mathrm{d}t}\Big), \label{e2} \end{equation} $D^*=\max\{D_0,D_1\}$. Denote $$ \lambda_0^*= \min\{\frac{\int_0^\infty tq(t)\,\mathrm{d}t} {1-\int_0^\infty q(t)\,\mathrm{d}t},1\},\quad \lambda_1^*= \min\{\frac{\int_0^\infty th(t)\,\mathrm{d}t} {1-\int_0^\infty h(t)\,\mathrm{d}t},1\} $$ Let us list some conditions for convenience. \begin{itemize} \item[(H1)] $f,g\in C[J_+\times P_{0\lambda}\times P_{0\lambda}\times P_{1\lambda}\times P_{1\lambda}, P]$ for any $\lambda>0$ and there exist $a_i,b_i,c_i\in L[J_+,J]$ and $z_i\in C[J_+\times J_+\times J_+\times J_+, J]\ (i=0,1)$ such that $$ \|f(t,x_0,x_1,y_0,y_1)\|\leq a_0(t)+b_0(t)z_0(\|x_0\|,\|x_1\|,\|y_0\|, \|y_1\|), $$ for all $t\in J_+,x_i\in P_{0\lambda_0^*},y_i\in P_{1\lambda_1^*}$; $$ \|g(t,x_0,x_1,y_0,y_1)\|\leq a_1(t)+b_1(t)z_1(\|x_0\|,\|x_1\|,\|y_0\|, \|y_1\|), $$ for all $t\in J_+,x_i\in P_{0\lambda_0^*},y_i\in P_{1\lambda_1^*}$; and \begin{gather*} \frac{\|f(t,x_0,x_1,y_0,y_1)\|}{c_0(t)(\|x_0\|+\|x_1\|+\|y_0\| +\|y_1\|)}\to 0,\\ \frac{\|g(t,x_0,x_1,y_0,y_1)\|}{c_1(t)(\|x_0\|+\|x_1\|+\|y_0\| +\|y_1\|)}\to 0, \end{gather*} as $x_i\in P_{0\lambda_0^*}$, $y_i\in P_{1\lambda_1^*}$ ($i=0,1$), $\|x_0\|+\|x_1\|+\|y_0\|+\|y_1\|\to\infty$, uniformly for $t\in J_+$; and for $i=0,1$: $$ \int_0^\infty a_i(t)\mathrm{d}t=a_i^*<\infty,\quad \int_0^\infty b_i(t)\mathrm{d}t=b_i^*<\infty, \quad \int_0^\infty c_i(t)(1+t)\mathrm{d}t=c_i^*<\infty. $$ \item[(H2)] For any $t\in J_{+}$ and countable bounded set $V_i\subset DC^1[J,P_{0\lambda_0^*}]$, $W_i\subset DC^1[J,P_{1\lambda_1^*}]$ ($i=0,1$), there exist $L_i(t),K_i(t)\in L[J, J]$ ($i=0,1$) such that \begin{gather*} \alpha(f(t,V_0(t),V_1(t),W_0(t),W_1(t))) \leq \sum_{i=0}^1L_{0i}(t)\alpha(V_i(t))+K_{0i}(t)\alpha(W_i(t)),\\ \alpha(g(t,V_0(t),V_1(t),W_0(t),W_1(t))) \leq \sum_{i=0}^1L_{1i}(t)\alpha(V_i(t))+K_{1i}(t)\alpha(W_i(t)), \end{gather*} with \begin{gather*} G_i^*=\int_0^{+\infty}[(L_{i0}(s)+K_{i0}(s))(1+s)+L_{i1}(s) +K_{i1}(s)]\mathrm{d}s<\infty\quad (i=0,1),\\ G^*=\max\{G_0^*,G_1^*\}. \end{gather*} \item[(H3)] $t\in J_{+}$, $\lambda_0^*x_0^*\leq x_i\leq\overline{x}_i$, $\lambda_1^*y_0^*\leq y_i\leq\overline{y}_i$ ($i=0,1$) imply $$ f(t,x_0,x_1,y_0,y_1)\leq f(t,\overline{x}_0,\overline{x}_1, \overline{y}_0,\overline{y}_1),\quad g(t,x_0,x_1,y_0,y_1)\leq g(t,\overline{x}_0,\overline{x}_1,\overline{y}_0,\overline{y}_1). $$ \end{itemize} In what follows, we write \begin{gather*} Q_1=\{x\in DC^1[J,P]:x^{(i)}(t)\geq \lambda_0^*x_0^*, \forall\ t \in J,i=0,1\},\\ Q_2=\{y\in DC^1[J,P]:y^{(i)}(t)\geq \lambda_1^*y_0^*, \forall\ t \in J,i=0,1\}, \end{gather*} and $Q=Q_1\times Q_2$. Evidently, $Q_1,Q_2$ and $Q$ are closed convex set in $DC^1[J ,E]$ and $X$, respectively. We shall reduce BVP \eqref{e1} to a system of integral equations in $E$. To this end, we first consider operator $A$ defined by \begin{equation} A(x,y)(t)=(A_1(x,y)(t), A_2(x,y)(t)),\label{e3} \end{equation} where \begin{equation} \begin{split} A_1(x,y)(t) &= \frac{1}{1-\int_0^{\infty}q(t)\,\mathrm{d}t} \Big\{x_{\infty}\int_0^{\infty}tq(t)\,\mathrm{d}t\\ &\quad +\int_0^{\infty}\int_0^{\infty}q(t)G(t,s)f(s,x(s),x'(s),y(s),y'(s))\,\mathrm{d}s\,\mathrm{d}t\Big\} \\ &\quad +tx_{\infty}+\int_0^{\infty}G(t,s)f(s,x(s),x'(s),y(s), y'(s))\,\mathrm{d}s,\\ \end{split}\label{e4} \end{equation} and \begin{equation} \begin{split} A_2(x,y)(t)&= \frac{1}{1-\int_0^{\infty}h(t)\,\mathrm{d}t} \Big\{y_{\infty}\int_0^{\infty}th(t)\,\mathrm{d}t\\ &\quad +\int_0^{\infty}\int_0^{\infty}h(t)G(t,s)g(s,x(s),x'(s),y(s),y'(s))\,\mathrm{d}s\,\mathrm{d}t\Big\} \\ &\quad +ty_{\infty}+\int_0^{\infty}G(t,s)g(s,x(s),x'(s),y(s),y'(s))\,\mathrm{d}s,\\ \end{split}\label{e5} \end{equation} where $$ G(t,s)=\begin{cases} t,& 0\leq t\leq s<+\infty,\\ s,& 0\leq s\leq t<+\infty. \end{cases} $$ \begin{lemma}\label{lem1} If {\rm(H1)} is satisfied, then the operator $A$ defined by \eqref{e3} is a continuous operator from $Q$ to $Q$. \end{lemma} \begin{proof} Let \begin{gather} \varepsilon_0=\min\Big\{\frac{1} {8c_0^*\big(1+\frac{\int_0^\infty q(t)\,\mathrm{d}t} {1-\int_0^\infty q(t)\,\mathrm{d}t}\big)}, \frac{1}{8c_1^*\big(1+\frac{\int_0^\infty h(t)\,\mathrm{d}t} {1-\int_0^\infty h(t)\,\mathrm{d}t}\big)}\Big\},\label{e6} \\ r=\min\Big\{\frac{\lambda_0^*\|x_0^*\|}{N}, \frac{\lambda_1^*\|y_0^*\|}{N}\Big\}>0.\label{e7} \end{gather} By (H1), there exists a $R>r$ such that \[ \|f(t,x_0,x_1,y_0,y_1)\|\leq \varepsilon_0c_0(t)(\|x_0\|+\|x_1\|+\|y_0\|+\|y_1\|), \] for all $t\in J_+$, $x_i\in P_{0\lambda_0^*}$, $y_i\in P_{1\lambda_1^*}$ ($i=0,1$), $\|x_0\|+\|x_1\|+\|y_0\|+\|y_1\|>R$; and \[ \|f(t,x_0,x_1,y_0,y_1)\| \leq a_0(t)+M_0b_0(t), \] for all $t\in J_+$, $x_i\in P_{0\lambda_0^*}$, $y_i\in P_{1\lambda_1^*}$ ($i=0,1$), $\|x_0\|+\|x_1\|+\|y_0\|+\|y_1\| \leq R$, where $$ M_0=\max\{z_0(u_0,u_1,v_0,v_1):r\leq u_i,v_i\leq R\; (i=0,1)\}. $$ Hence \begin{equation} \label{e8} \|f(t,x_0,x_1,y_0,y_1)\| \leq \varepsilon_0c_0(t)(\|x_0\|+\|x_1\|+\|y_0\|+\|y_1\|)+a_0(t)+M_0b_0(t), \end{equation} for all $t\in J_+$, $x_i\in P_{0\lambda_0^*}$, $y_i\in P_{1\lambda_1^*}$ ($i=0,1$). Let $(x,y)\in Q$. By \eqref{e8} we have \begin{equation} \begin{split} &\|f(t,x(t),x'(t),y(t),y'(t))\|\\ &\leq \varepsilon_0c_0(t)(1+t)\Big(\frac{\|x(t)\|}{t+1} +\frac{\|x'(t)\|}{t+1}+\frac{\|y(t)\|}{t+1}+\frac{\|y'(t)\|}{t+1}\Big) +a_0(t)+M_0b_0(t)\\ &\leq \varepsilon_0c_0(t)(1+t)(\|x\|_F+\|x'\|_1+\|y\|_F +\|y'\|_1)+a_0(t)+M_0b_0(t)\\ &\leq 2\varepsilon_0c_0(t)(1+t)(\|x\|_D+\|y\|_D)+a_0(t)+M_0b_0(t),\\ &\leq 4\varepsilon_0c_0(t)(1+t)\|(x,y)\|_X+a_0(t)+M_0b_0(t),\quad \forall\ t\in J_+, \end{split}\label{e9} \end{equation} which together with (H1) implies the convergence of the infinite integral \begin{equation} \int_0^\infty \|f(s,x(s),x'(s),y(s),y'(s))\|\mathrm{d}s,\label{e10} \end{equation} which together with \eqref{e4} and (H1) implies \begin{align*} &\| A_1(x,y)(t)\| \\ &\leq \frac{1}{1-\int_0^{\infty}q(t)\,\mathrm{d}t} \Big\{\int_0^{\infty}\int_0^{\infty}q(t)G(t,s)\|f(s,x(s),x'(s),y(s),y'(s))\|\,\mathrm{d}s\,\mathrm{d}t \\ &\quad +\|x_{\infty}\|\int_0^{\infty}tq(t)\,\mathrm{d}t\Big\}+t\|x_{\infty}\|+\int_0^{\infty}G(t,s)\|f(s,x(s),x'(s),y(s),y'(s))\|\,\mathrm{d}s. %\label{11} \end{align*} Therefore, \begin{equation} \begin{split} &\frac{\|A_1(x,y)(t)\|}{1+t}\\ &\leq \frac{1}{1-\int_0^{\infty}q(t)\,\mathrm{d}t} \Big\{\int_0^{\infty}\int_0^{\infty}q(t)\|f(s,x(s),x'(s),y(s),y'(s)) \|\,\mathrm{d}s\,\mathrm{d}t \\ &\quad +\|x_{\infty}\|\int_0^{\infty}tq(t)\,\mathrm{d}t\Big\} +\|x_{\infty}\|+\int_0^{\infty}\|f(s,x(s),x'(s),y(s),y'(s))\| \,\mathrm{d}s\\ &\leq \Big(1+\frac{\int_0^\infty q(t)\,\mathrm{d}t} {1-\int_0^\infty q(t)\,\mathrm{d}t}\Big) [4\varepsilon_0c_0^*\|(x,y)\|_X+a_0^*+M_0b_0^*]\\ &\quad +\Big(1+\frac{\int_0^\infty tq(t)\,\mathrm{d}t} {1-\int_0^\infty q(t)\,\mathrm{d}t}\Big)\|x_{\infty}\|\\ &\leq \frac{1}{2}\|(x,y)\|_X+\Big(1+\frac{\int_0^\infty q(t)\,\mathrm{d}t} {1-\int_0^\infty q(t)\,\mathrm{d}t}\Big)(a_0^*+M_0b_0^*)\\ &\quad +\Big(1+\frac{\int_0^\infty tq(t)\,\mathrm{d}t} {1-\int_0^\infty q(t)\,\mathrm{d}t}\Big)\|x_{\infty}\|. \end{split}\label{e12} \end{equation} Differentiating \eqref{e4}, we obtain \begin{equation} A_1'(x,y)(t)=\int_t^{\infty}f(s,x(s),x'(s),y(s),y'(s))\mathrm{d}s +x_{\infty}.\label{e13} \end{equation} Hence, \begin{equation} \begin{split} \|A'_1(x,y)(t)\| &\leq \int_0^{+\infty}\|f(s,x(s),x'(s),y(s),y'(s))\|\mathrm{d}s+\|x_{\infty}\|\\ &\leq 4\varepsilon_0c_0^*\|(x,y)\|_X+a_0^*+M_0b_0^*+\|x_{\infty}\|\\ &\leq \frac{1}{2}\|(x,y)\|_X+a_0^*+M_0b_0^*+\|x_{\infty}\|,\quad \forall t\in J. \end{split}\label{e14} \end{equation} It follows from \eqref{e12} and \eqref{e14} that \begin{equation} \begin{split} \|A_1(x,y)\|_D &\leq \frac{1}{2}\|(x,y)\|_X+\Big(1+\frac{\int_0^\infty q(t)\,\mathrm{d}t}{1-\int_0^\infty q(t)\,\mathrm{d}t}\Big)(a_0^*+M_0b_0^*)\\ &\quad +\Big(1+\frac{\int_0^\infty tq(t)\,\mathrm{d}t}{1-\int_0^\infty q(t)\,\mathrm{d}t}\Big)\|x_{\infty}\|. \end{split}\label{e15} \end{equation} So, $A_1(x,y)\in DC^1[J,E]$. On the other hand, it can be easily seen that \begin{gather*} A_1(x,y)(t)\geq\Big(\frac{\int_0^\infty q(t)\,\mathrm{d}t}{1-\int_0^\infty q(t)\,\mathrm{d}t}\Big)x_{\infty}\geq\lambda_0^*x_{\infty}\geq\lambda_0^*x_0^*, \quad \forall\ t\in J, \\ A'_1(x,y)(t)\geq x_{\infty}\geq\lambda_0^*x_{\infty} \geq\lambda_0^*x_0^*, \quad \forall\ t\in J. \end{gather*} so, $A_1(x,y)\in Q_1$. In the same way, we can easily obtain \begin{equation} \begin{split} \|A_2(x,y)\|_D& \leq\frac{1}{2}\|(x,y)\|_X+\Big(1+\frac{\int_0^\infty h(t)\,\mathrm{d}t}{1-\int_0^\infty h(t)\,\mathrm{d}t}\Big)(a_0^*+M_0b_0^*)\\ &\quad +\Big(1+\frac{\int_0^\infty th(t)\,\mathrm{d}t}{1-\int_0^\infty h(t)\,\mathrm{d}t}\Big)\|y_{\infty}\|, \end{split} \label{16} \end{equation} and \begin{gather*} A_2(x,y)(t)\geq\Big(\frac{\int_0^\infty h(t)\,\mathrm{d}t}{1-\int_0^\infty h(t)\,\mathrm{d}t}\Big)y_{\infty}\geq \lambda_1^*y_{\infty}\geq\lambda_1^*y_0^*, \quad \forall\ t\in J,\\ A'_2(x,y)(t)\geq y_{\infty}\geq\lambda_1^*y_{\infty}\geq\lambda_1^*y_0^*, \quad \forall t\in J. \end{gather*} where $M_1=\max\{z_1(u_0,u_1,v_0,v_1):r\leq u_i,v_i\leq R\; (i=0,1)\}$. Thus, we have proved that $A$ maps $Q$ to $Q$ and we have \begin{equation} \|A(x,y)\|_X\leq \frac{1}{2}\|(x,y)\|_X+\gamma,\label{e17} \end{equation} where \begin{equation} \begin{split} \gamma&= \max\Big\{\Big(1+\frac{\int_0^\infty q(t)\,\mathrm{d}t}{1-\int_0^\infty q(t)\,\mathrm{d}t}\Big)(a_0^*+M_0b_0^*) +\Big(1+\frac{\int_0^\infty tq(t)\,\mathrm{d}t} {1-\int_0^\infty q(t)\,\mathrm{d}t}\Big)\|x_{\infty}\|,\\ &\Big(\Big(1+\frac{\int_0^\infty h(t)\,\mathrm{d}t}{1-\int_0^\infty h(t)\,\mathrm{d}t}\Big)(a_0^*+M_0b_0^*) +\Big(1+\frac{\int_0^\infty th(t)\,\mathrm{d}t} {1-\int_0^\infty h(t)\,\mathrm{d}t}\Big)\|y_{\infty}\|\Big\}. \end{split} \label{e18} \end{equation} Finally, we show that $A$ is continuous. Let $(x_m,y_m), (\overline{x},\overline{y})\in Q$, $\|(x_m,y_m)-(\overline{x},\overline{y})\|_X\to 0\ (m\to\infty)$. Then $\{(x_m,y_m)\}$ is a bounded subset of $Q$. Thus, there exists $r>0$ such that $\sup_m\|(x_m,y_m)\|_X0$, there exists $N=\max\{N_1,N_2\}>0$ such that $$ \|\frac{A_i(x,y)(t_1)}{1+t_1}-\frac{A_i(x,y)(t_2)}{1+t_2}\| <\epsilon, \quad \|A'_i(x,y)(t_1)-A'_i(x,y)(t_2)\|<\epsilon $$ uniformly with respect to $(x,y)\in V$ as $t_1, t_2\geq N$. \end{lemma} \begin{proof} We only give the proof for operator $A_1$. For $(x,y)\in V$, $t_2>t_1$, we have \begin{equation} \begin{split} &\|\frac{A_1(x,y)(t_1)}{1+t_1}-\frac{A_1(x,y)(t_2)}{1+t_2}\|\\ &\leq\big|\frac{1}{1+t_1}-\frac{1}{1+t_2}\big| \Big(\frac{\int_0^\infty tq(t)\,\mathrm{d}t}{1-\int_0^\infty q(t) \,\mathrm{d}t}\Big)\|x_{\infty}\|\\ &\quad +\big|\frac{t_1}{1+t_1}-\frac{t_2}{1+t_2}\big|\|x_{\infty}\| +\Big(1+\frac{\int_0^\infty q(t)\,\mathrm{d}t}{1-\int_0^\infty q(t) \,\mathrm{d}t}\Big)\\ &\quad\times \Big\{\|\frac{t_1}{1+t_1}\int_{t_1}^{\infty} f(s,x(s),x'(s),y(s),y'(s))\mathrm{d}s\\ &\quad -\frac{t_2}{1+t_2}\int_{t_2}^{\infty} f(s,x(s),x'(s),y(s),y'(s)\mathrm{d}s\|\\ &\quad +\|\int_0^{t_1}\frac{s}{1+t_1}f(s,x(s),x'(s),y(s),y'(s) \mathrm{d}s\\ &\quad -\int_0^{t_2} \frac{s}{1+t_2}f(s,x(s),x'(s),y(s),y'(s)\mathrm{d}s\|\Big\}\\ &\leq \big|t_1-t_2\big|\Big(1+\frac{\int_0^\infty tq(t)\,\mathrm{d}t} {1-\int_0^\infty q(t)\,\mathrm{d}t}\Big) \|x_{\infty}\|+\Big(1+\frac{\int_0^\infty q(t)\,\mathrm{d}t} {1-\int_0^\infty q(t)\,\mathrm{d}t}\Big)\\ &\quad\times \Big\{\big|\frac{t_1}{1+t_1}-\frac{t_2}{1+t_2}\big|\, \|\int_0^{\infty}f(s,x(s),x'(s),y(s),y'(s)\mathrm{d}s\|\\ &\quad +\|\int_{t_1}^{t_2}sf(s,x(s),x'(s),y(s),y'(s)\mathrm{d}s\|\\ &\quad +\frac{t_2}{1+t_2}\|\int_{t_1}^{t_2}f(s,x(s),x'(s),y(s),y'(s) \mathrm{d}s\|\\ &\quad +\big|\frac{1}{1+t_1}-\frac{1}{1+t_2}\big|\,\|\int_0^{t_1}s f(s,x(s),x'(s),y(s),y'(s)\mathrm{d}s\|\\ &\quad +\big|\frac{t_1}{1+t_1}-\frac{t_2}{1+t_2}\big|\,\|\int_0^{t_1} f(s,x(s),x'(s),y(s),y'(s)\mathrm{d}s\|\Big\}. \end{split}\label{e35} \end{equation} Then, it is easy to see that by the above inequality and (H1), $\{\frac{A_1V(t)}{1+t}\} $ is equicontinuous on any finite subinterval of $J$. Since $V\subset Q\ $ is bounded, there exists $r>0$ such that for any $(x,y)$ in $V$, $\|(x,y)\|_X\leq r$. By \eqref{e13}, we obtain \begin{equation} \begin{split} &\|A'_1(x,y)(t_1)-A'_1(x,y)(t_2)\|\\ &= \|\int_{t_1}^{t_2}f(s,x(s),x'(s),y(s),y'(s))\mathrm{d}s\|\\ &\leq \int_{t_1}^{t_2}[4\epsilon_0rc_0(s)(1+s)+a_0(s)+M_0b_0(s)] \mathrm{d}s. \end{split}\label{e36} \end{equation} It follows from \eqref{e36}, (H1), and the absolute continuity of Lebesgue integral that $\{A'_1V(t)\} $ is equicontinuous on any finite subinterval of $J$. We are in position to show that for any $\epsilon>0$, there exists $N_1>0$ such that $$ \|\frac{A_1(x,y)(t_1)}{1+t_1}-\frac{A_1(x,y)(t_2)}{1+t_2}\|<\epsilon, \quad \|A'_1(x,y)(t_1)-A'_1(x,y)(t_2)\|<\epsilon, $$ uniformly with respect to $x\in V$ as $t_1, t_2\geq N_1$. Combining this with \eqref{e35}, we need only to show that for any $\epsilon>0$, there exists sufficiently large $N_1>0$ such that \begin{align*} &\|\int_0^{t_1}\frac{s}{1+t_1}f(s,x(s),x'(s),y(s),y'(s))\mathrm{d}s\\ &-\int_0^{t_2}\frac{s}{1+t_2} f(s,x(s),x'(s),y(s),y'(s))\mathrm{d}s\|<\epsilon, \end{align*} for all $x\in V$ as $t_1, t_2\geq N_1$. The rest part of the proof is very similar to \cite[Lemma 2.3]{l3}, we omit the details. The proof for operator $A_2$ can be given in a similar way. Then the proof is complete. \end{proof} \begin{lemma}\label{lem4} Let {\rm (H1)} be satisfied, $V$ be a bounded set in $DC^1[J,E]\times DC^1[J,E]$. Then $$ \alpha_D(A_iV)=\max\big\{ \sup_{t\in J}\alpha \Big(\frac{(A_iV)(t)}{1+t}\Big),\; \sup_{t\in J}\alpha((A_iV)'(t))\big\}\quad (i=0,1). $$ \end{lemma} The proof of the above lemma is similar to that of \cite[Lemma 2.4]{l3}, we omit it. \begin{lemma}[M\"onch Fixed-Point Theorem \cite{d1,g2}] \label{lem5} Let $Q$ be a closed convex set of $E$ and $u\in Q$. Assume that the continuous operator $F : Q \to Q $ has the following property: $V \subset Q $ countable, $V\subset \overline{\rm co}(\{u\}\cup F(V))\Rightarrow V$ is relatively compact. Then $F$ has a fixed point in $Q$. \end{lemma} \begin{lemma}\label{lem6} If {\rm (H3)} is satisfied, then for $x,y\in Q$, $x^{(i)}\leq y^{(i)}$, $t\in J$ $(i=0,1)$ imply $(Ax)^{(i)}\leq (Ay)^{(i)}$, $t\in J$ $(i=0,1)$. \end{lemma} It is easy to see that the above lemma follows from \eqref{e4} \eqref{e5} \eqref{e13} and condition (H3). \begin{lemma}[\cite{g4}] \label{lem7} Let $D$ and $F$ be bounded sets in $E$, then $$ \widetilde{\alpha}(D\times F)=\max\{\alpha(D), \alpha(F)\}, $$ where $\widetilde{\alpha}$ and $\alpha$ denote the Kuratowski measure of non-compactness in $E\times E$ and $E$, respectively. \end{lemma} \begin{lemma}[\cite{g4}] \label{lem8} Let $P$ be normal (fully regular) in $E$, $\widetilde{P}=P\times P$, then $\widetilde{P}$ is normal (fully regular) in $E\times E$. \end{lemma} \section{Main results} \begin{theorem}\label{thm1} Assume {\rm (H1), (H2)} and that $2D^*\cdot G^*<1$. Then \eqref{e1} has a positive solution $(\overline{x},\overline{y})\in (DC^1[J, E]\cap C^2[J_+,E])\times (DC^1[J, E]\cap C^2[J_+,E])$ satisfying $(\overline{x})^{(i)}(t)\geq \lambda_0^*x_0^*, (\overline{y})^{(i)}(t)\geq\lambda_1^* y_0^*$ for $t\in J\ (i=0,1)$. \end{theorem} \begin{proof} By Lemma \ref{lem1}, the operator $A$ defined by \eqref{e3} is a continuous operator from $Q$ to $Q$. By Lemma \ref{lem2}, we need only to show that $A$ has a fixed point $(\overline{x},\overline{y})$ in $Q$. Choose $R>2\gamma$ and let $Q^*=\{(x,y)\in Q:\|(x,y)\|_X\leq R\}$. Obviously, $Q^*$ is a bounded closed convex set in space $DC^1[J, E]\times DC^1[J, E]$. It is easy to see that $Q^*$ is not empty since $((1+t)x_{\infty},(1+t)y_{\infty})\in Q^*$. It follows from \eqref{e17} \eqref{e18} that $(x,y)\in Q^*$ implies that $A(x,y)\in Q^*$; i.e., $A$ maps $Q^*$ to $Q^*$. Let $V=\{(x_m,y_m):m=1,2,\dots\}\subset Q^*$ satisfying $V\subset\overline{co}\{\{(u_0,v_0)\}\cup AV\}$ for some $(u_0,v_0)\in Q^*$. Then $\|(x_m,y_m)\|_X\leq R$. By \eqref{e4} and \eqref{e13}, we have \begin{equation} \begin{split} &A_1(x_m,y_m)(t)\\ &= \frac{1}{1-\int_0^{\infty}q(t)\,\mathrm{d}t} \Big\{\int_0^{\infty}\int_0^{\infty}q(t) G(t,s)f(s,x_m(s),x'_m(s),y_m(s),y'_m(s))\,\mathrm{d}s\,\mathrm{d}t \\ &\quad +x_{\infty}\int_0^{\infty}tq(t)\,\mathrm{d}t\Big\} +tx_{\infty}+\int_0^{\infty}G(t,s)f(s,x_m(s),x'_m(s),y_m(s),y'_m(s)) \,\mathrm{d}s,\\ \end{split}\label{e37} \end{equation} and \begin{equation} A'_1(x_m,y_m)(t)=\int_t^{\infty}f(s,x_m(s),x'_m(s),y_m(s),y'_m(s)) \mathrm{d}s+x_{\infty}.\label{e38} \end{equation} By Lemma \ref{lem4}, we have \begin{equation} \alpha_D(A_1V)=\max\Big\{\sup_{t\in J}\alpha((A_1V)'(t)),\; \sup_{t\in J}\alpha \Big(\frac{(A_1V)(t)}{1+t}\Big)\Big\},\label{e39} \end{equation} where $(A_1V)(t)=\{A_1(x_m,y_m)(t):m=1,2,\dots\}$, $(A_1V)'(t)=\{A'_1(x_m,y_m)(t):m=1,2,\dots\}$. By \eqref{e10}, we know that the infinite integral $\int_0^{\infty}\|f(t,x(t),x'(t),y(t),y'(t))\|\mathrm{d}t$ is convergent uniformly for for $m=1,2,3,\dots$. So, for any $\epsilon>0$, we can choose a sufficiently large $T > \xi_i$ $(i=1,2,\dots, m-2)>0$ such that \begin{equation} \int_T^{\infty}\|f(t,x(t),x'(t),y(t),y'(t))\|\mathrm{d}t<\epsilon. \label{e40} \end{equation} Then, by Guo et al. \cite[Theorem 1.2.3]{y1}, \eqref{e37}, \eqref{e38}, \eqref{e40}, (H2), and Lemma \ref{lem7}, we obtain \begin{equation} \begin{split} &\alpha\Big(\frac{(A_1V)(t)}{1+t}\Big)\\ &\leq \frac{D_0}{1+t} \Big\{2\int_0^T\alpha(f(t,x_m(t),x'_m(t),y_m(t), y'_m(t))\,\mathrm{d}t+2\varepsilon\Big\} \\ &\leq 2D_0\int_0^{\infty}\alpha(f(t,x_m(t),x'_m(t),y_m(t),y'_m(t)) \,\mathrm{d}t+2\varepsilon\\ &\leq 2D_0\alpha_X(V)\int_0^\infty (L_{00}(s)+K_{00}(s))(1+s) +(L_{01}(s)+K_{01}(s))\,\mathrm{d}t +2\varepsilon.\\ &\leq 2D_0G_0^*\alpha_X(V)+2\varepsilon, \end{split}\label{e41} \end{equation} and \[ \alpha({(A_1V)'(t)})\leq2\int_0^{\infty} \alpha(f(t,x_m(t),x'_m(t),y_m(t),y'_m(t))\,\mathrm{d}s+2\varepsilon \leq 2G_0^*\alpha_X(V) +2\varepsilon. \] %\label{42} From this inequality, \eqref{e39} and\eqref{e41}, it follows that \begin{equation} \alpha_D(A_1V)\leq2D_0\alpha_X(V)G_0^*.\label{e43} \end{equation} In the same way, we obtain \begin{equation} \alpha_D(A_2V)\leq2D_1\alpha_X(V)G_1^*.\label{e44} \end{equation} On the other hand, $\alpha_X(V ) \leq \alpha_X\{\overline{\rm co}(\{u\}\cup(AV))\} = \alpha_X(AV )$. Then, \eqref{e43}, \eqref{e44}, (H2), and Lemma \ref{lem7} imply $\alpha_X(V) = 0$; i.e., $V$ is relatively compact in $DC^1[J,E]\times DC^1[J,E]$. Hence, the M\"onch fixed point theorem guarantees that $A$ has a fixed point $(\overline{x},\overline{y})$ in $Q_1$. \end{proof} \begin{theorem}\label{thm2} Let cone $P$ be normal and conditions {\rm (H1)--(H3)} be satisfied. Then \eqref{e1} has a positive solution $(\overline{x},\overline{y}) \in Q\cap (C^2[J_+ ,E]\times C^2[J_+ ,E])$ which is minimal in the sense that $u^{(i)}(t)\geq \overline{x}^{(i)}(t),v^{(i)}(t)\geq \overline{y}^{(i)}(t)$, $t \in J$ $(i = 0, 1)$ for any positive solution $(u,v) \in Q\cap(C^2[J_+ ,E]\times C^2[J_+ ,E])$ of \eqref{e1}. Moreover, $\|(\overline{x},\overline{y})\|_X \leq 2\gamma+\|(u_0,v_0)\|_X$, and there exists a monotone iterative sequence $\{(u_m(t),v_m(t))\}$ such that $u^{(i)}_ m (t)\to \overline{x}^{(i)}(t), v^{(i)}_ m (t)\to \overline{y}^{(i)}(t)$ as $m\to\infty (i = 0, 1)$ uniformly on $J$ and $u_m''(t)\to \overline{x}''(t), v_m''(t)\to \overline{y}''(t)$ as $m\to\infty$ for any $t \in J_+$, where \begin{equation} \begin{split} &u_0(t)\\ &= \frac{1}{1-\int_0^{\infty}q(t)\,\mathrm{d}t} \Big\{x_{\infty}\int_0^{\infty}tq(t)\,\mathrm{d}t +\int_0^{\infty}\int_0^{\infty}q(t)G(t,s)f(s,\lambda_0^*x_0^*, \lambda_0^*x_0^*,\lambda_1^*y_0^*,\\ &\quad \lambda_1^*y_0^*)\,\mathrm{d}s\,\mathrm{d}t\Big\} +tx_{\infty}+\int_0^{\infty}G(t,s)f(s,\lambda_0^*x_0^*, \lambda_0^*x_0^*,\lambda_1^*y_0^*,\lambda_1^*y_0^*)\,\mathrm{d}s, \end{split}\label{e45} \end{equation} \begin{equation} \begin{split} &v_0(t)\\ &= \frac{1}{1-\int_0^{\infty}h(t)\,\mathrm{d}t} \Big\{y_{\infty}\int_0^{\infty}th(t)\,\mathrm{d}t +\int_0^{\infty}\int_0^{\infty}h(t)G(t,s) g(s,\lambda_0^*x_0^*,\lambda_0^*x_0^*,\lambda_1^*y_0^*,\\ &\quad \lambda_1^*y_0^*)\,\mathrm{d}s\,\mathrm{d}t\Big\} +ty_{\infty}+\int_0^{\infty}G(t,s)g(s,\lambda_0^*x_0^*, \lambda_0^*x_0^*,\lambda_1^*y_0^*,\lambda_1^*y_0^*) \,\mathrm{d}s, \end{split}\label{e46} \end{equation} and \begin{equation} \begin{split} &u_m(t)\\ &= \frac{1}{1-\int_0^{\infty}q(t)\,\mathrm{d}t} \Big\{x_{\infty}\int_0^{\infty}tq(t)\,\mathrm{d}t +\int_0^{\infty}\int_0^{\infty}q(t)G(t,s)f(s,u_{m-1}(s),u'_{m-1}(s), \\ &\quad v_{m-1}(s),v'_{m-1}(s))\,\mathrm{d}s\,\mathrm{d}t\Big\} +tx_{\infty}+\int_0^{\infty}G(t,s)f(s,u_{m-1}(s),u'_{m-1}(s), v_{m-1}(s),\\ &\quad v'_{m-1}(s))\,\mathrm{d}s,\quad \forall t\in J (m=1,2,3,\dots), \end{split} \label{e47} \end{equation} \begin{equation}\begin{split} &v_m(t)\\ &= \frac{1}{1-\int_0^{\infty}h(t)\,\mathrm{d}t} \Big\{y_{\infty}\int_0^{\infty}th(t)\,\mathrm{d}t +\int_0^{\infty}\int_0^{\infty}h(t)G(t,s)g(s,u_{m-1}(s),u'_{m-1}(s), \\ &\quad v_{m-1}(s),v'_{m-1}(s))\,\mathrm{d}s\,\mathrm{d}t\Big\} +ty_{\infty}+\int_0^{\infty}G(t,s)g(s,u_{m-1}(s),u'_{m-1}(s), v_{m-1}(s),\\ &\quad v'_{m-1}(s))\,\mathrm{d}s,\quad \forall t\in J (m=1,2,3,\dots). \end{split}\label{e48} \end{equation} \end{theorem} \begin{proof} From \eqref{e45},\eqref{e46} one sees that $(u_0,v_0)\in C[J,E]\times C[J,E]$ and \begin{equation} u_0'(t)=\int_t^{+\infty}f(s,\lambda_0^*x_0^*,\lambda_0^*x_0^*, \lambda_0^*y_0^*,\lambda_0^*y_0^*)\mathrm{d}s+x_{\infty}. \label{e49} \end{equation} By \eqref{e45} and \eqref{e49}, we have $u_0^{(i)}\geq \lambda_0^*x_{\infty}\geq \lambda_0^*x_0^*\ (i=0,1)$ and \begin{align*} &\frac{\|u_0(t)\|}{1+t}\\ &\leq \frac{1}{1-\int_0^{\infty}q(t)\,\mathrm{d}t} \Big\{\int_0^{\infty}\int_0^{\infty}q(t)G(t,s)\|f(s, \lambda_0^*x_0^*,\lambda_0^*x_0^*,\lambda_1^*y_0^*, \lambda_1^*y_0^*)\|\,\mathrm{d}s\,\mathrm{d}t \\ &\quad +\|x_{\infty}\|\int_0^{\infty}tq(t)\,\mathrm{d}t\Big\} +t\|x_{\infty}\|+\int_0^{\infty}G(t,s)\|f(s,\lambda_0^*x_0^*, \lambda_0^*x_0^*,\lambda_1^*y_0^*,\lambda_1^*y_0^*)\|\,\mathrm{d}s,\\ &\leq\Big(1+\frac{\int_0^\infty g(t)\,\mathrm{d}t} {1-\int_0^\infty g(t)\,\mathrm{d}t}\Big) \int_0^{\infty}a_0(s)+b_0(s)z_0(\|\lambda_0^*x_0^*\|,\| \lambda_0^*x_0^*\|,\|\lambda_0^*y_0^*\|,\|\lambda_0^*y_0^*\| \mathrm{d}s\\ &\quad +\Big(1+\frac{\int_0^\infty tg(t)\,\mathrm{d}t} {1-\int_0^\infty g(t)\,\mathrm{d}t}\Big)\|x_{\infty}\|, \end{align*} %\label{50} \begin{align*} \|u_0'(t)\| &\leq \int_t^{\infty}\|f(s,\lambda_0^*x_0^*,\lambda_0^*x_0^*, \lambda_1^*y_0^*,\lambda_1^*y_0^*)\|\mathrm{d}\tau+\|x_{\infty}\|\\ &\leq \int_0^{\infty}a_0(s)+b_0(s)h_0(\|\lambda_0^*x_0^*\|, \|\lambda_0^*x_0^*\|,\|\lambda_0^*y_0^*\|,\|\lambda_0^*y_0^*\|) \mathrm{d}s+\|x_{\infty}\|, \end{align*} which implies $\|u_0\|_D<\infty$. Similarly, we have $\|v_0\|_D<\infty$. Thus, $(u_0,v_0)\in DC^1[J,E]\times DC^1[J,E]$. It follows from \eqref{e4} and \eqref{e47} that \begin{equation} (u_m,v_m)(t)=A(u_{m-1},v_{m-1})(t), \quad \forall t\in J,\; m=1,2,3,\dots.\label{e50} \end{equation} By Lemma \ref{lem1}, we obtain $(u_m,v_m)\in Q$ and \begin{equation} \|(u_m,v_m)\|_X=\|A(u_{m-1},v_{m_1})\|_X\leq \frac{1}{2}\|(u_{m-1},v_{m-1})\|_X+\gamma.\label{e51} \end{equation} By (H3) and \eqref{e50}, we have \begin{equation} u_1(t)=A_1(u_0(t),v_0(t))\geq A_1(\lambda_0^*x_0^*,\lambda_1^*y_0^*)=u_0(t),\quad \forall\ t\in J,\label{52} \end{equation} and \begin{equation} v_1(t)=A_2(u_0(t),v_0(t))\geq A_2(\lambda_0^*x_0^*,\lambda_1^*y_0^*)=v_0(t),\quad \forall t\in J.\label{53} \end{equation} By induction, we obtain \begin{equation} (\lambda_0^*x_0^*,\lambda_1^*y_0^*)\leq (u_0(t),v_0(t))\leq (u_1(t),v_1(t))\leq \dots\leq (u_m(t),v_m(t))\leq\dots, \label{e54} \end{equation} for all $t\in J$. By induction and Lemma \ref{lem6} and \eqref{e50}, we have \begin{equation} (\lambda_0^*x_0^*,\lambda_1^*y_0^*)\leq (u_0^{(i)}(t),v_0^{(i)}(t))\leq (u_1^{(i)}(t),v_1^{(i)}(t))\leq \dots\leq (u_m^{(i)}(t),v_m^{(i)}(t))\leq\dots, \label{e55} \end{equation} for all $t\in J$. It follows from \eqref{e51}, by induction, that \begin{equation} \begin{split} \|(u_m,v_m)\|_X &\leq \gamma+\frac{1}{2}\gamma+\dots +\big(\frac{1}{2}\big)^{m-1}\gamma +\big(\frac{1}{2}\big)^m\|(u_0,v_0)\|_X\\ &\leq \frac{\gamma(1-(\frac{1}{2})^m)}{1-\frac{1}{2}}+\|(u_0,v_0)\|_X\\ &\leq 2\gamma+\|(u_0,v_0)\|_X\quad (m=1,2,3,\dots). \end{split}\label{e56} \end{equation} Let $K = \{(x,y)\in Q:\|(x,y)\|_X\leq 2\gamma+\|(u_0,v_0)\|_X\}$. Then $K$ is a bounded closed convex set in space $DC^1[J,E]\times DC^1[J,E]$ and operator $A$ maps $K$ into $K$. Clearly, $K$ is not empty since $(u_0,v_0)\in K$. Let $W = \{(u_m,v_m):m=0,1,2,\dots\},AW = \{A(u_m,v_m) : m = 0, 1, 2,\dots\}$. Obviously, $W\subset K$ and $W = \{(u_0,v_0)\}\cup A(W)$. As in the proof of Theorem \ref{thm1}, we obtain $\alpha_X(AW) = 0$; i.e., $W$ is relatively compact in $DC^1[J,E]\times DC^1[J,E]$. So, there exists a $(\overline{x},\overline{y})\in DC^1[J,E]\times DC^1[J,E]$ and a subsequence $\{(u_{m_j},v_{m_j}) : j = 1, 2, 3,\dots\} \subset W$ such that $\{(u_{m_j},v_{m_j})(t) : j = 1, 2, 3, \dots\}$ converges to $(\overline{x}^{(i)}(t),\overline{y}^{(i)}(t))$ uniformly on $J\ (i = 0, 1)$. Since that $P$ is normal and $\{(u^{(i)}_ m (t),v^{(i)}_ m (t)) : m = 1, 2, 3, \dots\}$ is nondecreasing, by Lemma \ref{lem8} it is easy to see that the entire sequence $\{(u^{(i)}_ m (t),v^{(i)}_ m (t)) : m = 1, 2, 3, \dots\}$ converges to $(\overline{x}^{(i)}(t),\overline{y}^{(i)}(t))$ uniformly on $J$ $(i = 0, 1)$. Since $(u_m,v_m)\in K$ and $K$ is a closed convex set in space $DC^1[J,E]\times DC^1[J,E]$, we have $(\overline{x},\overline{y})\in K$. It is clear, \begin{equation} f(s,u_m(s),u_m'(s),v_m(s),v_m'(s))\to f(s,\overline{x}(s),\overline{x}'(s),\overline{y}(s), \overline{y}'(s)),\label{e57} \end{equation} as $m\to\infty$, for all $s\in J_+$. By (H1) and \eqref{e56}, we have \begin{equation} \begin{split} &\|f(s,u_m(s),u_m'(s),v_m(s),v_m'(s))- f(s,\overline{x}(s),\overline{x}'(s),\overline{y}(s), \overline{y}'(s))\|\\ & \leq 8\epsilon_0c_0(s)(1+s)\|(u_m,v_m)\|_X+2a_0(s)+2M_0b_0(s)\\ &\leq 8\epsilon_0c_0(s)(1+s)(2\gamma+\|(u_0,v_0)\|_X)+2a_0(s) +2M_0b_0(s) \end{split} \label{e58}. \end{equation} Noticing \eqref{e57} and \eqref{e58} and taking limit as $m\to \infty$ in \eqref{e47}, we obtain \begin{equation} \begin{split} \overline{x}(t) &= \frac{1}{1-\int_0^{\infty}q(t)\,\mathrm{d}t} \Big\{x_{\infty}\int_0^{\infty}tq(t)\,\mathrm{d}t\\ &\quad +\int_0^{\infty}\int_0^{\infty}q(t)G(t,s)f(s,\overline{x}(s), \overline{x}'(s),\overline{y}(s),\overline{y}'(s))\,\mathrm{d}s \,\mathrm{d}t\Big\} \\ &\quad +tx_{\infty}+\int_0^{\infty}G(t,s)f(s,\overline{x}(s), \overline{x}'(s),\overline{y}(s),\overline{y}'(s))\,\mathrm{d}s, \end{split}\label{e59} \end{equation} In the same way, taking limit as $m\to \infty$ in \eqref{e48}, we obtain \begin{equation} \begin{split} \overline{y}(t) &= \frac{1}{1-\int_0^{\infty}h(t)\,\mathrm{d}t} \Big\{y_{\infty}\int_0^{\infty}th(t)\,\mathrm{d}t\\ &\quad +\int_0^{\infty}\int_0^{\infty}h(t)G(t,s)g(s,\overline{x}(s), \overline{x}'(s),\overline{y}(s),\overline{y}'(s))\,\mathrm{d}s\, \mathrm{d}t\Big\} \\ &\quad +ty_{\infty}+\int_0^{\infty}G(t,s)g(s,\overline{x}(s), \overline{x}'(s),\overline{y}(s),\overline{y}'(s))\,\mathrm{d}s, \end{split}\label{e60} \end{equation} which together with \eqref{e59} and Lemma \ref{lem2} implies that $(\overline{x},\overline{y})\in K\cap C^2[J_+,E]\times C^2[J_+,E]$ and $(\overline{x}(t),\overline{y}(t))$ is a positive solution of \eqref{e1}. Differentiating \eqref{e47} twice, we obtain \[ u''_m(t)=-f(t,u_{m-1}(t),u'_{m-1}(t),v_{m-1}(t),v'_{m-1}(t)),\quad \forall t\in J_+',\; m=1,2,3,\dots. \] Hence, by \eqref{e57}, we obtain \[ \lim_{m\to\infty}u_m''(t)=-f(t,\overline{x}(t), \overline{x}'(t),\overline{y}(t),\overline{y}'(t)) =\overline{x}''(t),\quad \forall t\in J_+'. \] Similarly, we have \[ \lim_{m\to\infty}v_m''(t) =-g(t,\overline{x}(t),\overline{x}'(t),\overline{y}(t),\overline{y}'(t)) =\overline{y}''(t),\quad \forall\ t\in J_+'. \] Let $(m(t),n(t))$ be any positive solution of \eqref{e1}. By Lemma \ref{lem2}, we have $(m,n)\in Q$ and $(m(t),n(t)) = A(m,n)(t)$, for $t \in J$. It is clear that $m^{(i)}(t)\geq\lambda_0^* x_0^*>\theta$, $n^{(i)}(t)\geq \lambda_1^*y_0^*>\theta$ for any $t\in J$ $(i = 0, 1)$. So, by Lemma \ref{lem6}, we have $m^{(i)}(t)\geq u_0^{(i)}(t)$, $n^{(i)}(t)\geq v_0^{(i)}(t)$ for any $t \in J$ $(i = 0, 1)$. Assume that $m^{(i)}(t)\geq u^{(i)}_{ m-1}(t)$, $n^{(i)}(t)\geq v^{(i)}_{m-1}(t)$ for $ t \in J$, $m \geq 1$ $(i = 0, 1)$. From Lemma \ref{lem6} it follows that \[ (A_1^{(i)}(m,n)(t),A_2^{(i)}(m,n)(t))\geq(A_1^{(i)}(u_{m-1}, v_{m-1}))(t), A_2^{(i)}(u_{m-1},v_{m-1}))(t))\] for $t \in J$ $(i = 0, 1)$; i.e., $(m^{(i)}(t),n^{(i)}(t))\geq (u^{(i)}_m (t),v^{(i)}_m (t))$ for $t \in J$ $(i = 0, 1)$. Hence, by induction, we obtain \begin{equation} m^{(i)}(t)\geq \overline{x}^{(i)}_m (t), n^{(i)}(t)\geq \overline{y}^{(i)}_m (t) \quad \forall t \in J\; (i = 0,1;m = 0, 1, 2, \dots). \label{e61} \end{equation} Now, taking limits in \eqref{e61}, we obtain $m^{(i)}(t)\geq \overline{x}^{(i)}(t),n^{(i)}(t)\geq \overline{y}^{(i)}(t)$ for $t \in J\ (i = 0, 1)$. The proof is complete. \end{proof} \begin{theorem}\label{thm3} Let cone $P$ be fully regular and conditions {\rm (H1)} and {\rm (H3)} be satisfied. Then the conclusion of Theorem \ref{thm2} holds. \end{theorem} \begin{proof} The proof is almost the same as that of Theorem \ref{thm2}. The only difference is that, instead of using condition (H2), the conclusion $\alpha_X(W) = 0 $ is implied directly by \eqref{e55} and \eqref{e56}, the full regularity of $P$ and Lemma \ref{lem8}. \end{proof} \section{An example} Consider the infinite system of scalar singular second-order three-point boundary value problems: \begin{equation} \begin{gathered} \begin{aligned} -x_n''(t)&=\frac{1}{9n^3\sqrt[3]{e^{2t}}(2+5t)^9}\Big(5+y_n(t) +x_{2n}'(t)+y_{3n}'(t)\\ &\quad +\frac{2}{3n^2x_n(t)} +\frac{4}{7n^5x'_{2n}(t)}\Big)^{1/2} +\frac{1}{9\sqrt[6]{t}(1+3t)^2}\ln\big[(1+3t)x_n(t)\big], \end{aligned}\\ \begin{aligned} -y_n''(t)&=\frac{1}{7n^4\sqrt[3]{e^{2t}}(4+5t)^8}\Big(6+x_{3n}(t) +x_{4n}'(t)+\frac{1}{8n^3y_{2n}(t)}\\ &\quad +\frac{5}{16n^4y'_{4n}(t)}\Big)^{1/3} +\frac{1}{7\sqrt[6]{t}(3+4t)^3}\ln\big[(3+4t)y'_{4n}(t)\big], \end{aligned}\\ x_n(0)=\int_0^\infty e^{-t^2}x_n(t)\,\mathrm{d}t,\quad x_n'(\infty)=\frac{1}{n},\\ y_n(0)=\int_0^\infty\frac{1}{2} e^{\frac{-t^2}{2}}y_n(t) \,\mathrm{d}t,\quad y_n'(\infty)=\frac{1}{2n}, \quad ( n=1,2,\dots). \end{gathered}\label{e62} \end{equation} \begin{proposition} \label{prop1} System \eqref{e62} has a minimal positive solution $(x_n(t),y_n(t))$ satisfying $x_n(t),x'_n(t)\geq 1/n$, $y_n(t), y'_n(t)\geq 1/(2n)$ for $0\leq t <+\infty$ $(n= 1, 2, 3, \dots)$. \end{proposition} \begin{proof} Let $E=c_0=\{x=(x_1,\dots,x_n,\dots):x_n\to 0 \}$ with the norm $\|x\|=\sup_n|x_n|$. Obviously, $(E, \|\cdot\|)$ is a real Banach space. Choose $P=\{x=(x_n)\in c_0:x_n\geq 0, n=1,2,3,\dots\}$. It is easy to verify that $P$ is a normal cone in $E$ with normal constant 1. Now we consider \eqref{e62} which can be regarded as a boundary-value problem of form \eqref{e1} in $E$ with $x_{\infty}=(1,\frac{1}{2},\frac{1}{3},\dots)$, $y_{\infty}=(\frac{1}{2},\frac{1}{4},\frac{1}{6},\dots)$. In this situation, $x=(x_1,\dots,x_n,\dots)$, $u=(u_1,\dots,u_n,\dots)$, $y=(y_1,\dots,y_n,\dots)$, $v=(v_1,\dots,v_n,\dots)$, $f=(f_1,\dots,f_n,\dots)$, in which \begin{equation} \begin{aligned} &f_n(t,x,u,y,v)\\ &= \frac{1}{9n^3\sqrt[3]{e^{2t}}(2+5t)^9}\Big(5+y_n+u_{2n}+v_{3n} +\frac{2}{3n^2x_n} +\frac{4}{7n^5u_{2n}}\Big)^{1/2}\\ &\quad +\frac{1}{9\sqrt[6]{t}(1+3t)^2}\ln[(1+3t)x_n], \end{aligned}\label{e63} \end{equation} and \begin{equation} \begin{aligned} & g_n(t,x,u,y,v))\\ &= \frac{1}{7n^4\sqrt[3]{e^{2t}}(4+5t)^8}\Big(6+x_{3n}+u_{4n} +\frac{1}{8n^3y_{2n}} + \frac{5}{16n^4v_{4n}}\Big)^{1/3}\\ &\quad +\frac{1}{7\sqrt[6]{t}(3+4t)^3}\ln[(3+4t)v_{4n}]. \end{aligned}\label{e64} \end{equation} Let $x_0^*=x_{\infty}=(1,\frac{1}{2},\frac{1}{3},\dots)$, $y_0^*=y_{\infty}=(\frac{1}{2},\frac{1}{4},\frac{1}{6},\dots)$. Then $P_{0\lambda}=\{x=(x_1,x_2,\dots,x_n,\dots): x_n\geq\frac{\lambda}{n},\ n=1,2,3,\dots\},P_{1\lambda}=\{y=(y_1,y_2,\dots,y_n,\dots): y_n\geq\frac{\lambda}{2n},\ n=1,2,3,\dots\}$, for $\lambda>0$. By a simple computation, we have $D_0=8.7912$, $D_1=2.6787$, $\int_0^\infty e^{-t^2}\,\mathrm{d}t\approx0.8863<1$, $\int_0^\infty te^{-t^2}\,\mathrm{d}t=0.5$, $\int_0^\infty\frac{1}{2} e^{\frac{-t^2}{2}}\,\mathrm{d}t\approx0.6267<1,$ $\int_0^\infty \frac{1}{2}te^{\frac{-t^2}{2}}\,\mathrm{d}t=0.5$, $\lambda_0^*=\lambda_1^*=1$. It is clear, $f,g\in C[J_+\times P_{0\lambda}\times P_{0\lambda}\times P_{1\lambda}\times P_{1\lambda},P]$ for any $\lambda>0$. Note that $\sqrt[3]{e^{2t}}>\sqrt[6]{t}$ for $t>0$ for $t>0$, by \eqref{e63} and \eqref{e64}, we obtain \begin{equation} \begin{split} \|f(t,x,u,y,v)\|&\leq\frac{1}{9\sqrt[6]{t}(1+3t)^2}\Big\{\Big( \frac{167}{21}+\|y\|+\|u\|+\|v\|\Big)^{1/2}\\ &\quad +\ln\big[(1+3t)\|x\|\big]\Big\}, \end{split}\label{e65} \end{equation} and \begin{equation} \|g(t,x,u,y,v)\|\leq\frac{1}{7\sqrt[6]{t}(3+4t)^2}\Big\{\big( 9+\|x\|+\|u\|\big)^{1/3}+\ln\big[(3+4t)\|v\|\big]\Big\}, \label{e66} \end{equation} which imply (H1) is satisfied for $a_0(t)=0$, $b_0(t)=c_0(t)=\frac{1}{9\sqrt[6]{t}(1+3t)^2}$, $a_1(t)=0$, $b_1(t)=c_1(t)=\frac{1}{7\sqrt[6]{t}(3+4t)^2}$ and \begin{gather*} z_0(u_0,u_1,u_2,u_3)=\big(\frac{167}{21}+u_1+u_2+u_3\big)^{1/2} +\ln[(1+3t)u_0],\\ z_1(u_0,u_1,u_2,u_3)=\big(9+u_0+u_1 \big)^{1/3}+\ln[(3+4t)u_3]. \end{gather*} Let $f^1=\{f^1_1, f^1_2,\dots, f^1_n,\dots\}$, $f^2=\{f^2_1, f^2_2,\dots,f^2_n,\dots\}$, $g^1=\{g^1_1, g^1_2,\dots, g^1_n,\dots\}$, $g^2=\{g^2_1, g^2_2,\dots, g^2_n,\dots\}$, where \begin{gather} f^1_{n}(t,x,u,y,v)=\frac{1}{9n^3\sqrt[3]{e^{2t}}(2+5t)^9} \Big(5+y_n+u_{2n}+v_{3n}+\frac{2}{3n^2x_n}+ \frac{4}{7n^5u_{2n}}\Big)^{1/2},\label{e67} \\ f^2_{n}(t,x,u,y,v)=\frac{1}{9\sqrt[6]{t}(1+3t)^2} \ln[(1+3t)x_n],\label{e68} \\ g^1_{n}(t,x,u,y,v)=\frac{1}{7n^4\sqrt[3]{e^{2t}}(4+5t)^8} \Big(6+x_{3n}+u_{4n}+\frac{1}{8n^3y_{2n}}+ \frac{5}{16n^4v_{4n}}\Big)^{1/3},\label{e69} \\ g^2_{n}(t,x,u,y,v)=\frac{1}{7\sqrt[6]{t}(3+4t)^3} \ln[(3+4t)v_{4n}].\label{e70} \end{gather} Let $t\in J_+$, and $R>0$, and $\{z^{(m)}\}$ be any sequence in $f^1(t, P_{0R}^*,P_{0R}^*,P_{1R}^*,P_{1R}^*)$, where $z^{(m)}=(z^{(m)}_1,\dots,z^{(m)}_n,\dots)$. By \eqref{e67}, we have \begin{equation} 0\leq z^{(m)}_n\leq\frac{1}{9n^3\sqrt[3]{e^{2t}}(2+5t)^9} \big(\frac{167}{21}+ 3R\big)^{1/2}\quad (n,m=1,2,3,\dots). \label{e71} \end{equation} So, $\{z^{(m)}_n\}$ is bounded, and by the diagonal method we can choose a subsequence $\{m_i\} \subset \{m\}$ such that \begin{equation} \{z^{(m)}_n\}\to\overline{z}_n\quad \text{as $i\to\infty$ $(n=1,2,3,\dots)$},\label{e72} \end{equation} which by \eqref{e71} implies \begin{equation} 0\leq \overline{z}_n\leq\frac{1}{9n^3\sqrt[3]{e^{2t}}(2+5t)^9} \big(\frac{167}{21}+ 3R\big)^{1/2}\quad (n=1,2,3,\dots).\label{e73} \end{equation} Hence $\overline{z}=(\overline{z}_1,\dots,\overline{z}_n,\dots)\in c_0$. It is easy to see from \eqref{e71}-\eqref{e73} that \[ \|z^{(m_i)} -\overline{z}\| = \sup_n |z^{(m_i)}_n-\overline{z}_n| \to 0 \quad \text{as } i \to\infty. \] Thus, we have proved that $f^1(t, P_{0R}^*,P_{0R}^*,P_{1R}^*,P_{1R}^*)$ is relatively compact in $c_0$. For any $t\in J_+, R>0,x,y,\overline{x}, \overline{y}\in D\subset P_{0R}^*$, by \eqref{e68} we have \begin{equation} \begin{split} |f^2_n(t,x,y,u,v)-f^2_n(t,\overline{x},\overline{y},\overline{u}, \overline{v})| &= \frac{1}{9\sqrt[6]{t}(1+3t)^2}|\ln[(1+3t)x_n]- \ln[(1+3t)\overline{x}_n]|\\ &\leq \frac{1}{9\sqrt[6]{t}(1+3t)}\frac{|x_n-\overline{x}_n|}{(1+3t) \xi_n}, \end{split}\label{e74} \end{equation} where $\xi_n$ is between $x_n$ and $\overline{x}_n$. By \eqref{e74}, we obtain \begin{equation} \|f^2(t,x,y,u,v)-f^2(t,\overline{x},\overline{y},\overline{u}, \overline{v})\| \leq\frac{1}{9\sqrt[6]{t}(1+3t)}\|x-\overline{x}\|,\quad x, y, \overline{x}, \overline{y}\in D.\label{e75} \end{equation} In the same way, we can prove that $g^1(t, P_{0R}^*,P_{0R}^*,P_{1R}^*,P_{1R}^*)$ is relatively compact in $c_0$. Also we can obtain \[ \|g^2(t,x,u,y,v)-g^2(t,\overline{x},\overline{u},\overline{y}, \overline{v})\| \leq\frac{1}{7\sqrt[6]{t}(3+4t)^2}\|v-\overline{v}\|,\quad x,y,\overline{x}, \overline{y}\in D. %\label{e76} \] From this inequality and \eqref{e75}, it is easy to see that (H2) holds for $L_{00}(t)=1/(9\sqrt[6]{t}(1+3t))$, $L_{10}(t)=1/(7\sqrt[6]{t}(3+4t)^2)$. By a simple computation, we have $G^*_0\approx0.044$, $G^*_1\approx0.013$, $2G^*\cdot D^*\approx0.7736<1$. Our conclusion follows from Theorem \ref{thm1}. \end{proof} \subsection*{Acknowledgements} Supported by grants 20110491154 from the China Postdoctoral Science Foundation, BS2010SF004 from the Foundation for Outstanding Middle-Aged and Young Scientists of Shandong Province, and J10LA53 from a Project of Shandong Province Higher Educational Science and Technology Program. The authors want to thank the anonymous referee for his/her valuable comments. \begin{thebibliography}{00} \bibitem{d1} K. Demling; \emph{Ordinary Differential Equations in Banach Spaces}, Springer-Verlag, Berlin, 1977. \bibitem{g1} D. J. Guo; \emph{Existence of positive solutions for nth-order nonlinear impulsive singular integro-differential equations in Banach spaces}, Nonlinear Anal. 68 (2008) 2727-2740. \bibitem{g2} D. J. Guo, V. Lakshmikantham, X. Z. Liu; \emph{Nonlinear Integral Equation in Abstract Spaces}, Kluwer Academic Publishers, Dordrecht, 1996. \bibitem{g3} D. J. Guo, V. Lakshmikantham; \emph{Nonlinear Problems in Abstract Cones}, Academic Press, San Diego, 1988. \bibitem{g4} D. J. Guo, V. Lakshmikantham; \emph{Coupled fixed points of nonlinear operators with applications}, Nonlinear Anal. 11 (1987) 623-632. \bibitem{l1} V. Lakshmikantham, S. Leela; \emph{Nonlinear Differential Equation in Abstract Spaces}, Pergamon, Oxford, 1981. \bibitem{l2} Y. H. Li, F. Y. Li; \emph{Sign-changing solutions to second-order integral boundary value problems}, Nonlinear Anal. 69 (2008) 1179-1187 \bibitem{l3} Y. S. Liu; \emph{Boundary value problems for second order differential equations on unbounded domains in a Banach space}, Appl. Math. Comput. 135 (2003) 569-583. \bibitem{y1} Z. L. Yang; \emph{Existence and nonexistence results for positive solutions of an integral boundary value problem}, Nonlinear Anal. 65 (2006) 1489-1511 \bibitem{y2} Z. L. Yang; \emph{Positive solutions of a second-order integral boundary value problem}, J. Math. Anal. Appl. 321 (2006) 751-765 \bibitem{y3} Z. Yang; \emph{Positive solutions to a system of second-order nonlocal boundary value problems}, Nonlinear Anal. 62 (2005) 1251-1265. \bibitem{y4} Z. Yang; \emph{Positive solutions of a second-order integral boundary value problem}, J. Math. Anal. Appl. 321 (2006) 751-765. \bibitem{z1} Y. Zhao, G. X. Song, X. Y. Sun; \emph{Integral boundary value problems with causal operators}, Computers and Mathematics with Applications. 59 (2010) 2768-2775 \bibitem{z2} X. M. Zhang, X. Z. Yang, M. Q. Feng; \emph{Minimal Nonnegative Solution of Nonlinear Impulsive Differential Equations on Infinite Interval}, Boundary Value Problems, Volume 2011, Article ID 684542, 15 pages. \bibitem{z3} X. Q. Zhang; \emph{Existence of positive solution for second-order nonlinear impulsive singular differential equations of mixed type in Banach spaces}, Nonlinear Anal. 70 (2009) 1620-1628 \bibitem{z4} X. Q. Zhang; \emph{Successive iteration and positive solutions for a second-order multi-point boundary value problem on a half-line}, Computers and Mathematics with Applications. 58 (2009) 528-535 \end{thebibliography} \end{document}