\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 161, pp. 1--21.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/161\hfil Regularity and symmetry of positive solutions] {Regularity and symmetry of positive solutions to nonlinear integral systems} \author[W. Yao, X. Chen, J. Yan \hfil EJDE-2011/161\hfilneg] {Wanghe Yao, Xiaoli Chen, Jianfu Yang} \address{Wanghe Yao \newline Department of Mathematics, Jiangxi Normal University\\ Nanchang, Jiangxi 330022, China} \email{yaowanghe198610@sina.com} \address{Xiaoli Chen \newline Department of Mathematics, Jiangxi Normal University\\ Nanchang, Jiangxi 330022, China} \email{littleli\_chen@163.com} \address{Jianfu Yang \newline Department of Mathematics, Jiangxi Normal University\\ Nanchang, Jiangxi 330022, China} \email{jfyang\_2000@yahoo.com} \thanks{Submitted July 9, 2011. Published December 7, 2011.} \subjclass[2000]{35J25, 47G30, 35B45, 35J70} \keywords{$L^\infty$ bound; H\"{o}lder continuous; radial symmetry; fractional Laplacian} \begin{abstract} In this article, we consider the regularity and symmetry of positive solutions to the nonlinear integral system \[ u(x)=\int_{\mathbb{R}^n}K_{\alpha}(x-y)\frac{v(y)^q}{|y|^\beta}\,dy, \quad v(x)=\int_{\mathbb{R}^n}K_{\alpha}(x-y)\frac{u(y)^p}{|y|^\beta}\,dy \] for $x\in \mathbb{R}^n$, where $K_\alpha(x)$ is the kernel of the operator $(- \Delta)^{\alpha}+ id$ of order $\alpha$, with $0\leq \beta<2\alpha\frac{n-2\alpha+\beta}{n}. \] We show that positive solution pairs $(u,v)\in L^{p+1}(\mathbb{R}^n)\times L^{q+1}(\mathbb{R}^n)$ are locally H\"older continuous in $\mathbb{R}^N\setminus\{0\}$, radially symmetric about the origin, and strictly decreasing. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} In this article, we consider the regularity and symmetry of positive solutions to the nonlinear integral system \begin{equation}\label{eq:1.1} u(x)=\int_{\mathbb{R}^n}K_{\alpha}(x-y)\frac{v(y)^q}{|y|^\beta}\,dy, \quad v(x)=\int_{\mathbb{R}^n}K_{\alpha}(x-y)\frac{u(y)^p}{|y|^\beta}\,dy \end{equation} for $x\in \mathbb{R}^n$, where $K_\alpha(x)$ is the kernel of the operator $(-\Delta)^\alpha+id$, $0<\alpha<1$, $0\leq \beta<2\alpha\frac{n-2\alpha+\beta}{n}. \end{equation} It can be shown that problem \eqref{eq:1.1} is actually equivalent to the indefinite fractional elliptic systems \begin{equation}\label{eq:1.3} {(- \Delta)}^{\alpha}u+ u=\frac{v^q}{|y|^\beta}, \quad {(- \Delta)}^{\alpha}v + v=\frac{u^p}{|y|^\beta}, \quad\text{in } \mathbb{R}^n. \end{equation} If $p=q$ and $\beta = 0$, problem \eqref{eq:1.3} is of particular interest in fractional quantum mechanics in the study of particles on stochastic fields modelled by L\'evy processes. A path integral over the L\'evy flights paths and a fractional Schr\"odinger equation of fractional quantum mechanics are formulated by Laskin \cite{L}, see also \cite{L1}. It was shown in \cite{FQT} that in the case $p=q$ and $\beta = 0$, problem \eqref{eq:1.3} has at least a positive classical solution, which is radially symmetric and decays at infinity. On the other hand, the problem \begin{equation}\label{eq:1.4} {(- \Delta)}^{\alpha/2}u=v^q, \quad {(- \Delta)}^{\alpha/2}v=u^p, \quad \text{in }\mathbb{R}^n \end{equation} and its generalization have recently been extensively investigated in \cite{CJL,CL,CL2,CL3,CLO,CLO1} etc. Such a problem is equivalent to the integral system \begin{equation}\label{eq:1.5} u(x)=\int_{\mathbb{R}^n}\frac{v(y)^q}{|x-y|^{n-\alpha}}\,dy,\quad v(x)=\int_{\mathbb{R}^n}\frac{u(y)^p}{|x-y|^{n-\alpha}}\,dy, \quad \text{in }\mathbb{R}^n. \end{equation} Solutions $(u,v)$ of \eqref{eq:1.5} are critical points of the functional associated with the well-known Hardy-Littlewood-Sobolev inequality, which is precisely stated as follows. \begin{proposition}\label{prop:1.1} Let $0<\lambda0$. It is known that \[ \|\mathcal{I}_{\alpha}f\|_{q}\leq C\|f\|_{p},\quad\text{where}\quad \frac 1q=\frac 1p-\frac{2\alpha}n. \] In \cite{CY}, the authors studied the regularity and radial symmetry of solutions of \begin{equation}\label{eq:1.6a} u(x)=\int_{\mathbb{R}^n}G_{\alpha}(x-y)\frac{v(y)^q}{|y|^\beta}\,dy,\quad v(x)=\int_{\mathbb{R}^n}G_{\alpha}(x-y)\frac{u(y)^p}{|y|^\beta}\,dy, \end{equation} where $G_\alpha$ is the Bessel kernel; that is, \[ G_\alpha(x)=\frac{(\sqrt{2\pi})^{-n}}{\Gamma(\frac{n}{2})} \int_{0}^\infty e^{-s}e^{-|x|^2/(4s)}s^{(\alpha-n)/2} \frac{ds}{s}, \] which is associated with the operator $(-\Delta + id)^{\frac \alpha 2}$. While problem \eqref{eq:1.1} is connected with the kernel $K_\alpha$ of the operator $(-\Delta )^\alpha+id$, such an operator enjoys different features, for instant, it is not clear whether the ground state solution of \[ {(- \Delta)}^{\alpha}u+ u= u^p, \quad \text{in }\mathbb{R}^n \] is exponentially decaying at infinity, see \cite{FQT} for further properties of the operator $(-\Delta )^\alpha+id$ and results for one equation case. We will consider in this paper the regularity and radial symmetry of positive solutions of \eqref{eq:1.1}, which involves in Hardy type weights. To this purpose, we first establish the following Hardy-Littlewood-Sobolev inequality for the potential $K_\alpha$ with double weights. \begin{theorem}\label{thm:1.1} Let $0<\alpha<1$, $1\beta+\tau>n(1-\frac 1p-\frac 1q)$. Then, there exists a constant $C$, independent of $f\in L^p(\mathbb{R}^n)$ and $g\in L^q(\mathbb{R}^n)$, such that the following inequality holds \begin{equation}\label{eq:1.8} \big|\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\frac{f(x)K_\alpha(x-y)h(y)}{|x|^\tau|y|^\beta}dx\,dy\big|\leq C\|f\|_{p}\|h\|_{q}.\end{equation} Furthermore, let $$ Th(x)=\int_{\mathbb{R}^n}\frac{K_\alpha(x-y)h(y)}{|x|^\tau |y|^\beta}dy, $$ then \[ \|Th\|_{{p'}}=\sup_{\|f\|_{p}=1}|\langle Th,f\rangle|\leq C\|h\|_{q}, \] where $\frac 1p+\frac 1{p'}=1,\,\,1+\frac 1{p'}\ge\frac 1q+\frac{n-2\alpha+\beta+\tau}{n}$ and $h\in L^q(\mathbb{R}^n)$. \end{theorem} Next, we use Theorem \ref{thm:1.1} to investigate properties of positive solutions of \eqref{eq:1.1}. In the following, we always assume $10$ if and only if $\beta+\tau< n(1-\frac 1p-\frac 1q+\frac{2\alpha}{n})$, it yields \[ I_1\leq C\|f\|_{p}\|h\|_{q}. \] We decompose $I_2$ as follows. \begin{equation} \label{eq:2.4} \begin{split} I_2&= \int_{\{x:|x|\ge\frac{1}{2}\}}\int_{\{y:|x-y|\ge1,|y|\ge \frac{1}{2}\}}\frac{|f(x)||h(y)|}{|x|^\tau|x-y|^{n+2\alpha}|y|^\beta} \,dy\,dx\\ &\quad+\int_{\{x:|x|\ge\frac{1}{2}\}}\int_{\{y:|x-y|\ge1,|y| \le\frac{1}{2}\}}\frac{|f(x)||h(y)|}{|x|^\tau|x-y|^{n+2\alpha} |y|^\beta}\,dy\,dx\\ &:= I_2^1+I_2^2. \end{split} \end{equation} Furthermore, \begin{equation} \label{eq:2.5} \begin{split} I_2^1&= \int_{\{x:|x|\ge\frac{1}{2}\}}\int_{\{y:|x-y|\ge1,|y|\ge \frac{1}{2},|y|\geq|x|\}}\frac{|f(x)||h(y)|}{|x|^\tau|x-y|^{n+2\alpha} |y|^\beta}\,dy\,dx\\ &\quad+\int_{\{x:|x|\ge\frac{1}{2}\}}\int_{\{y:|x-y|\ge1,|y| \ge\frac{1}{2},|y|\leq|x|\}}\frac{|f(x)||h(y)|}{|x|^\tau|x-y| ^{n+2\alpha}|y|^\beta}\,dy\,dx\\ &:= I_2^{11}+I_2^{12}. \end{split} \end{equation} Now we estimate $I_2^{11}$ and $I_2^{12}$, respectively. We deduce by Young's inequality that \begin{align*} I_2^{11} &\leq \int_{\{x:|x|\ge\frac{1}{2}\}}\frac{|f(x)|}{|x|^{\tau+\beta}} \Big(\int_{\{y:|y|\ge\frac{1}{2},|x-y|\geq1\}} \frac{|h(y)|}{|x-y|^{n+2\alpha}}\,dy\Big)\,dx\\ &\leq \|f\|_{p}\|(|\cdot|^{-n-2\alpha}\chi_{\{|\cdot|\geq1\}})*|h|\|_{q} \Big(\int_{\{x:|x|\ge 1\}}|x|^{-(\tau+\beta)\frac{pq}{pq-p-q}} \,dx\Big)^{1-\frac 1p-\frac 1{q}}\\ &\leq C\|f\|_{p}\|h\|_{q}\Big(\int_{\{x:|x|\ge 1\}}|x| ^{-(\tau+\beta)\frac{pq}{pq-p-q}}\,dx\Big)^{1-\frac 1p-\frac1{q}}. \end{align*} Since $\tau+\beta> n(1-\frac 1p-\frac 1{q})$, we have $n-(\tau+\beta)\frac{pq}{pq-p-q}<0$. Hence, \[ I_2^{11}\leq C\|f\|_{p}\|h\|_{q}. \] By the Fubini theorem, we find \begin{align*} I_2^{12}&\leq \int_{\{x:|x|\ge\frac{1}{2}\}} \int_{\{y:|y|\ge\frac{1}{2},|x-y|\geq1\}} \frac{|f(x)||h(y)|}{|x-y|^{n+2\alpha}|y|^{\tau+\beta}}|\,dy\,dx\\ &\leq \int_{\{y:|y|\ge\frac{1}{2}\}}\frac{|h(y)|}{|y|^{\tau+\beta}} \Big(\int_{\{x:|x-y|\geq1\}}\frac{|f(x)|}{|x-y|^{n+2\alpha}}dx \Big)\,dy\\ &\leq \|h\|_{q}\|(|\cdot|^{-n-2\alpha}\chi_{\{|\cdot|\geq1\}}) *|f|\|_{p}\Big(\int_{\{y:|y|\ge \frac{1}{2}\}}|y|^{-(\tau+\beta)\frac{pq}{pq-p-q}}\,dy\Big) ^{1-\frac 1p-\frac 1{q}}\\ &\leq C\|h\|_{q}\|f\|_{p}\Big(\int_{\{y:|y|\ge \frac{1}{2}\}}|y|^{-(\tau+\beta)\frac{pq}{pq-p-q}}\,dx\Big) ^{1-\frac 1p-\frac 1{q}}. \end{align*} In the same way, $n-(\tau+\beta)\frac{pq}{pq-p-q}<0$ if and only if $\tau+\beta> n(1-\frac 1p-\frac 1{q})$, and then \[ I_2^{12}\leq C\|f\|_{p}\|h\|_{q}. \] Using the Fubini theorem and Young's inequality, we obtain \begin{align*} I_2^2 &\leq \int_{\{y:|y|\le\frac{1}{2}\}}\frac{|h(y)|}{|y|^{\beta+\tau}} \int_{\{x:|x|\ge\frac{1}{2},|x-y|\geq1\}}\frac{|f(x)|} {|x-y|^{n+2\alpha}}\,dx\,dy\\ &\leq \|h\|_{q}\|(|\cdot|^{-n-2\alpha}\chi_{\{|\cdot|\geq1\}}) *|f|\|_{\frac{np}{n-2\alpha p}} \Big(\int_{\{y:|y|\leq \frac{1}{2}\}}|y|^{-\frac{\tau+\beta} {1-\frac 1p-\frac 1q+\frac{2\alpha}{n}}}\,dy\Big)^{1-\frac 1p-\frac1{q}+\frac{2\alpha}{n}}\\ &\leq C\|h\|_{q}\|f\|_{p}\Big(\int_{\{x:|x|\geq1\}} \frac{1}{|x|^{\frac{(n+2\alpha)n}{n-2\alpha}}}\,dx\Big) ^{\frac{n-2\alpha}{n}}\\ &\quad\times \Big(\int_{\{y:|y|\leq \frac{1}{2}\}}|y|^{-\frac{\tau+\beta} {1-\frac 1p-\frac 1q+\frac{2\alpha}{n}}}\,dx\Big)^{1-\frac 1p-\frac1{q}+\frac{2\alpha}{n}}. \end{align*} Since $n-\frac{\tau+\beta}{1-\frac 1p-\frac 1q+\frac{2\alpha}{n}}>0$ if and only if $\beta+\tau< n(1-\frac 1p-\frac 1q+\frac{2\alpha}{n})$, it follows that \[ I_2^{2}\leq C\|f\|_{p}\|h\|_{q}. \] Secondly, we estimate $J$. There holds \begin{equation}\label{eq:2.6} \begin{split} J&=\int_{\{x:|x|\ge2\}}\int_{\{y:|x-y|\le1\}} \frac{|f(x)||h(y)|}{|x|^\tau|x-y|^{n-2\alpha}|y|^\beta}\,dy\,dx\\ &\quad+\int_{\{x:|x|\le2\}}\int_{\{y:|x-y|\le1\}} \frac{|f(x)|h(y)|}{|x|^\tau|x-y|^{n-2\alpha}|y|^\beta}\,dy\,dx :=J_1+J_2. \end{split} \end{equation} Note that if $|x|\ge2,|y-x|\le1$, then $|y|\ge|x|-|x-y|\ge1\ge|x-y|$ and $|x|>|x-y|$. By Young's inequality, \begin{equation}\label{eq:2.7} \begin{split} J_1 &=\int_{\{x:|x|\ge2\}}f(x)\int_{\{y:|x-y|\le1\}} \frac{|h(y)|}{|x-y|^{n-2\alpha+\beta+\tau}}\,dy\,dx\\ &\le\|f\|_p\|h*(\frac{\chi_{\{|\cdot|\le1\}}}{|\cdot| ^{n-2\alpha+\beta+\tau}})\|_{p'}\\ &\le\|f\|_p\|h\|_q\Big(\int_{\{y:|y|\le1\}} \frac{1}{|y|^{(n-2\alpha+\beta+\tau)l}}\,dy\Big)^{1/l}, \end{split} \end{equation} where $\frac{1}{p'}=\frac{1}{q}+\frac{1}{l}-1$, that is $\frac1l=2-\frac 1p-\frac 1q$. Thus, $n-(n-2\alpha+\beta+\tau)l\ge0$ if and only if $\beta+\tau0$ if and only if $\tau+\beta\frac{np}{2\alpha-\beta}, \,\tilde q> \frac{nq}{2\alpha-\beta}$ and $\frac{1}{\tilde{p}}-\frac{1}{\tilde{q}}=\frac{1}{p+1}-\frac{1}{q+1}$, then we prove that $(u,v)\in L^{\infty}(\mathbb{R}^n)\times L^{\infty}(\mathbb{R}^n)$. For any sufficient large positive real number $\xi$, define \begin{equation}\label{eq:3.1} u_\xi(x)= \begin{cases} u(x),& \text{if } |u(x)|\ge \xi \text{ or } |x|>\xi,\\ u_\xi(x)=0,& \text{otherwise}. \end{cases} \end{equation} Similarly, we define $v_\xi$. Let \[ T_1^\xi g(x)=\int_{\mathbb{R}^n}\frac{K_\alpha(x-y) |v_\xi|^{q-1}g(y)}{|y|^{\beta}}\,dy,\quad T_2^\xi f(x)=\int_{\mathbb{R}^n}\frac{K_\alpha(x-y) |u_\xi|^{p-1}f(y)}{|y|^{\beta}}\,dy \] and \[ T_\xi(f,g)=(T_1^\xi g, T_2^\xi f). \] Let $\tilde u_\xi(x)=u(x)- u_\xi(x)$, and $E_\xi^u=\{x\in \mathbb{R}^n:|u(x)|\ge \xi {\rm\ or\ }|x|>\xi\}$. Similarly, we define $\tilde v_\xi$ and $E_\xi^v$. By \eqref{eq:1.1}, we have \begin{equation} \label{eq:3.2} \begin{split} u(x) &= \int_{\mathbb{R}^n}\frac{K_\alpha(x-y)|v(y)|^{q-1}v(y)} {|y|^{\beta}}\,dy\\ &= \int_{E_\xi^v}\frac{K_\alpha(x-y)|v(y)|^{q-1}v(y)}{|y|^{\beta}}\,dy +\int_{\mathbb{R}^n\backslash E_\xi^v}\frac{K_\alpha(x-y)|v(y)|^{q-1} v(y)}{|y|^{\beta}}\,dy\\ &= \int_{\mathbb{R}^n}\frac{K_\alpha(x-y)|v_\xi(y)|^{q-1} v_\xi(y)}{|y|^{\beta}}\,dy+\int_{\mathbb{R}^n}\frac{K_\alpha(x-y)| \tilde v_\xi(y)|^{q-1}\tilde v_\xi(y)}{|y|^{\beta}}\,dy. \end{split} \end{equation} Moreover, \begin{equation}\label{eq:3.3} u_\xi(x)=\int_{\mathbb{R}^n}\frac{K_\alpha(x-y)| v_\xi(y)|^{q-1}v_\xi(y)}{|y|^{\beta}}\,dy+M_1(x), \end{equation} where \[ M_1(x)=\int_{\mathbb{R}^n}\frac{K_\alpha(x-y)| \tilde v_\xi(y)|^{q-1}\tilde v_\xi(y)}{|y|^{\beta}}\,dy -\tilde u_\xi(x). \] Similarly, \begin{equation}\label{eq:3.4} v_\xi(x)=\int_{\mathbb{R}^n}\frac{K_\alpha(x-y)| u_\xi(y)|^{p-1}u_\xi(y)}{|y|^{\beta}}\,dy+M_2(x), \end{equation} where \[ M_2(x)=\int_{\mathbb{R}^n}\frac{K_\alpha(x-y)| \tilde u_\xi(y)|^{p-1}\tilde u_\xi(y)}{|y|^{\beta}}\,dy -\tilde v_\xi(x). \] It yields \[ (u_\xi, v_\xi)=T_\xi( u_\xi, v_\xi)+(M_1(x),M_2(x)), \] where $T_\xi(u_\xi, v_\xi)=(T_1^\xi v_\xi,T_2^\xi u_\xi)$. We claim that $M_1(x),M_2(x)\in L^\infty(\mathbb{R}^n)\cap L^s(\mathbb{R}^n)$ for $s>1$. Obviously, $\tilde u_\xi,\tilde v_\xi\in L^\infty(\mathbb{R}^n)\cap L^s(\mathbb{R}^n)$. So it suffices to show that $H_1,H_2\in L^\infty(\mathbb{R}^n)\cap L^s(\mathbb{R}^n)$, where \begin{gather*} H_1(x)=\int_{\mathbb{R}^n}\frac{K_\alpha(x-y)| \tilde v_\xi(y)|^{q-1}\tilde v_\xi(y)}{|y|^{\beta}}\,dy,\\ H_2(x)=\int_{\mathbb{R}^n}\frac{K_\alpha(x-y)| \tilde u_\xi(y)|^{p-1}\tilde u_\xi(y)}{|y|^{\beta}}\,dy. \end{gather*} Now, we estimate $H_1$, the estimation for $H_2$ can be obtained in the same way. By the definition of $\tilde v_\xi(x)$, for $x\in \mathbb{R}^n$, we obtain \begin{align*} %\label{eq:3.5} |H_1(x)| &\leq C \int_{\{y:|y|\leq \xi\}}\frac{K_\alpha(x-y) }{|y|^{\beta}}\,dy\\ &\leq C\int_{\{y:|y|\leq \xi,|x-y|\ge 1\}} \frac{K_\alpha(x-y) }{|y|^{\beta}}\,dy + C\int_{\{y:|y|\leq \xi,|x-y|\leq 1\}}\frac{K_\alpha(x-y) }{|y|^{\beta}}\,dy\\ &\leq C\int_{\{y:|y|\leq \xi,|x-y|\ge 1\}} \frac{1}{|x-y|^{n+2\alpha}|y|^{\beta}}\,dy\\ &\quad + C \int_{\{y:|y|\leq \xi,|x-y|\leq 1\}} \frac{1}{|y|^{\beta}|x-y|^{n-2\alpha}}\,dy\\ &= A(x)+B(x), \end{align*} where $C>0$ depends on $\xi$. Since $0\leq \beta<2\alpha\frac{ns}{2\alpha s+n-s\beta}$, we have \[ \|H_1\|_{L^s(\mathbb{R}^n)}\leq \|\tilde v_\xi^q\|_{L^r(B_\xi(0))} \leq C; \] that is, $H_1\in L^s(\mathbb{R}^n)$. The claim follows. Next, we show that $T_\xi(f,g)$ is a contraction map from $L^{\tilde{p}}(\mathbb{R}^n)\times L^{\tilde{q}}(\mathbb{R}^n)$ into $L^{\tilde{p}}(\mathbb{R}^n)\times L^{\tilde{q}}(\mathbb{R}^n)$ for $\tilde{q},\tilde{p}>1$ satisfying \begin{equation}\label{eq:3.7} \frac{1}{\tilde{p}}-\frac{1}{\tilde{q}}=\frac{1}{p+1}-\frac{1}{q+1}. \end{equation} We may verify by the fact $p,q>1$, \eqref{eq:1.2} and \eqref{eq:3.7} that \[ \tilde{q}>\frac{n\tilde{p}}{n+(2\alpha-\beta)\tilde{p}},\quad \tilde{p}>\frac{n\tilde{q}}{n+(2\alpha-\beta)\tilde{q}}. \] Choosing $d_1$ such that \begin{equation}\label{eq:3.8} \frac{1}{d_1}=\frac{1}{\tilde{q}}+\frac{q-1}{q+1}, \end{equation} we verify by \eqref{eq:1.2} that \begin{equation}\label{eq:3.9} \tilde{q}>d_1>\frac{n\tilde{p}}{n+(2\alpha-\beta)\tilde{p}}. \end{equation} By Theorem \ref{thm:1.1}, we find \begin{equation}\label{eq:3.10} \|T_1^\xi g\|_{{\tilde{p}}}\leq C\||v_\xi|^{q-1}g\|_{d_1}. \end{equation} This and H\"{o}lder's inequality yield \begin{equation}\label{eq:3.11} \|T_1^\xi g\|_{{\tilde{p}}}\leq C\|v_\xi\|_{q+1}^{q-1}\|g\|_{{\tilde{q}}}. \end{equation} In the same way, choosing $\frac{1}{d_2}=\frac{1}{\tilde{p}}+\frac{p-1}{p+1}$, we obtain \begin{equation}\label{eq:3.12} \|T_2^\xi f\|_{{\tilde{q}}}\leq C\||u_\xi|^{p-1}f\|_{d_2}\leq C\|u_\xi\|_{p+1}^{p-1}\|f\|_{{\tilde{p}}}.\end{equation} Since $(u,v)\in L^{p+1}(\mathbb{R}^n)\times L^{q+1}(\mathbb{R}^n)$, one can choose $\xi$ sufficiently large so that \begin{equation}\label{eq:3.13} \|T_1^\xi g\|_{{\tilde{p}}}\leq \frac{1}{2}\|g\|_{{\tilde{q}}},\quad \|T_2^\xi f\|_{{\tilde{q}}}\leq \frac{1}{2}\|f\|_{{\tilde{p}}}. \end{equation} Therefore, \begin{equation} \label{eq:3.14} \begin{split} \|T_\xi(f,g)\|_{{\tilde{p}}\times {\tilde{q}}} &= \|(T_1^\xi g,T_2^\xi f)\|_{{\tilde{p}}\times {\tilde{q}}} =\|T_1^\xi g\|_{{\tilde{p}}}+\|T_2^\xi f\|_{{\tilde{q}}}\\ &\leq \frac{1}{2}\|g\|_{{\tilde{q}}}+\frac{1}{2}\|f\|_{{\tilde{p}}}=\frac{1}{2}\|(f,g)\|_{{\tilde{p}}\times {\tilde{q}}}. \end{split} \end{equation} In other words, $T_\xi(f,g)$ is a contraction map from $L^{\tilde{p}}(\mathbb{R}^n)\times L^{\tilde{q}}(\mathbb{R}^n)$ into itself for $\tilde{p},\tilde{q}>1,\frac{1}{\tilde{p}}-\frac{1}{\tilde{q}}=\frac{1}{p+1}-\frac{1}{q+1}$. In particular, for $\tilde p = p+1$ and $\tilde q = q +1$, we see that $T_\xi(f,g)$ is also a contraction map from $L^{p+1}(\mathbb{R}^n)\times L^{q+1}(\mathbb{R}^n)$ into itself. Choosing $\tilde{p},\tilde{q}$ large enough such that $\tilde{p}>\frac{np}{2\alpha-\beta},\tilde{q}>\frac{nq}{2\alpha-\beta},\frac{1}{\tilde{p}}-\frac{1}{\tilde{q}}=\frac{1}{p+1}-\frac{1}{q+1}$, by Lemma \ref{lem:3.1}, we conclude that $(u_\xi,v_\xi)\in (L^{\tilde{p}}(\mathbb{R}^n)\times L^{\tilde{q}}(\mathbb{R}^n))\cap (L^{p+1}(\mathbb{R}^n)\times L^{q+1}(\mathbb{R}^n))$. Finally, we show that $u,v\in L^\infty(\mathbb{R}^n)$. Since $u(x)=u_\xi(x)+ \tilde u_\xi(x),v(x)=v_\xi(x)+ \tilde v_\xi(x)$ and $\tilde u_\xi, \tilde v_\xi\in L^\infty(\mathbb{R}^n)$, we only need to verify $u_\xi,v_\xi\in L^\infty(\mathbb{R}^n)$. By \eqref{eq:3.3},\eqref{eq:3.4} and $M_1,M_2\in L^\infty(\mathbb{R}^n)$, it is sufficient to verify that $I_1, I_2\in L^\infty(\mathbb{R}^n)$, where \[ I_1(x)=\int_{R^n}\frac{K_\alpha(x-y)|v_\xi|^{q-1} v_\xi(y)}{|y|^{\beta}}\,dy,\quad I_2(x)=\int_{R^n}\frac{K_\alpha(x-y)|u_\xi|^{p-1} u_\xi(y)}{|y|^{\beta}}\,dy. \] There holds \begin{equation} \label{eq:3.15} \begin{split} |I_1(x)|&\leq \int_{\{y:|y|\leq \xi\}}\frac{K_\alpha(x-y)| v_\xi|^q}{|y|^{\beta}}\,dy+\int_{\{y:|y|\ge \xi\}} \frac{K_\alpha(x-y)|v_\xi|^q}{|y|^{\beta}}\,dy\\ &:= J(x)+G(x). \end{split} \end{equation} If $x\in \mathbb{R}^n\backslash B_{2\xi}(0)$, $y\in B_{\xi}(0)$, then $|x-y|>|x|-|y|>\xi>|y|$. Thus, \begin{equation} \label{eq:3.16} \begin{split} J(x) &\leq C\int_{\{y:|y|\leq \xi\}} \frac{|v_\xi|^q}{|x-y|^{n+2\alpha}|y|^{\beta}}\,dy \leq C\int_{\{y:|y|\leq \xi\}}\frac{|v_\xi|^q}{|y|^{\beta}}\,dy\\ &\leq \Big(\int_{\{y:|y|\leq \xi\}}|v_\xi|^{q+1}\,dy\Big)^{q/(q+1)} \Big(\int_{\{y:|y|\leq \xi\}}\frac{1}{|y|^{(q+1)\beta}}\,dy\Big)^{1/(q+1)}\leq C \end{split} \end{equation} since $q<(n-\beta)/\beta$. If $x\in B_{2\xi}(0)$, we have \begin{align*} %\label{eq:3.17} J(x) &\leq \int_{\{y:|y|\leq \xi,|x-y|\ge 1\}}\frac{K_\alpha(x-y)|v_\xi|^q}{|y|^{\beta}}\,dy +\int_{\{y:|y|\leq \xi,|x-y|\leq 1\}}\frac{K_\alpha(x-y)|v_\xi|^q}{|y|^{\beta}}dy\\ &\leq C\int_{\{y:|y|\leq \xi,|x-y|\ge 1\}} \frac{|v_\xi|^q}{|x-y|^{n+2\alpha}|y|^{\beta}}\,dy\\ &\quad +C\int_{\{y:|y|\leq \xi,|x-y|\leq 1\}} \frac{|v_\xi|^q}{|x-y|^{n-2\alpha}|y|^{\beta}}\,dy :=CJ_1(x)+CJ_2(x). \end{align*} Now we estimate $J_1(x),J_2(x)$ respectively. By H\"{o}lder's inequality, we have \begin{equation} \label{eq:3.18} \begin{split} J_1(x) &\leq C\Big(\int_{\{y:|y|\leq \xi\}}|v_\xi|^{q+1}\,dy\Big)^{q/(q+1)} \Big(\int_{\{y:|y|\leq \xi\}}\frac{1}{|y|^{(q+1)\beta}}\,dy\Big)^{1/(q+1)}\\ &\leq C \end{split} \end{equation} and because of $\tilde{q}>nq/(2\alpha-\beta)$, we deduce \begin{equation} \label{eq:3.19} \begin{split} &J_2(x)\\ &\leq \int_{\{y:|y|\leq \xi,|x-y|\leq 1,|x-y|\ge |y|\}}\frac{|v_\xi|^q}{|x-y|^{n-2\alpha}|y|^{\beta}}\,dy\\ &\quad +\int_{\{y:|y|\leq \xi,|x-y|\leq 1,|x-y|\le|y|\}}\frac{|v_\xi|^q}{|x-y|^{n-2\alpha}|y|^{\beta}}\,dy\\ &\leq \int_{\{y:|y|\leq \xi\}}\frac{|v_\xi|^q}{|y|^{n-2\alpha+\beta}}\,dy+\int_{\{y:|x-y|\leq 1,|y|\leq \xi\}}\frac{|v_\xi|^q}{|x-y|^{n-2\alpha+\beta}}\,dy\\ &\leq \Big(\int_{\{y:|y|\leq \xi\}}|v_\xi|^{\tilde{q}}\,dy\Big)^{q/\tilde{q}} \Big(\int_{\{y:|y|\leq \xi\}}\frac{1}{|y|^{\frac{\tilde{q}}{\tilde{q}-q}(n-2\alpha+\beta)}}\,dy \Big)^{(\tilde{q}-q)/\tilde{q}}\\ &\quad + \Big(\int_{\{y:|y|\leq \xi\}}|v_\xi|^{\tilde{q}}\,dy\Big)^{q/\tilde{q}} \Big(\int_{\{y:|x-y|\le1\}}\frac{1}{|x-y|^{\frac{\tilde{q}}{\tilde{q}-q}(n-2\alpha+\beta)}}\,dy \Big)^{(\tilde{q}-q)/\tilde{q}}\\ &\leq C. \end{split} \end{equation} Inequalities \eqref{eq:3.16},\eqref{eq:3.18} and \eqref{eq:3.19} imply that $J\in L^\infty(\mathbb{R}^n)$. Now we estimate $G(x)$. For any $x\in \mathbb{R}^n$, \begin{align*} % \label{eq:3.20} G(x) &\leq \int_{\{y:|y|\ge \xi,|x-y|\ge 1\}}\frac{K_\alpha(x-y)|v_\xi|^q}{|y|^{\beta}}\,dy +\int_{\{y:|y|\ge \xi,|x-y|\leq 1\}}\frac{K_\alpha(x-y)|v_\xi|^q}{|y|^{\beta}}\,dy\\ &\leq C\int_{\{y:|y|\ge \xi,|x-y|\ge 1\}}\frac{|v_\xi|^q}{|x-y|^{n+2\alpha}|y|^{\beta}}\,dy\\ &\quad +C\int_{\{y:|y|\ge \xi,|x-y|\leq 1\}} \frac{|v_\xi|^q}{|x-y|^{n-2\alpha}|y|^{\beta}}\,dy\\ &\leq C\int_{\{y:|y|\ge \xi,|x-y|\ge 1\}} \frac{|v_\xi|^q}{|x-y|^{n+2\alpha}|y|^{\beta}}\,dy +C\int_{\{y:|x-y|\leq 1\}}\frac{|v_\xi|^q}{|x-y|^{n-2\alpha+\beta}}\,dy\\ &:= CG_1(x)+CG_2(x). \end{align*} By H\"{o}lder's inequality, \[ G_2(x)\le\Big(\int_{\mathbb{R}^n}|v_\xi|^{\tilde{q}}dy\Big)^{q/\tilde{q}} \Big(\int_{\{y:|x-y|\le1\}}\frac{1}{|x-y|^{\frac{\tilde{q}}{\tilde{q}-q}(n-2\alpha+\beta)}}dy \Big)^{(\tilde{q}-q)/\tilde{q}}\leq C. \] Now we estimate $G_1(x)$. Since $\tilde{q}>\frac{nq}{2\alpha-\beta}>\frac{nq}{n-\beta}$, we can choose an $r$ such that $10$. Let $X = L^\infty(\Omega)$ and $Y = C^{0,\gamma}(\Omega)$. By Theorem \ref{thm:1.2}, $u,v\in L^\infty(\mathbb{R}^n)$, we define \begin{gather*} \mathfrak{X}=\{w\in X\big| \|w\|_{L^\infty}\leq 2\|u\|_{L^\infty}+2\|v\|_{L^\infty}\},\\ \mathfrak{Y}=\{w\in Y\big| \|w\|_{L^\infty}\leq 2\|u\|_{L^\infty}+2\|v\|_{L^\infty}\}. \end{gather*} For every $\varepsilon>0$ such that $0<\varepsilon<\frac d2$, we define \begin{gather*} T_\varepsilon^q \hat{v}(x) = -\int_0^\varepsilon \int_{B_s(x)}K_\alpha'(s)\frac{\hat{v}^q(y)}{|y|^{\beta}}\,ds\,dy,\\ T_\varepsilon^p \hat{u}(x) = -\int_0^\varepsilon \int_{B_s(x)}K_\alpha'(s)\frac{\hat{u}^p(y)}{|y|^{\beta}}\,ds\,dy, \quad T_\varepsilon (\hat{u}, \hat{v}) = (T_\varepsilon^q \hat{v}, T_\varepsilon^p \hat{u}). \end{gather*} Furthermore, we define \begin{gather*} F^q v(x) = -\int_\varepsilon^\infty \int_{B_s(x)}K_\alpha'(s)\frac{v^q(y)}{|y|^{\beta}}\,ds\,dy,\\ F^p u(x) = -\int_\varepsilon^\infty \int_{B_s(x)}K_\alpha'(s)\frac{u^p(y)}{|y|^{\beta}}\,ds\,dy,\quad F = (F^p v, F^q u). \end{gather*} Obviously, a solution $(u,v)$ of \eqref{eq:1.1} is a solution of the equation \[ (\hat{u}, \hat{v}) = T_\varepsilon(\hat{u},\hat{v}) + F. \] Write $S_\varepsilon (\hat{u},\hat{v}) = T_\varepsilon(\hat{u},\hat{v}) + F$. We will show for $\varepsilon>0$ small that $T_\varepsilon$ is a contracting operator from $\mathfrak{X}\times \mathfrak{X}$ to $X\times X$, and also is a shrinking operator from $\mathfrak{Y}\times\mathfrak{Y}$ to $Y\times Y$. Furthermore, $F\in(\mathfrak{X}\times\mathfrak{X})\cap(\mathfrak{Y}\times\mathfrak{Y})$, and $S_\varepsilon:(\mathfrak{X}\times\mathfrak{X})\cap(\mathfrak{Y}\times\mathfrak{Y})\to (\mathfrak{X}\times\mathfrak{X})\cap(\mathfrak{Y}\times\mathfrak{Y})$. This then will yields $(u,v)\in Y\times Y$ by Lemma \ref{lem:4.1}. We first show that $T_\varepsilon$ is a contracting operator from $\mathfrak{X}\times \mathfrak{X}$ to $X\times X$. For any $f,g\in \mathfrak{X}$, we denote here and below that $f^p =f_+^p$. By the mean value theorem, we have \begin{align*} \big|T_\varepsilon^q f(x)-T_\varepsilon^q g(x)\big| &\leq \int^\varepsilon_0\int_{B_s(x)} |f^q(y) - g^q(y)| \frac{|K'_\alpha(s)|}{|y|^{\beta}}\,ds\,dy\\ &\leq C\max\{\|f\|_{L^\infty}^{q-1}, \|g\|_{L^\infty}^{q-1}\} \|f - g\|_{L^\infty}\int^\varepsilon_0 s^{n-\beta}|K_\alpha'(s)|\,ds. \end{align*} By \eqref{eq:2.1}, we obtain \[ \int^\varepsilon_0 s^{n-\beta}|K_\alpha'(s)|\,ds \leq O(\varepsilon^{2\alpha-\beta}) \] as $\varepsilon\to 0$. Hence, for $\varepsilon>0$ small, \begin{equation}\label{eq:4.1} \big|T_\varepsilon^q f(x)-T_\varepsilon^q g(x)\big| \leq C\max\{\|f\|_{L^\infty}^{q-1}, \|g\|_{L^\infty}^{q-1}\}\|f - g\|_{L^\infty}\varepsilon^{2\alpha-\beta}. \end{equation} Choosing $\varepsilon>0$ small so that $C\max\{\|f\|_{L^\infty}^{q-1}, \|g\|_{L^\infty}^{q-1}\}\varepsilon^{2\alpha-\beta}\leq 1/4$, we see that $T_\varepsilon^q$ is a contracting operator from $\mathfrak{X}$ to $X$. Similarly, $T_\varepsilon^p$ is also a contracting operator from $\mathfrak{X}$ to $X$. Therefore, $T_\varepsilon$ is a contracting operator from $\mathfrak{X}\times \mathfrak{X}$ to $X\times X$. Next, we verify that $T_\varepsilon$ is a shrinking operator from $\mathfrak{Y}\times \mathfrak{Y}$ to $Y\times Y$. We only show it for $T_\varepsilon^q$, it can be done in the same way for $T_\varepsilon^p$. Assume $f\in \mathfrak{Y}$. Then for any $x,z\in \Omega$, we have \begin{align*} |T_\varepsilon^q f(x)-T_\varepsilon^q f(z)| &=\big|\int^\varepsilon_0\Big\{\int_{B_s(x)} \frac{f^q(y)}{|y|^{\beta}}\,dy - \int_{B_s(z)}\frac{f^q(y)}{|y|^{\beta}}\,dy\Big\}K'_\alpha(s)\,ds\big|\\ &= \big|\int^\varepsilon_0\int_{B_s(x)} \big[\frac{f^q(y)}{|y|^{\beta}} - \frac{f^q(y+z -x)}{|y+z-x|^{\beta}}\big]K'_\alpha(s)\,dy\,ds\big|\\ &\leq \big|\int^\varepsilon_0\int_{B_s(x)} \Big[f^q(y) \big(\frac{1}{|y|^{\beta}} - \frac{1}{|y+z-x|^{\beta}}\big)\\ &\quad + \Big(\frac{f^q(y) - f^q(y+z -x)} {|y+z-x|^{\beta}}\Big)\Big] K'_\alpha(s)\,dy\,ds\big|. \end{align*} For $y\in B_s(x)$, $0< s < \varepsilon$, we have $|y|\geq |x| -s\geq d-\frac d2 = \frac d2>0$ and $|y +z -x|\geq |z|- |y-x|\geq d - s\geq \frac d2$. So both $\frac{1}{|y|^{\beta}}$ and $\frac{1}{|y+z-x|^{\beta}}$ are regular in $B_s(x)$ for $0< s < \varepsilon$. In particular, there exists $C>0$ such that $|\frac{1}{|y|^{\beta}} - \frac{1}{|y+z-x|^{\beta}}|\leq C|x-z|$. Hence, \begin{align*} &\big|\int^\varepsilon_0\int_{B_s(x)} f^q(y)\big(\frac{1}{|y|^{\beta}} - \frac{1}{|y+z-x|^{\beta}}\big)K'_\alpha(s)\,dy\,ds\big|\\ &\leq C\|f\|^q_{L^\infty} |x-z|\big|\int^\varepsilon_0 s^nK'_\alpha(s)\,ds\big|\\ &\leq C\|f\|^q_{L^\infty} |x-z|\varepsilon^{2\alpha}\\ &\leq C\|f\|^{q-1}_{L^\infty} \|f\|_{C^{0,\gamma}} |x-z|\varepsilon^{2\alpha}. \end{align*} If $|x-z|\leq 1$, $|x-z|\leq|x-z|^\gamma$; if $|x-z|> 1$, $|x-z|\leq(diam \Omega)^{1-\gamma}|x-z|^\gamma$. Therefore, \begin{align*} &\big|\int^\varepsilon_0\int_{B_s(x)} f^q(y)\big(\frac{1}{|y|^{\beta}} - \frac{1}{|y+z-x|^{\beta}}\big)K'_\alpha(s)\,dy\,ds\big|\\ &\leq C\|f\|^{q-1}_{L^\infty} \|f\|_{C^{0,\gamma}} |x-z|^\gamma\varepsilon^{2\alpha}. \end{align*} On the other hand, by the mean value theorem, \begin{align*} &\big|\int^\varepsilon_0\int_{B_s(x)} \frac{f^q(y) - f^q(y+z -x)} {|y+z-x|^{\beta}}K'_\alpha(s)\,dy\,ds\big|\\ &\leq \big|\int^\varepsilon_0\int_{B_s(x)}|w(\xi)|^{q-1} \frac{|f(y) - f(y+z -x)|} {|y+z-x|^{\beta}}K'_\alpha(s)\,dy\,ds\big|\\ &\leq C\|f\|^{q-1}_{L^\infty}\|f\|_{C^{0,\gamma}} |x-z|^{\gamma} \big|\int^\varepsilon_0 s^n K'_\alpha(s)\,ds\big|\\ &\leq C\|f\|^{q-1}_{L^\infty}\|f\|_{C^{0,\gamma}} |x-z|^{\gamma}\varepsilon^{2\alpha}, \end{align*} where $w$ is valued between $f(y)$ and $f(y+z -x)$. Consequently, \[ |T_\varepsilon^q f(x)-T_\varepsilon^q f(z)| \leq C\|f\|_{C^{0,\gamma}} |x-z|^{\gamma}\varepsilon^{2\alpha}. \] Choosing $\varepsilon>0$ sufficiently small, we obtain \[ \sup_{x\not=z}\frac{\big|T_\varepsilon^q f(x)-T_\varepsilon^q f(z)\big|}{|x-z|}\leq \frac 14\|f\|_{C^{0,\gamma}}. \] We may derive in the same way as \eqref{eq:4.1} that \[ \big|T_\varepsilon^q f(x)\big| \leq C\|f\|_{L^\infty}\varepsilon^{2\alpha-\beta} \leq\frac14\|f\|_{C^{0,\gamma}}. \] Therefore, for any $f\in \mathfrak{Y}$, \[ \|T_\varepsilon^q f(x)\|_{C^{0,\gamma}} \leq\frac12\|f\|_{C^{0,\gamma}}; \] that is, $T_\varepsilon^q$ is a shrinking operator from $\mathfrak{Y}$ to $Y$. Now, we show that $F^qv(x)$ and $F^pu(x)$ are H\"{o}lder continuous for $u,v\in \mathfrak{Y}$. We only deal with $F^qv(x)$. For $F^pu(x)$, it can be shown similarly. We write \begin{align*} F^q v(x) &= -\int_\varepsilon^1 \int_{B_s(x)}K_\alpha'(s) \frac{v^q(y)}{|y|^{\beta}}\,ds\,dy - \int_1^\infty \int_{B_s(x)}K_\alpha'(s) \frac{v^q(y)}{|y|^{\beta}}\,ds\,dy\\ &:= F_1(x) + F_2(x). \end{align*} For $x, z\in \Omega$, we have \begin{align*} |F_1(x) - F_1(z)| &= \big|\int_\varepsilon^1 \Big(\int_{B_s(x)}\frac{v^q(y)}{|y|^{\beta}}\,dy - \int_{B_s(x)}\frac{v^q(y)}{|y|^{\beta}}\,dy\Big) K_\alpha'(s)\,ds\big| \\ &\leq \|v\|^q_{L^\infty} \int_\varepsilon^1 \Big(\int_{(B_s(x)\setminus B_s(z))\cup (B_s(z)\setminus B_s(x))}\frac{1}{|y|^{\beta}}\,dy \Big) |K_\alpha'(s)|\,ds. \end{align*} Denote by $A^*$ the symmetric rearrangement of the set $A$, and $f^*$ the symmetric-decreasing rearrangement of a function $f$. It is known that for the characteristic function $\chi_A$ of a set $A$, $\chi_A^* = \chi_{A^*}$. Moreover, for nonnegative functions $f$ and $g$, there holds \[ \int_{\mathbb{R}^n}fg\,dx\leq \int_{\mathbb{R}^n}f^*g^*\,dx. \] If $|x-z|\geq 2s$, then \begin{align*} \int_{(B_s(x)\setminus B_s(z))\cup (B_s(z)\setminus B_s(x))} \frac{1}{|y|^{\beta}}\,dy =&\int_{ B_s(x)}\frac{1}{|y|^{\beta}}\,dy + \int_{B_s(z)}\frac{1}{|y|^{\beta}}\,dy\\ =&\int_{\mathbb{R}^n}\chi_{B_s(x)}\frac{1}{|y|^{\beta}}\,dy + \int_{\mathbb{R}^n}\chi_{B_s(z)}\frac{1}{|y|^{\beta}}\,dy\\ &\leq \int_{\mathbb{R}^n}\chi_{B_s(0)}\frac{1}{|y|^{\beta}}\,dy + \int_{\mathbb{R}^n}\chi_{B_s(0)}\frac{1}{|y|^{\beta}}\,dy\\ &\leq Cs^{n-\beta}\\ &\leq Cs^{n-\beta-1}|x-z|^{\gamma}.\\ \end{align*} If $|x-z|< 2s$, we have $$ (B_s(x)\setminus B_s(z))\cup (B_s(z)\setminus B_s(x)) \subset (B_s(x)\cup B_s(z))\setminus B_{s-\frac{|x-z|}2}(\frac{x+z}2). $$ Let $r = \big(s^n-\big(s-\frac{|x-z|}2\big)^n\big)^{1/n}$. Noting $0 \lambda\}$. It follows from \eqref{eq:1.1} that \begin{align*} u(x) &=\int_{\Sigma_\lambda}\frac{K_\alpha(x-y)v^q(y)}{|y|^{\beta}}\,dy +\int_{\Sigma_\lambda^c}\frac{K_\alpha(x-y)v^q(y)}{|y|^{\beta}}dy\\ &=\int_{\Sigma_\lambda}\frac{K_\alpha(x-y)v^q(y)}{|y|^{\beta}}\,dy +\int_{\Sigma_\lambda}\frac{K_\alpha(x-y_\lambda)v^q(y_\lambda)}{|y_\lambda|^{\beta}}\,dy\\ &=\int_{\Sigma_\lambda}\frac{K_\alpha(x-y)v^q(y)}{|y|^{\beta}}\,dy +\int_{\Sigma_\lambda}\frac{K_\alpha(x_\lambda-y) v_\lambda^q(y)}{|y_\lambda|^{\beta}}\,dy. \end{align*} Here we have used the fact that $|x-y_\lambda|=|x_\lambda-y|$ and the fact that $K_\alpha$ is radially symmetric in $\textsc{R}^n$. Substituting $x$ by $x_\lambda$ gives \[ u(x_\lambda)=\int_{\Sigma_\lambda} \frac{G_\alpha(x_\lambda-y)v^q(y)}{|y|^{\beta}}\,dy +\int_{\Sigma_\lambda} \frac{G_\alpha(x-y)v_\lambda^q(y)}{|y_\lambda|^{\beta}}\,dy. \] Hence, \[ u(x)-u_\lambda(x) =\int_{\Sigma_\lambda} \Big(K_\alpha(x-y)-K_\alpha(x_\lambda -y)\Big)\Big(\frac{v^q(y)}{|y|^{\beta}} -\frac{v_\lambda^q(y)}{|y_\lambda|^{\beta}}\Big)\,dy. \] Similarly, we have \[ v(x)-v_\lambda(x) =\int_{\Sigma_\lambda} \Big(K_\alpha(x-y)-K_\alpha(x_\lambda -y)\Big)\Big(\frac{u^p(y)}{|y|^{\beta}} -\frac{u_\lambda^p(y)}{|y_\lambda|^{\beta}}\Big)\,dy. \] This completes the proof. \end{proof} \begin{proof}[Proof of Theorem \ref{thm:1.4}] We use the moving plane method developed for integral equations in \cite{CLO} to prove the result. First, we show for sufficiently negative $\lambda$ that \begin{equation}\label{eq:5.1} u(x)\leq u(x_\lambda),\quad v(x)\leq v(x_\lambda),\quad \forall x\in \Sigma_\lambda. \end{equation} Set \begin{gather*} w_\lambda(x)=u(x)-u(x_\lambda),\quad z_\lambda(x)=v(x)-v(x_\lambda),\\ \Sigma_{\lambda}^{u,-}=\{x\in \Sigma_\lambda|u(x)>u(x_\lambda)\},\quad \Sigma_{\lambda}^{v,-}=\{x\in \Sigma_\lambda| v(x)>v(x_\lambda)\}. \end{gather*} From Lemma \ref{lem:5.1}, we deduce that \begin{align*} u(x)-u_\lambda(x) &= \int_{\Sigma_\lambda\backslash \Sigma_\lambda^{v,-}} \Big(K_\alpha(x-y)-K_\alpha(x_\lambda -y)\Big)\Big(\frac{v^q(y)}{|y|^{\beta}} -\frac{v_\lambda^q(y)}{|y_\lambda|^{\beta}}\Big)\,dy\\ &\quad+\int_{\Sigma_\lambda^{v,-}} \Big(K_\alpha(x-y)-K_\alpha(x_\lambda -y)\Big)\Big(\frac{v^q(y)}{|y|^{\beta}} -\frac{v_\lambda^q(y)}{|y_\lambda|^{\beta}}\Big)\,dy. \end{align*} Since $|x-y|<|x_\lambda-y|$ and $|y|>|y_\lambda|$ in $\Sigma_\lambda$, taking into account that $K_\alpha(x)$ is decreasing as well as that $t^q$ is convex, we obtain \begin{align*} u(x)-u_\lambda(x)&\leq \int_{\Sigma_\lambda^{v,-}} \Big(K_\alpha(x-y)-K_\alpha(x_\lambda-y)\Big) \Big(\frac{v^q(y)}{|y|^{\beta}} -\frac{v_\lambda^q(y)}{|y_\lambda|^{\beta}}\Big)\,dy\\ &\leq \int_{\Sigma_\lambda^{v,-}} \Big(K_\alpha(x-y)-K_\alpha(x_\lambda -y)\Big)\Big(\frac{v^q(y)-v_\lambda^q(y)}{|y|^{\beta}}\Big)\,dy\\ &\leq C\int_{\Sigma_\lambda^{v,-}}K_\alpha(x-y) \frac{v^{q-1}(v-v_\lambda)}{|y|^{\beta}}\,dy. \end{align*} We may derive as in the proof of \eqref{eq:3.11} and \eqref{eq:3.12} for \[\frac{1}{\tilde{p}}-\frac{1}{\tilde{q}}=\frac{1}{p+1}-\frac{1}{q+1}\] and \[\frac{1}{d_1}=\frac{1}{\tilde{q}}+\frac{q-1}{q+1},\quad\frac{1}{d_2}=\frac{1}{\tilde{p}}+\frac{p-1}{p+1}\] that \begin{equation}\label{eq:5.2} \|w_\lambda\|_{L^{\tilde{p}}(\Sigma_\lambda^{u,-})}\leq C\|v^{q-1}z_\lambda\|_{L^{d_1}(\Sigma_\lambda^{v,-})} \leq C\|v\|_{L^{q+1}(\Sigma_\lambda^{v,-})}^{q-1} \|z_\lambda\|_{L^{\tilde{q}}(\Sigma_\lambda^{v,-})} \end{equation} and \begin{equation}\label{eq:5.3} \|z_\lambda\|_{L^{\tilde{q}}(\Sigma_\lambda^{v,-})}\leq C\|u^{p-1}w_\lambda\|_{L^{d_2}(\Sigma_\lambda^{u,-})} \leq C\|u\|_{L^{p+1}(\Sigma_\lambda^{u,-})}^{p-1} \|w_\lambda\|_{L^{\tilde{p}}(\Sigma_\lambda^{u,-})}. \end{equation} As a result, \begin{equation}\label{eq:5.4} \|w_\lambda\|_{L^{\tilde{p}}(\Sigma_\lambda^{u,-})}\leq C\|u\|_{L^{p+1}(\Sigma_\lambda^{u,-})}^{p-1} \|v\|_{L^{q+1}(\Sigma_\lambda^{v,-})}^{q-1} \|w_\lambda\|_{L^{\tilde{p}}(\Sigma_\lambda^{u,-})}. \end{equation} Since $(u,v)\in L^{p+1}(\mathbb{R}^n)\times L^{q+1}(\mathbb{R}^n)$, for sufficiently negative $\lambda$, \[ C\|u\|_{L^{p+1}(\Sigma_\lambda^{u,-})}^{p-1} \|v\|_{L^{q+1}(\Sigma_\lambda^{v,-})}^{q-1}\leq \frac{1}{2}. \] Hence, \[ \|w_\lambda\|_{L^{\tilde{p}}(\Sigma_\lambda^{u,-})} \le\frac{1}{2}\|w_\lambda\|_{L^{\tilde{p}}(\Sigma_\lambda^{u,-})}. \] This implies $\Sigma_\lambda^{u,-}$ must be a set of measure zero. Similarly, the measure of $\Sigma_\lambda^{v,-}$ is zero. Consequently, \eqref{eq:5.1} holds. Next, we increase the value of $\lambda$ continuously; that is, we move the plane $T_\lambda$ to the right as long as the inequality \eqref{eq:5.1} holds. We show that by moving $T_\lambda$ in this way, it will not stop before the plane hitting the origin. Let \begin{equation}\label{eq:5.5} \lambda_0=\sup\{\lambda|u(x)-u_{\lambda}(x)\leq 0,v(x)-v_{\lambda}(x)\leq 0,\forall x\in \Sigma_{\lambda}\}. \end{equation} Obviously $\lambda_0\leq 0$, We claim that \begin{equation}\label{eq:5.6} \lambda_0=0. \end{equation} In fact, if it were not the case, we would show that the plane could be moved further to the right by a small distance, and this would contradict with the definition of $\lambda_0$. Suppose by the contrary that $\lambda_0<0$, and that there exist some points $x_0,x_1$ in $\Sigma_{\lambda_0}$ such that $u(x_0)=u_{\lambda_0}(x_0),v(x_1)=v_{\lambda_0}(x_1)$. By Lemma \ref{lem:5.1} and noting that $x_{\lambda_0}=(x_0)_{\lambda_0}$, we obtain \begin{align*} 0&= u(x_0)-u_{\lambda_0}(x_0) \\ &= \int_{\Sigma_{\lambda_0}} \Big(K_\alpha(x_0-y)-K_\alpha(x_{\lambda_0} -y)\Big)\Big(\frac{v^q(y)}{|y|^{\beta}} -\frac{v_{\lambda_0}^q(y)}{|y_{\lambda_0}|^{\beta}}\Big)\,dy. \end{align*} Since $|y|>|y_0|$ in $\Sigma_{\lambda_0}$, \[ \frac{v^q(y)}{|y|^{\beta}} <\frac{v_{\lambda_0}^q(y)}{|y_{\lambda_0}|^{\beta}}\quad\text{in } \Sigma_{\lambda_0}. \] Moreover, $|x_0-y|<|x_{\lambda_0}-y|$ in $\Sigma_{\lambda_0}$, we infer that \[ v(x)\equiv v_{\lambda_0}(x)\equiv 0, \quad a.e.\ x\in\Sigma_{\lambda_0}. \] This also implies that $v(x)\equiv 0$, which is a contradiction to the fact that $v$ is positive. So we have \[ u(x)0 $ there exists $R>0$ such that \[ \int_{R^n\backslash B_R(0)}u^{p+1}\,dx<\varepsilon,\quad\int_{R^n\backslash B_R(0)}v^{q+1}\,dx<\varepsilon. \] By Lusin theorem, for any $\delta>0$, there exists a closed set $F_\delta$ with $F_\delta\subset B_R(0)\cup \Sigma_{\lambda_0}=E$ and $m(E-F_\delta)<\delta$ such that $w_{\lambda_0}|F_{\delta},z_{\lambda_0}|F_{\delta}$ is continuous. As $w_{\lambda_0},z_{\lambda_0}<0$ in the interior of $\Sigma_{\lambda_0},w_{\lambda_0},z_{\lambda_0}<0$ in $F_\delta$. Choosing $\varepsilon_0>0$ sufficiently small so that for any $\lambda\in [\lambda_0,\lambda_0+\varepsilon_0)$, it holds that $w_\lambda,z_\lambda<0$ in $F_\delta$. For such a $\lambda$, \begin{gather*} \Sigma_\lambda^{u,-}\subset M^u:=(R^n\backslash B_R(0))\cup(E\backslash F_\delta)\cup[(\Sigma_\lambda\backslash\Sigma_{\lambda_0}^{u,-})\cap B_R(0)],\\ \Sigma_\lambda^{v,-}\subset M^v:=(R^n\backslash B_R(0))\cup(E\backslash F_\delta)\cup[(\Sigma_\lambda\backslash\Sigma_{\lambda_0}^{v,-})\cap B_R(0)]. \end{gather*} We may choose $\varepsilon,\delta$ and $\varepsilon_0$ small so that \[ C\|u\|_{L^{p+1}(\Sigma_\lambda^{u,-})}^{p-1}\|v\|_{L^{q+1} (\Sigma_\lambda^{v,-})}^{q-1}\leq \frac{1}{2}. \] Hence, \[ \|w_\lambda\|_{L^{\tilde{p}}(\Sigma_\lambda^{u,-})} \le\frac{1}{2}\|w_\lambda\|_{L^{\tilde{p}}(\Sigma_\lambda^{u,-})}, \] which implies that $\Sigma_{\lambda}^{u,-}$ must be of measure zero. Again, it contradicts the definition of $\lambda_0$. Equation \eqref{eq:5.6} is proved. On the other hand, we can also move the plane from positive infinite to zero by the similar procedure. Hence, $u(x),v(x)$ are symmetric and monotonic with respect to $x_1=0$. Moreover, since the $x_1$ direction can be chosen arbitrarily, $u(x),v(x)$ are radial symmetric and strictly monotonic with respect to the origin. Thus we have completed the proof of Theorem \ref{thm:1.4}. \end{proof} \subsection*{Acknowledgments} X. Chen was supported by grant 10961015 from the NNSF of China. J. Yang was supported by grants 10961016 from the NNSF of China, and 2009GZS0011 from the NSF of Jiangxi. \begin{thebibliography}{00} \bibitem{CJL} W. Chen, C. Jin, C. Li; Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations, \emph{Discrete and Continuous Dynamical Systems,} Supplement Volume (2005), 164--172. \bibitem{CL} W. Chen, C. Li; Methods on nolinear elliptic equation, \emph{AIMS,} 2010. \bibitem{CL1} W. Chen, C. Li; Classification of solutions of some nonlinear elliptic equations, \emph{Duke Math. J.,} 63(1991), 615-622. \bibitem{CL2} W. Chen, C. Li; Regularity of solutions fo a system of integral equations, \emph{Comm. Pure Appl. Anal.,} 4(2005), 1-8. \bibitem{CL3} W. Chen, C. Li; The best constant in some weighted Hardy-Littlewood-Sobolev inequality, \emph{Proc. Amer. Math. Soc.,} 136(2008), 955-962. \bibitem{CLO} W. Chen, C. Li, B. Ou; Classification of solutions for an integral equation, \emph{Comm. Pure Appl. Math.,} 59(2006), 330-343. \bibitem{CLO1} W. Chen, C. Li, B. Ou; Classification of solutions for a system of integral equations, \emph{Comm. PDE,} 30(2005), 59-65. \bibitem{CY} Xiaoli Chen, Jianfu Yang; Regularity and symmetry of solutions of an integral equation, to appear in Acta Math. Sci. \bibitem{LG} L. Grafakos; Classical and modern Fourier analysis. Pearson Education, Inc. New York, 2004. \bibitem{FQT} P. Felmer, A. Quaas, Jinggang Tan; Positive solutions of nonlinear Schr\"{o}dinger equation with the fractional Laplacian, preprint. \bibitem{L} N. Laskin; Fractional quantum mechanics and L¡äevy path integrals, \emph{Physics Letters,} A 268 (2000) 298-305. \bibitem{L1} N. Laskin; Fractional Schr\"{o}dinger equation, \emph{Physical Review,} 66, 56-108, 2002. \bibitem {Lieb} E. H. Lieb, M. Loss; \emph{Analysis}, GSM 14, AMS, Providence, Rhode Island 1996. \bibitem{GZLU} G. Lu, J. Zhu; Symmetry and regularity of extremals of an integral equation related to the Hardy-Soblev inequality, \emph{Calc. Var. PDE}, DoI 10.1007/s00526-011-0398-7. \bibitem{SW} E. M. Stein, G. Weiss; Fractional integrals in $n$-dimension Euclidean spaces, \emph{J. Math. Mech,} 7(1958), 503-514. \end{thebibliography} \end{document}